A formalism for the renormalization procedure is given.
@article{CML_2012__4_1_A3_0, author = {Dimitri Tamarkin}, title = {A formalism for the renormalization procedure}, journal = {Confluentes Mathematici}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {4}, number = {1}, year = {2012}, doi = {10.1142/S1793744212400026}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744212400026/} }
TY - JOUR AU - Dimitri Tamarkin TI - A formalism for the renormalization procedure JO - Confluentes Mathematici PY - 2012 VL - 4 IS - 1 PB - World Scientific Publishing Co Pte Ltd UR - https://cml.centre-mersenne.org/articles/10.1142/S1793744212400026/ DO - 10.1142/S1793744212400026 LA - en ID - CML_2012__4_1_A3_0 ER -
%0 Journal Article %A Dimitri Tamarkin %T A formalism for the renormalization procedure %J Confluentes Mathematici %D 2012 %V 4 %N 1 %I World Scientific Publishing Co Pte Ltd %U https://cml.centre-mersenne.org/articles/10.1142/S1793744212400026/ %R 10.1142/S1793744212400026 %G en %F CML_2012__4_1_A3_0
Dimitri Tamarkin. A formalism for the renormalization procedure. Confluentes Mathematici, Tome 4 (2012) no. 1. doi : 10.1142/S1793744212400026. https://cml.centre-mersenne.org/articles/10.1142/S1793744212400026/
[1] R. Borcherds, Quantum vertex operator algebras, preprint math-ph.
[2] R. Borcherds and A. Barnard, Lectures on QFT, preprint math-ph.
[3] A. S. Schwarz, Geometry of the Batalin–Vilkovitski quantization, Commun. Math. Phys. 155 (1993) 249–260.
[4] A. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591–611.
[5] A. Beilinson and V. Drinfeld, Chiral Algebras (Amer. Math. Soc., 2004).
[6] I. Batalin and G. Vilkovitski, Gauge algebra and quantization, Phys. Lett. 102B (1981) 27.
[7] J. Bernstein, unpublished.
[8] A. Connes and D. Kreimer, Renormalization in quantum field theory I, Hopf algebras and the Riemann–Hilbert problem, Commun. Math. Phys. 210 (2000) 249–273.
[9] A. Connes and D. Kreimer, Renormalization in quantum field theory II, Hopf algebras and the Riemann–Hilbert problem, Commun. Math. Phys. 216 (2001) 215–241.
[10] Y.-S. Park, Pursuing the quantum world: Flat family of QFT and quantization of d-algebras, preprint MATH.
[11] N. Bogoliubov and O. Parasyuk, Acta Math. 97 (1957) 227; K. Hepp, Commun. Math. Phys. 2 (1966) 301.
Cité par Sources :