The binary actions of alternating groups
Confluentes Mathematici, Tome 17 (2025), pp. 73-89

Given a conjugacy class $\mathcal{C}$ in a group $G$ we define a new graph, $\Gamma (\mathcal{C})$, whose vertices are elements of $\mathcal{C}$; two vertices $g,h\in \mathcal{C}$ are connected in $\Gamma (\mathcal{C})$ if $[g,h]=1$ and either $gh^{-1}$ or $hg^{-1}$ is in $\mathcal{C}$.

We prove a lemma that relates the binary actions of the group $G$ to connectivity properties of $\Gamma (\mathcal{C})$. This lemma allows us to give a complete classification of all binary actions when $G=A_n$, an alternating group on $n$ letters with $n\ge 5$.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.101
Classification : 20D06, 20B25, 20B10
Keywords: permutation group, binary action, relational complexity, alternating group

Nick Gill 1 ; Pierre Guillot 2

1 School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
2 IRMA, 7 rue René Descartes, 67084 Strasbourg, France
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2025__17__73_0,
     author = {Nick Gill and Pierre Guillot},
     title = {The binary actions of alternating groups},
     journal = {Confluentes Mathematici},
     pages = {73--89},
     year = {2025},
     publisher = {Institut Camille Jordan},
     volume = {17},
     doi = {10.5802/cml.101},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.101/}
}
TY  - JOUR
AU  - Nick Gill
AU  - Pierre Guillot
TI  - The binary actions of alternating groups
JO  - Confluentes Mathematici
PY  - 2025
SP  - 73
EP  - 89
VL  - 17
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.101/
DO  - 10.5802/cml.101
LA  - en
ID  - CML_2025__17__73_0
ER  - 
%0 Journal Article
%A Nick Gill
%A Pierre Guillot
%T The binary actions of alternating groups
%J Confluentes Mathematici
%D 2025
%P 73-89
%V 17
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.101/
%R 10.5802/cml.101
%G en
%F CML_2025__17__73_0
Nick Gill; Pierre Guillot. The binary actions of alternating groups. Confluentes Mathematici, Tome 17 (2025), pp. 73-89. doi: 10.5802/cml.101

[1] Gregory Cherlin Sporadic homogeneous structures, The Gelfand Mathematical Seminars, 1996–1999. Dedicated to the memory of Chih-Han Sah, Birkhäuser, 2000, pp. 15-48 | Zbl | MR

[2] Gregory Cherlin On the relational complexity of a finite permutation group, J. Algebr. Comb., Volume 43 (2016) no. 2, pp. 339-374 | DOI | Zbl | MR

[3] Francesca Dalla Volta; Nick Gill; Pablo Spiga Cherlin’s conjecture for sporadic simple groups, Pac. J. Math., Volume 297 (2018) no. 1, pp. 47-66 | DOI | Zbl | MR

[4] Nick Gill; Pierre Guillot The binary actions of simple groups with a single conjugacy class of involutions, J. Group Theory, Volume 28 (2025) no. 1, pp. 215-240 | DOI | Zbl | MR

[5] Nick Gill; Pierre Guillot; Martin W. Liebeck The binary actions of simple groups of Lie type of characteristic 2, Pac. J. Math., Volume 336 (2025) no. 1-2, pp. 113-135 | DOI | Zbl | MR

[6] Nick Gill; Francis Hunt; Pablo Spiga Cherlin’s conjecture for almost simple groups of Lie rank 1, Math. Proc. Camb. Philos. Soc., Volume 167 (2019) no. 3, pp. 417-435 | DOI | Zbl | MR

[7] Nick Gill; Martin W. Liebeck; Pablo Spiga Cherlin’s conjecture for finite primitive binary permutation groups, Lecture Notes in Mathematics, 2302, Springer, 2022 | DOI | Zbl | MR

[8] Nick Gill; Pablo Spiga Binary permutation groups: alternating and classical groups, Am. J. Math., Volume 142 (2020) no. 1, pp. 1-43 | DOI | Zbl | MR

[9] Alistair H. Lachlan Finite homogeneous simple digraphs, Proceedings of the Herbrand symposium (Marseilles, 1981) (Studies in Logic and the Foundations of Mathematics), Volume 107, North-Holland Publishing Co. (1982), pp. 189-208 | DOI | Zbl | MR

[10] Alistair H. Lachlan Homogeneous structures, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), American Mathematical Society, 1987, pp. 314-321 | MR | Zbl

[11] Peter Müller Permutation groups containing non-commuting p-cycles, 2014 MathOverflow, https://mathoverflow.net/a/172529/801, (version: 2014-06-25)

[12] Joshua Wiscons A reduction theorem for primitive binary permutation groups., Bull. Lond. Math. Soc., Volume 48 (2016) no. 2, pp. 291-299 | DOI | Zbl | MR

Cité par Sources :