Given a conjugacy class $\mathcal{C}$ in a group $G$ we define a new graph, $\Gamma (\mathcal{C})$, whose vertices are elements of $\mathcal{C}$; two vertices $g,h\in \mathcal{C}$ are connected in $\Gamma (\mathcal{C})$ if $[g,h]=1$ and either $gh^{-1}$ or $hg^{-1}$ is in $\mathcal{C}$.
We prove a lemma that relates the binary actions of the group $G$ to connectivity properties of $\Gamma (\mathcal{C})$. This lemma allows us to give a complete classification of all binary actions when $G=A_n$, an alternating group on $n$ letters with $n\ge 5$.
Révisé le :
Accepté le :
Publié le :
Keywords: permutation group, binary action, relational complexity, alternating group
Nick Gill 1 ; Pierre Guillot 2
CC-BY-NC-ND 4.0
@article{CML_2025__17__73_0,
author = {Nick Gill and Pierre Guillot},
title = {The binary actions of alternating groups},
journal = {Confluentes Mathematici},
pages = {73--89},
year = {2025},
publisher = {Institut Camille Jordan},
volume = {17},
doi = {10.5802/cml.101},
language = {en},
url = {https://cml.centre-mersenne.org/articles/10.5802/cml.101/}
}
TY - JOUR AU - Nick Gill AU - Pierre Guillot TI - The binary actions of alternating groups JO - Confluentes Mathematici PY - 2025 SP - 73 EP - 89 VL - 17 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.101/ DO - 10.5802/cml.101 LA - en ID - CML_2025__17__73_0 ER -
Nick Gill; Pierre Guillot. The binary actions of alternating groups. Confluentes Mathematici, Tome 17 (2025), pp. 73-89. doi: 10.5802/cml.101
[1] Sporadic homogeneous structures, The Gelfand Mathematical Seminars, 1996–1999. Dedicated to the memory of Chih-Han Sah, Birkhäuser, 2000, pp. 15-48 | Zbl | MR
[2] On the relational complexity of a finite permutation group, J. Algebr. Comb., Volume 43 (2016) no. 2, pp. 339-374 | DOI | Zbl | MR
[3] Cherlin’s conjecture for sporadic simple groups, Pac. J. Math., Volume 297 (2018) no. 1, pp. 47-66 | DOI | Zbl | MR
[4] The binary actions of simple groups with a single conjugacy class of involutions, J. Group Theory, Volume 28 (2025) no. 1, pp. 215-240 | DOI | Zbl | MR
[5] The binary actions of simple groups of Lie type of characteristic , Pac. J. Math., Volume 336 (2025) no. 1-2, pp. 113-135 | DOI | Zbl | MR
[6] Cherlin’s conjecture for almost simple groups of Lie rank 1, Math. Proc. Camb. Philos. Soc., Volume 167 (2019) no. 3, pp. 417-435 | DOI | Zbl | MR
[7] Cherlin’s conjecture for finite primitive binary permutation groups, Lecture Notes in Mathematics, 2302, Springer, 2022 | DOI | Zbl | MR
[8] Binary permutation groups: alternating and classical groups, Am. J. Math., Volume 142 (2020) no. 1, pp. 1-43 | DOI | Zbl | MR
[9] Finite homogeneous simple digraphs, Proceedings of the Herbrand symposium (Marseilles, 1981) (Studies in Logic and the Foundations of Mathematics), Volume 107, North-Holland Publishing Co. (1982), pp. 189-208 | DOI | Zbl | MR
[10] Homogeneous structures, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), American Mathematical Society, 1987, pp. 314-321 | MR | Zbl
[11] Permutation groups containing non-commuting -cycles, 2014 MathOverflow, https://mathoverflow.net/a/172529/801, (version: 2014-06-25)
[12] A reduction theorem for primitive binary permutation groups., Bull. Lond. Math. Soc., Volume 48 (2016) no. 2, pp. 291-299 | DOI | Zbl | MR
Cité par Sources :