Global well-posedness of a system from quantum hydrodynamics for small data
Confluentes Mathematici, Volume 7 (2015) no. 2, pp. 7-16.

This article describes a joint work of the author with B.Haspot on the existence and uniqueness of global solutions for the Euler-Korteweg equations in the special case of quantum hydrodynamics. Our aim here is to sketch how one can construct global small solutions of the Gross-Pitaevskii equation and use the so-called Madelung transform to convert these into solutions without vacuum of the quantum hydrodynamics. A key point is to bound the the solution of the Gross-Pitaevskii equation away from 0, this condition is fullfilled thanks to recent scattering results.

DOI: 10.5802/cml.21
Classification: 35A01, 35Q31, 35Q55, 76D45

Corentin Audiard 1

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
@article{CML_2015__7_2_7_0,
     author = {Corentin Audiard},
     title = {Global well-posedness of a system from quantum hydrodynamics for small data},
     journal = {Confluentes Mathematici},
     pages = {7--16},
     publisher = {Institut Camille Jordan},
     volume = {7},
     number = {2},
     year = {2015},
     doi = {10.5802/cml.21},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.21/}
}
TY  - JOUR
AU  - Corentin Audiard
TI  - Global well-posedness of a system from quantum hydrodynamics for small data
JO  - Confluentes Mathematici
PY  - 2015
SP  - 7
EP  - 16
VL  - 7
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.21/
DO  - 10.5802/cml.21
LA  - en
ID  - CML_2015__7_2_7_0
ER  - 
%0 Journal Article
%A Corentin Audiard
%T Global well-posedness of a system from quantum hydrodynamics for small data
%J Confluentes Mathematici
%D 2015
%P 7-16
%V 7
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.21/
%R 10.5802/cml.21
%G en
%F CML_2015__7_2_7_0
Corentin Audiard. Global well-posedness of a system from quantum hydrodynamics for small data. Confluentes Mathematici, Volume 7 (2015) no. 2, pp. 7-16. doi : 10.5802/cml.21. https://cml.centre-mersenne.org/articles/10.5802/cml.21/

[1] Paolo Antonelli; Pierangelo Marcati On the finite energy weak solutions to a system in quantum fluid dynamics, Comm. Math. Phys., Volume 287 (2009) no. 2, pp. 657-686 | DOI | MR | Zbl

[2] Corentin Audiard; Boris Haspot From Gross-Pitaevskii equation to Euler-Korteweg system, existence of global strong solutions with small irrotational initial data, preprint

[3] S. Benzoni-Gavage; R. Danchin; S. Descombes On the well-posedness for the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., Volume 56 (2007), pp. 1499-1579 | MR | Zbl

[4] Sylvie Benzoni-Gavage; Raphaël Danchin; Stéphane Descombes Well-posedness of one-dimensional Korteweg models, Electron. J. Differential Equations (2006), pp. No. 59, 35 pp. (electronic) | MR | Zbl

[5] J. Bona; G. Ponce; J.C. Saut; C. Sparber Dispersive blow up for nonlinear Schrödinger equations revisited, preprint

[6] J. Bourgain Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., Volume 12 (1999) no. 1, pp. 145-171 | DOI | MR | Zbl

[7] Rémi Carles; Raphaël Danchin; Jean-Claude Saut Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, Volume 25 (2012) no. 10, pp. 2843-2873 | DOI | MR | Zbl

[8] J. Colliander; M. Keel; G. Staffilani; H. Takaoka; T. Tao Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in 3 , Ann. of Math. (2), Volume 167 (2008) no. 3, pp. 767-865 | DOI | MR | Zbl

[9] P. Gérard The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006) no. 5, pp. 765-779 | DOI | MR | Zbl

[10] P. Germain; N. Masmoudi; J. Shatah Global solutions for the gravity water waves equation in dimension 3, Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 691-754 | DOI | MR | Zbl

[11] Pierre Germain; Nader Masmoudi; Jalal Shatah Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN (2009) no. 3, pp. 414-432 | DOI | MR | Zbl

[12] J. Ginibre; G. Velo Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9), Volume 64 (1985) no. 4, pp. 363-401 | MR | Zbl

[13] Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai Scattering for the Gross-Pitaevskii equation, Math. Res. Lett., Volume 13 (2006) no. 2-3, pp. 273-285 | DOI | MR | Zbl

[14] Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, Volume 8 (2007) no. 7, pp. 1303-1331 | DOI | MR

[15] Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., Volume 11 (2009) no. 4, pp. 657-707 | DOI | MR | Zbl

[16] Nakao Hayashi; Pavel I. Naumkin On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices (2000) no. 3, pp. 115-132 | DOI | MR | Zbl

[17] Carlos E. Kenig; Frank Merle Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., Volume 166 (2006) no. 3, pp. 645-675 | DOI | MR | Zbl

[18] Walter Strauss Nonlinear Scattering Theory at Low Energy, J. Func. Anal., Volume 41 (1981), pp. 110-133 | MR | Zbl

Cited by Sources: