Stability of stationary solutions of singular systems of balance laws
Confluentes Mathematici, Tome 10 (2018) no. 2, pp. 93-112.

The stability of stationary solutions of first-order systems of PDE’s is considered. The systems under investigation may include singular geometric terms, leading to discontinuous flux and non-conservative products. Based on several examples in Fluid Mechanics, we assume that these systems are endowed with a partially convex entropy. We first construct an associated relative entropy which allows to compare two states which share the same geometric data. This way, we are able to prove the stability of some stationary states within entropy weak solutions. Let us stress that these solutions are only required to have a bounded total variation, i.e. they can be discontinuous. This result applies for instance to the shallow-water equations with bathymetry. Besides, this relative entropy can be used to study finite volume schemes which are entropy-stable and well-balanced, and due to the numerical dissipation inherent to these methods, asymptotic stability of discrete stationary solutions is obtained. This analysis does not make us of any specific definition of the non-conservative products, applies to non-strictly hyperbolic systems, and is fully multidimensional with unstructured meshes for the numerical methods.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/cml.52
Classification : 35L60,  35B35,  35B25,  65M08
Mots clés : Hyperbolic systems, stationary state, stability, relative entropy, non-conservative systems, finite volume schemes, well-balanced schemes.
@article{CML_2018__10_2_93_0,
     author = {Nicolas Seguin},
     title = {Stability of stationary solutions of singular systems of balance laws},
     journal = {Confluentes Mathematici},
     pages = {93--112},
     publisher = {Institut Camille Jordan},
     volume = {10},
     number = {2},
     year = {2018},
     doi = {10.5802/cml.52},
     mrnumber = {3928226},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.52/}
}
Nicolas Seguin. Stability of stationary solutions of singular systems of balance laws. Confluentes Mathematici, Tome 10 (2018) no. 2, pp. 93-112. doi : 10.5802/cml.52. https://cml.centre-mersenne.org/articles/10.5802/cml.52/

[1] D. Amadori and L. Gosse. Error estimates for well-balanced schemes on simple balance laws. SpringerBriefs in Mathematics. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. | Article | Zbl 1332.65132

[2] B. Andreianov, K. H. Karlsen, and N. H. Risebro. A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal., 201(1):27–86, 2011. | Article | MR 2807133 | Zbl 1261.35088

[3] B. Andreianov and N. Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete Contin. Dyn. Syst., 32(6):1939–1964, 2012. | Article | Zbl 1246.35125

[4] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 25(6):2050–2065, 2004. | Article | MR 2086830 | Zbl 1133.65308

[5] C. Berthon and C. Chalons. A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. Math. Comp., 85(299):1281–1307, 2016. | Article | MR 3454365 | Zbl 1382.76180

[6] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2004. | Zbl 1086.65091

[7] Y. Brenier, C. De Lellis, and L. Székelyhidi, Jr. Weak-strong uniqueness for measure-valued solutions. Comm. Math. Phys., 305(2):351–361, 2011. | Article | MR 2805464 | Zbl 1219.35182

[8] C. Cancès, H. Mathis, and N. Seguin. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM J. Numer. Anal., 54(2):1263–1287, 2016. | Article | MR 3489050 | Zbl 1382.65268

[9] P. Cargo and A.-Y. LeRoux. Un schéma équilibre adapté au modèle d’atmosphère avec termes de gravité. C. R. Acad. Sci. Paris Sér. I Math., 318(1):73–76, 1994. | Zbl 0805.76063

[10] C. Chalons and F. Coquel. A new comment on the computation of non conservative products using Roe-type path conservative scheme. J. Comput. Phys., 335:592–604, 2017. | Article | MR 3612512 | Zbl 1375.76161

[11] C. Chalons, F. Coquel, E. Godlewski, P.-A. Raviart, and N. Seguin. Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction. Math. Models Methods Appl. Sci., 20(11):2109–2166, 2010. | Article | MR 2740716 | Zbl 1213.35034

[12] G. Chen and S. Noelle. A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J. Numer. Anal., 55(2):758–784, 2016. | Article | MR 3631390 | Zbl 1365.76146

[13] A. Chinnayya, A.-Y. LeRoux, and N. Seguin. A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon. Int. J. Finite Volumes, pages 1–33, 2004.

[14] J.-F. Colombeau. Multiplication of distributions. Springer Verlag, 1992. | Article

[15] F. Coquel, K. Saleh, and N. Seguin. A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles. Math. Models Methods Appl. Sci., 24(10):2043–2083, 2014. | Article | MR 3211117 | Zbl 1354.76116

[16] C. M. Dafermos. The second law of thermodynamics and stability. Arch. Ration. Mech. Anal., 70:167–179, 1979. | Article | MR 546634 | Zbl 0448.73004

[17] C. M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, troisième edition, 2010. | Article | Zbl 1196.35001

[18] G. Dal Maso, P.G. LeFloch, and F. Murat. Definition and weak stability of non conservative products. J. Math. Pures Appl., 74:483–548, 1995. | Zbl 0853.35068

[19] R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana U. Math. J., 28:137–188, 1979. | Zbl 0409.35057

[20] U. S. Fjordholm, S. Mishra, and E. Tadmor. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys., 230(14):5587–5609, 2011. | Article | MR 2799526 | Zbl 1452.35149

[21] G. Gallice. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source. C. R. Math. Acad. Sci. Paris, 334(8):713–716, 2002. | Article | Zbl 1154.65360

[22] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18:697–715, 1965. | Article | MR 194770 | Zbl 0141.28902

[23] J. Glimm and P. D. Lax. Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, R.I., 1970. | Article | Zbl 0204.11304

[24] P. Goatin and P. G. LeFloch. The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(6):881–902, 2004. | Article | Numdam | MR 2097035 | Zbl 1086.35069

[25] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws, volume 118 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996. | Article | Zbl 0860.65075

[26] S. K. Godunov. Finite difference method for numerical computation of discontinous solution of the equations of fluid dynamics. Mat. Sb., 47:271–300, 1959.

[27] L. Gosse. A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci., 11(2):339–365, 2001. | Article | MR 1820677 | Zbl 1018.65108

[28] L. Gosse. Localization effects and measure source terms in numerical schemes for balance laws. Math. Comp., 71(238):553–582 (electronic), 2002. | Article | MR 1885615 | Zbl 0997.65108

[29] L. Gosse. Computing qualitatively correct approximations of balance laws, volume 2 of SIMAI Springer Series. Springer, Milan, 2013. Exponential-fit, well-balanced and asymptotic-preserving. | Article | Zbl 1272.65065

[30] J. M. Greenberg and A.-Y. LeRoux. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal., 33(1):1–16, 1996. | Article | MR 1377240 | Zbl 0876.65064

[31] A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25(1):35–61, 1983. | Article | MR 693713 | Zbl 0565.65051

[32] E. Isaacson and B. Temple. Nonlinear resonance in systems of conservation laws. SIAM J. Applied Math., 52(5):1260–1278, 1992. | Article | MR 1182123 | Zbl 0794.35100

[33] E. Isaacson and B. Temple. Convergence of the 2×2 Godunov method for a general resonant nonlinear balance law. SIAM J. Applied Math., 55(3):625–640, 1995. | Article | MR 1331577 | Zbl 0838.35075

[34] V. Jovanović and C. Rohde. Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal., 43(6):2423–2449, 2006. | Article | MR 2206442 | Zbl 1111.65081

[35] M.-J. Kang and A. F. Vasseur. Criteria on contractions for entropic discontinuities of systems of conservation laws. Arch. Ration. Mech. Anal., 222(1):343–391, 2016. | Article | MR 3519973 | Zbl 1354.35077

[36] C. Klingenberg and N. H. Risebro. Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Comm. Partial Differential Equations, 20(11-12):1959–1990, 1995. | Article | MR 1361727 | Zbl 0836.35090

[37] B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source term. Calcolo, 38(4):201–231, 2001. | Article | MR 1890353 | Zbl 1008.65066

[38] E. Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp., 49(179):91–103, 1987. | Article | MR 890255 | Zbl 0641.65068

[39] B. Temple and R. Young. A Nash-Moser framework for finding periodic solutions of the compressible Euler equations. J. Sci. Comput., 64(3):761–772, 2015. | Article | MR 3377838 | Zbl 1432.76210

[40] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, Berlin, third edition, 2009. A practical introduction. | Article | Zbl 0923.76004

[41] A. Vasseur, and Y. Wang. The inviscid limit to a contact discontinuity for the compressible Navier–Stokes–Fourier system using the relative entropy method. SIAM J. Math. Anal., 47(6):4350–4359, 2015. | Article | MR 3421617 | Zbl 1333.35165