Estimation of the density of a determinantal process
Confluentes Mathematici, Volume 5 (2013) no. 1, pp. 3-21.

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

DOI: 10.5802/cml.1
Classification: 62G07, 62M30
Keywords: Determinantal process - Density estimation- Oracle inequality - Hellinger distance

Yannick Baraud 1

1 Université Nice Sophia Antipolis, CNRS, LJAD, UMR CNRS 7351, 06100 Nice, France
@article{CML_2013__5_1_3_0,
     author = {Yannick Baraud},
     title = {Estimation of the density of a determinantal process},
     journal = {Confluentes Mathematici},
     pages = {3--21},
     publisher = {Institut Camille Jordan},
     volume = {5},
     number = {1},
     year = {2013},
     doi = {10.5802/cml.1},
     mrnumber = {3143610},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.1/}
}
TY  - JOUR
AU  - Yannick Baraud
TI  - Estimation of the density of a determinantal process
JO  - Confluentes Mathematici
PY  - 2013
SP  - 3
EP  - 21
VL  - 5
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.1/
DO  - 10.5802/cml.1
LA  - en
ID  - CML_2013__5_1_3_0
ER  - 
%0 Journal Article
%A Yannick Baraud
%T Estimation of the density of a determinantal process
%J Confluentes Mathematici
%D 2013
%P 3-21
%V 5
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.1/
%R 10.5802/cml.1
%G en
%F CML_2013__5_1_3_0
Yannick Baraud. Estimation of the density of a determinantal process. Confluentes Mathematici, Volume 5 (2013) no. 1, pp. 3-21. doi : 10.5802/cml.1. https://cml.centre-mersenne.org/articles/10.5802/cml.1/

[1] N. Akakpo Estimation adaptative par selection de partitions en rectangles dyadiques, University Paris XI (2009) (Ph. D. Thesis)

[2] Greg W. Anderson; Alice Guionnet; Ofer Zeitouni An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[3] Jinho Baik; Eric M. Rains Algebraic aspects of increasing subsequences, Duke Math. J., Volume 109 (2001) no. 1, pp. 1-65 | DOI | MR | Zbl

[4] Yannick Baraud Estimator selection with respect to Hellinger-type risks, Probab. Theory Related Fields, Volume 151 (2011) no. 1-2, pp. 353-401 | DOI | MR

[5] Lucien Birgé Model selection via testing: an alternative to (penalized) maximum likelihood estimators, Ann. Inst. H. Poincaré Probab. Statist., Volume 42 (2006) no. 3, pp. 273-325 | DOI | Numdam | MR

[6] Alexei Borodin; Persi Diaconis; Jason Fulman On adding a list of numbers (and other one-dependent determinantal processes), Bull. Amer. Math. Soc. (N.S.), Volume 47 (2010) no. 4, pp. 639-670 | DOI | MR | Zbl

[7] N. G. de Bruijn On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.), Volume 19 (1955), p. 133-151 (1956) | MR | Zbl

[8] Reinhard Hochmuth Wavelet characterizations for anisotropic Besov spaces, Appl. Comput. Harmon. Anal., Volume 12 (2002) no. 2, pp. 179-208 | DOI | MR | Zbl

[9] J. Ben Hough; Manjunath Krishnapur; Yuval Peres; Bálint Virág Determinantal processes and independence, Probab. Surv., Volume 3 (2006), pp. 206-229 | DOI | MR | Zbl

[10] J. Ben Hough; Manjunath Krishnapur; Yuval Peres; Bálint Virág Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, 51, American Mathematical Society, Providence, RI, 2009 | MR | Zbl

[11] Russell Lyons Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci. (2003) no. 98, pp. 167-212 | DOI | Numdam | MR | Zbl

[12] Saunders Mac Lane; Garrett Birkhoff Algebra, Chelsea Publishing Co., New York, 1988 | MR | Zbl

Cited by Sources: