Differentiability-free conditions on the free-energy function implying large deviations
Confluentes Mathematici, Volume 1 (2009) no. 2, pp. 181-196.

Let (μα) be a net of Radon sub-probability measures on ℝ, and (tα) be a net in ]0, 1] converging to 0. Assuming that the generalized log-moment generating function L(λ) exists for all λ in a nonempty open interval G, we give conditions on the left or right derivatives of L|G, implying a vague (and thus narrow when 0 ∈ G large deviation principle. The rate function (which can be nonconvex) is obtained as an abstract Legendre–Fenchel transform. This allows us to strengthen the Gärtner–Ellis theorem by weakening the essential smoothness assumption. A related question of R. S. Ellis is solved.

Published online:
DOI: 10.1142/S1793744209000079
Henri Comman 1

1
@article{CML_2009__1_2_181_0,
     author = {Henri Comman},
     title = {Differentiability-free conditions on the free-energy function implying large deviations},
     journal = {Confluentes Mathematici},
     pages = {181--196},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {1},
     number = {2},
     year = {2009},
     doi = {10.1142/S1793744209000079},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744209000079/}
}
TY  - JOUR
AU  - Henri Comman
TI  - Differentiability-free conditions on the free-energy function implying large deviations
JO  - Confluentes Mathematici
PY  - 2009
SP  - 181
EP  - 196
VL  - 1
IS  - 2
PB  - World Scientific Publishing Co Pte Ltd
UR  - https://cml.centre-mersenne.org/articles/10.1142/S1793744209000079/
DO  - 10.1142/S1793744209000079
LA  - en
ID  - CML_2009__1_2_181_0
ER  - 
%0 Journal Article
%A Henri Comman
%T Differentiability-free conditions on the free-energy function implying large deviations
%J Confluentes Mathematici
%D 2009
%P 181-196
%V 1
%N 2
%I World Scientific Publishing Co Pte Ltd
%U https://cml.centre-mersenne.org/articles/10.1142/S1793744209000079/
%R 10.1142/S1793744209000079
%G en
%F CML_2009__1_2_181_0
Henri Comman. Differentiability-free conditions on the free-energy function implying large deviations. Confluentes Mathematici, Volume 1 (2009) no. 2, pp. 181-196. doi : 10.1142/S1793744209000079. https://cml.centre-mersenne.org/articles/10.1142/S1793744209000079/

[1] H. Comman, J. Theor. Probab. 18, 187 (2005), DOI: 10.1007/s10959-004-2594-2 .

[2] H. Comman, Trans. Amer. Math. Soc. 355, 2905 (2003), DOI: 10.1090/S0002-9947-03-03274-4 .

[3] A. Dembo and O. Zeitouni , Large Deviations Techniques and Applications , 2nd edn. ( Springer-Verlag , 1998 ) .

[4] R. S. Ellis, Scand. Actuarial J. 1, 97 (1995).

[5] R. S. Ellis , Entropy, Large Deviations, and Statistical Mechanics ( Springer-Verlag , 1985 ) .

[6] R. S. Ellis, Ann. Probab. 12, 1 (1984), DOI: 10.1214/aop/1176993370 .

[7] J. Gärtner, Th. Probab. Appl. 22, 24 (1977).

[8] G. L. O’Brien, Stoch. Process. Appl. 57, 1 (1995), DOI: 10.1016/0304-4149(95)00007-T .

[9] G. L. O’Brien and W. Vervaat, Stable Processes and Related Topics, eds. S. Cambanis, G. Samorodniski and M. S. Taqqu (Birkhäuser, 1991) pp. 43-83.

[10] R. T. Rockafeller , Convex Analysis ( Princeton Univ. Press , 1970 ) .

Cited by Sources: