We study the model theory of "covers" of groups H definable in an o-minimal structure M. We pose the question of whether any finite central extension G of H is interpretable in M, proving some cases (such as when H is abelian) as well as stating various equivalences. When M is an o-minimal expansion of the reals (so H is a definable Lie group) this is related to Milnor's conjecture [15], and many cases are known. We also prove a strong relative Lω1, ω-categoricity theorem for universal covers of definable Lie groups, and point out some notable differences with the case of covers of complex algebraic groups (studied by Zilber and his students).
Alessandro Berarducci 1 ; Ya’acov Peterzil 1 ; Anand Pillay 1
@article{CML_2010__2_4_473_0, author = {Alessandro Berarducci and Ya{\textquoteright}acov Peterzil and Anand Pillay}, title = {Group covers, $o$-minimality, and categoricity}, journal = {Confluentes Mathematici}, pages = {473--496}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {2}, number = {4}, year = {2010}, doi = {10.1142/S1793744210000259}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744210000259/} }
TY - JOUR AU - Alessandro Berarducci AU - Ya’acov Peterzil AU - Anand Pillay TI - Group covers, $o$-minimality, and categoricity JO - Confluentes Mathematici PY - 2010 SP - 473 EP - 496 VL - 2 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - https://cml.centre-mersenne.org/articles/10.1142/S1793744210000259/ DO - 10.1142/S1793744210000259 LA - en ID - CML_2010__2_4_473_0 ER -
%0 Journal Article %A Alessandro Berarducci %A Ya’acov Peterzil %A Anand Pillay %T Group covers, $o$-minimality, and categoricity %J Confluentes Mathematici %D 2010 %P 473-496 %V 2 %N 4 %I World Scientific Publishing Co Pte Ltd %U https://cml.centre-mersenne.org/articles/10.1142/S1793744210000259/ %R 10.1142/S1793744210000259 %G en %F CML_2010__2_4_473_0
Alessandro Berarducci; Ya’acov Peterzil; Anand Pillay. Group covers, $o$-minimality, and categoricity. Confluentes Mathematici, Tome 2 (2010) no. 4, pp. 473-496. doi : 10.1142/S1793744210000259. https://cml.centre-mersenne.org/articles/10.1142/S1793744210000259/
[1] M. Bays, Categoricity results for exponential maps of 1-dimensional algebraic groups, and Schanuel’s conjecture for Powers and the CIP, Ph.D. thesis, University of Oxford, 2009 .
[2] A. Berarducci, J. Symbolic Logic 74, 1177 (2007).
[3] A. Berarducci, J. Symbolic Logic 74, 891 (2009), DOI: 10.2178/jsl/1245158089.
[4] A. Berarducci and M. Mamino, On the homotopy type of definable groups in an o-minimal structure, to appear in J. London Math. Soc .
[5] A. Berarducciet al., Ann. Pure Appl. Logic 134, 303 (2005), DOI: 10.1016/j.apal.2005.01.002.
[6] J. L. Dupont, W. Parry and C. H. Sah, J. Algebra 113, 215 (1988), DOI: 10.1016/0021-8693(88)90191-3.
[7] M. Edmundo, J. Algebra 301, 194 (2006), DOI: 10.1016/j.jalgebra.2005.04.016.
[8] M. Edmundo, G. O. Jones and N. J. Peatfield, Hurewicz theorems for definable groups, Lie groups and their cohomologies, preprint (http://www.ciul.ul.pt/edmundo/), Oct. 13, 2007, 22 pp .
[9] M. Edmundo , G. O. Jones and N. J. Peatfield , Arch. Math. Logic .
[10] M. Edmundo and P. Eleftheriou, Math. Logic Quart. 53, 571 (2007), DOI: 10.1002/malq.200610051.
[11] M. Gavrilovich, Model theory of the universal covering spaces of complex algebraic varieties, Ph.D. thesis, University of Oxford, 2006 .
[12] E. Hrushovski, Y. Peterzil and A. Pillay, J. Amer. Math. Soc. 21, 563 (2008), DOI: 10.1090/S0894-0347-07-00558-9.
[13] E. Hrushovski, Y. Peterzil and A. Pillay, J. Algebra 327, 71 (2011), DOI: 10.1016/j.jalgebra.2010.11.001.
[14] E. Hrushovski and A. Pillay, On NIP and invariant measures, preprint, 29th January 2009 , arXiv:0710.2330v2 .
[15] J. Milnor, Comment. Math. Helvetici 58, 72 (1983), DOI: 10.1007/BF02564625.
[16] M. Otero, Y. Peterzil and A. Pillay, Bull. London Math. Soc. 28, 7 (1996), DOI: 10.1112/blms/28.1.7.
[17] A. Pillay, J. Pure Appl. Algebra 53, 239 (1988), DOI: 10.1016/0022-4049(88)90125-9.
[18] A. Pillay, J. Math. Logic 4, 147 (2004), DOI: 10.1142/S0219061304000346.
[19] C. H. Sah, Comment. Math. Helvetici 61, 308 (1986), DOI: 10.1007/BF02621918.
[20] B. Zilber, J. London Math. Soc. 74, 41 (2006), DOI: 10.1112/S0024610706023349.
Cité par Sources :