We consider the problem of estimating the density of a determinantal process from the observation of independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when goes to infinity, uniform rates of convergence over classes of densities of interest.
Keywords: Determinantal process - Density estimation- Oracle inequality - Hellinger distance
Yannick Baraud 1
@article{CML_2013__5_1_3_0, author = {Yannick Baraud}, title = {Estimation of the density of a determinantal process}, journal = {Confluentes Mathematici}, pages = {3--21}, publisher = {Institut Camille Jordan}, volume = {5}, number = {1}, year = {2013}, doi = {10.5802/cml.1}, mrnumber = {3143610}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.1/} }
TY - JOUR AU - Yannick Baraud TI - Estimation of the density of a determinantal process JO - Confluentes Mathematici PY - 2013 SP - 3 EP - 21 VL - 5 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.1/ DO - 10.5802/cml.1 LA - en ID - CML_2013__5_1_3_0 ER -
Yannick Baraud. Estimation of the density of a determinantal process. Confluentes Mathematici, Volume 5 (2013) no. 1, pp. 3-21. doi : 10.5802/cml.1. https://cml.centre-mersenne.org/articles/10.5802/cml.1/
[1] Estimation adaptative par selection de partitions en rectangles dyadiques, University Paris XI (2009) (Ph. D. Thesis)
[2] An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[3] Algebraic aspects of increasing subsequences, Duke Math. J., Volume 109 (2001) no. 1, pp. 1-65 | DOI | MR | Zbl
[4] Estimator selection with respect to Hellinger-type risks, Probab. Theory Related Fields, Volume 151 (2011) no. 1-2, pp. 353-401 | DOI | MR
[5] Model selection via testing: an alternative to (penalized) maximum likelihood estimators, Ann. Inst. H. Poincaré Probab. Statist., Volume 42 (2006) no. 3, pp. 273-325 | DOI | Numdam | MR
[6] On adding a list of numbers (and other one-dependent determinantal processes), Bull. Amer. Math. Soc. (N.S.), Volume 47 (2010) no. 4, pp. 639-670 | DOI | MR | Zbl
[7] On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.), Volume 19 (1955), p. 133-151 (1956) | MR | Zbl
[8] Wavelet characterizations for anisotropic Besov spaces, Appl. Comput. Harmon. Anal., Volume 12 (2002) no. 2, pp. 179-208 | DOI | MR | Zbl
[9] Determinantal processes and independence, Probab. Surv., Volume 3 (2006), pp. 206-229 | DOI | MR | Zbl
[10] Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, 51, American Mathematical Society, Providence, RI, 2009 | MR | Zbl
[11] Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci. (2003) no. 98, pp. 167-212 | DOI | Numdam | MR | Zbl
[12] Algebra, Chelsea Publishing Co., New York, 1988 | MR | Zbl
Cited by Sources: