Any simple pseudofinite group $G$ is known to be isomorphic to a (twisted) Chevalley group over a pseudofinite field. This celebrated result mostly follows from the work of Wilson in 1995 and heavily relies on the classification of finite simple groups (CFSG). It easily follows that $G$ is finite-dimensional with additive and fine dimension and, in particular, that if $\dim (G)=3$ then $G$ is isomorphic to $\operatorname{PSL}_2(F)$ for some pseudofinite field $F$. We describe pseudofinite groups of fine and additive dimension $\leqslant 3$ and, in particular, show that the classification $G \cong \operatorname{PSL}_2(F)$ is independent of CFSG.
Révisé le :
Accepté le :
Publié le :
Keywords: pseudofinite groups, finite-dimensional groups, classification of finite simple groups, simple groups of Lie type
Ulla Karhumäki 1 ; Frank O. Wagner 2
CC-BY-NC-ND 4.0
@article{CML_2025__17__55_0,
author = {Ulla Karhum\"aki and Frank O. Wagner},
title = {Finite-dimensional pseudofinite groups of small dimension, without {CFSG}},
journal = {Confluentes Mathematici},
pages = {55--71},
year = {2025},
publisher = {Institut Camille Jordan},
volume = {17},
doi = {10.5802/cml.100},
language = {en},
url = {https://cml.centre-mersenne.org/articles/10.5802/cml.100/}
}
TY - JOUR AU - Ulla Karhumäki AU - Frank O. Wagner TI - Finite-dimensional pseudofinite groups of small dimension, without CFSG JO - Confluentes Mathematici PY - 2025 SP - 55 EP - 71 VL - 17 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.100/ DO - 10.5802/cml.100 LA - en ID - CML_2025__17__55_0 ER -
%0 Journal Article %A Ulla Karhumäki %A Frank O. Wagner %T Finite-dimensional pseudofinite groups of small dimension, without CFSG %J Confluentes Mathematici %D 2025 %P 55-71 %V 17 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.100/ %R 10.5802/cml.100 %G en %F CML_2025__17__55_0
Ulla Karhumäki; Frank O. Wagner. Finite-dimensional pseudofinite groups of small dimension, without CFSG. Confluentes Mathematici, Tome 17 (2025), pp. 55-71. doi: 10.5802/cml.100
[1] Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Am. Math. Soc., Volume 151 (1970), pp. 1-261 | DOI | Zbl | MR
[2] Finite simple groups of 2-rank two, Scr. Math., Volume 29 (1973) no. 3-4, pp. 191-214 | Zbl | MR
[3] The elementary theory of finite fields, Ann. Math. (2), Volume 88 (1968), pp. 239-271 | DOI | Zbl
[4] Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt fest läßt, J. Algebra, Volume 17 (1971), pp. 527-554 | DOI | Zbl | MR
[5] On groups of even order, Ann. Math. (2), Volume 62 (1955), pp. 565-583 | DOI | Zbl
[6] On finite groups of even order whose -Sylow group is a quaternion group, Proc. Natl. Acad. Sci. USA, Volume 45 (1959), pp. 1757-1759 | DOI | Zbl | MR
[7] Definable sets over finite fields, J. Reine Angew. Math., Volume 427 (1992), pp. 107-135 | Zbl | MR
[8] On the conjectures of J. Thompson and O. Ore, Trans. Am. Math. Soc., Volume 350 (1998) no. 9, pp. 3657-3671 | DOI | Zbl | MR
[9] Groups in supersimple and pseudofinite theories, Proc. Lond. Math. Soc. (3), Volume 103 (2011) no. 6, pp. 1049-1082 | DOI | Zbl | MR
[10] Solvability of groups of odd order, Pac. J. Math., Volume 13 (1963), pp. 775-1029 | DOI | Zbl | MR
[11] The Classification of Finite Simple Groups. Volume 1: Groups of noncharacteristic 2 type, University Series in Mathematics, Plenum Press, 1983 | Zbl | DOI | MR
[12] The characterization of finite groups with dihedral Sylow 2-subgroups. I, J. Algebra, Volume 2 (1965), pp. 85-151 | DOI | Zbl | MR
[13] Almost group theory, J. Algebra, Volume 556 (2020), pp. 169-224 | MR | DOI | Zbl
[14] Centralizers in pseudo-finite groups, J. Algebra, Volume 569 (2021), pp. 258-275 | DOI | Zbl | MR
[15] A characterization of the group , Trans. Am. Math. Soc., Volume 164 (1972), pp. 371-387 | DOI | Zbl | MR
[16] Model theory of finite and pseudofinite groups, Arch. Math. Logic, Volume 57 (2018) no. 1-2, pp. 159-184 | DOI | Zbl | MR
[17] A remark on the definability of the Fitting subgroup and the soluble radical, Math. Log. Q., Volume 59 (2013) no. 1-2, pp. 62-65 | DOI | Zbl | MR
[18] Ultraproducts and Chevalley groups, Arch. Math. Logic, Volume 38 (1999) no. 6, pp. 355-372 | DOI | Zbl | MR
[19] Model Theory of Finite Difference Fields and Simple Groups, Ph. D. Thesis, University of Leeds, United Kingdom (2007)
[20] Simple Theories, Mathematics and its Applications (Dordrecht), 503, Kluwer Academic Publishers, 2000 | Zbl | MR | DOI
[21] Pseudofinite -groups (2015) (https://hal.archives-ouvertes.fr/hal01235178)
[22] Dimensional groups and fields, J. Symb. Log., Volume 85 (2020) no. 3, pp. 918-936 | DOI | Zbl | MR
[23] On simple pseudofinite groups, J. Lond. Math. Soc. (2), Volume 51 (1995) no. 3, pp. 471-490 | DOI | Zbl | MR
Cité par Sources :