On Harder-Narasimhan filtrations and their compatibility with tensor products
Confluentes Mathematici, Tome 10 (2018) no. 2, pp. 3-49.

We attach buildings to modular lattices of finite length and show that they yield a natural framework for a metric version of the Harder-Narasimhan formalism. We establish a sufficient condition for the compatibility of Harder-Narasimhan filtrations with tensor products and verify our criterion in various cases coming from p-adic Hodge theory.

Reçu le : 2017-04-24
Révisé le : 2018-10-01
Accepté le : 2018-10-01
Publié le : 2019-03-04
DOI : https://doi.org/10.5802/cml.49
Classification : 06C05,  51E24,  53C23,  18D10,  20G15
Mots clés: Harder-Narasimhan filtrations, Quasi-Tannakian categories
@article{CML_2018__10_2_3_0,
     author = {Christophe Cornut},
     title = {On Harder-Narasimhan filtrations and their compatibility with tensor products},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {10},
     number = {2},
     year = {2018},
     pages = {3-49},
     doi = {10.5802/cml.49},
     language = {en},
     url = {cml.centre-mersenne.org/item/CML_2018__10_2_3_0/}
}
Cornut, Christophe. On Harder-Narasimhan filtrations and their compatibility with tensor products. Confluentes Mathematici, Tome 10 (2018) no. 2, pp. 3-49. doi : 10.5802/cml.49. https://cml.centre-mersenne.org/item/CML_2018__10_2_3_0/

[1] Yves André Slope filtrations, Confluentes Math., Tome 1 (2009) no. 1, pp. 1-85 | Article | MR 2571693

[2] B. Bhatt; M. Morrow; P. Scholze Integral p-adic Hodge theory, ArXiv e-prints (2016) | arXiv:1602.03148

[3] Nicolas Bourbaki Éléments de mathématique, Masson, Paris, 1981, vii+422 pages (Algèbre. Chapitres 4 à 7. [Algebra. Chapters 4–7]) | MR 643362

[4] Tom Bridgeland Stability conditions on triangulated categories, Ann. Math. (2), Tome 166 (2007) no. 2, pp. 317-345 | Article | MR 2373143

[5] M. R. Bridson; A. Haefliger Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 319, Springer-Verlag, Berlin, 1999, xxii+643 pages | MR 1744486 (2000k:53038)

[6] F. Bruhat; J. Tits Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France, Tome 112 (1984) no. 2, pp. 259-301 | MR 788969 (86i:20064)

[7] Huayi Chen Harder-Narasimhan categories, J. Pure Appl. Algebra, Tome 214 (2010) no. 2, pp. 187-200 | Article | MR 2559690

[8] Christophe Cornut Filtrations and Buildings. To appear in Memoirs of the AMS. http://webusers.imj-prg.fr/~christophe.cornut/papers.html

[9] J.-F. Dat; S. Orlik; M. Rapoport Period domains over finite and p-adic fields, Cambridge Tracts in Mathematics, Tome 183, Cambridge University Press, Cambridge, 2010, xxii+372 pages | MR 2676072 (2012a:22026)

[10] P. Deligne Catégories tannakiennes, The Grothendieck Festschrift, Vol. II (Progr. Math.) Tome 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111-195 | MR 1106898 (92d:14002)

[11] Laurent Fargues La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Tome 645 (2010), pp. 1-39 | Article | MR 2673421

[12] Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs (Philippe Gille; Patrick Polo, eds.), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], Tome 8, Société Mathématique de France, Paris, 2011, lvi+337 pages (Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre, Revised and annotated edition of the 1970 French original) | MR 2867622

[13] O. Goldman; N. Iwahori The space of p-adic norms, Acta Math., Tome 109 (1963), pp. 137-177 | MR 0144889 (26 #2430)

[14] George Grätzer Lattice theory: foundation, Birkhäuser/Springer Basel AG, Basel, 2011, xxx+613 pages | Article | MR 2768581

[15] W. J. Haboush Reductive groups are geometrically reductive, Ann. of Math. (2), Tome 102 (1975) no. 1, pp. 67-83 | MR 0382294

[16] Z. Lengvárszky On distributive sublattices of modular lattices, Alg. Univ., Tome 36 (1996) no. 4, pp. 505-510 | Article | MR 1419364

[17] Brandon Levin; Carl Wang-Erickson A Harder-Narasimhan theory for Kisin modules, ArXiv e-prints (2016) https://arxiv.org/abs/1606.00914 | arXiv:1606.00914

[18] D. Mumford; J. Fogarty; F. Kirwan Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Tome 34, Springer-Verlag, Berlin, 1994, xiv+292 pages | MR 1304906 (95m:14012)

[19] Anne Parreau Immeubles affines : construction par les normes et étude des isométries., Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemp. Math.) Tome 262, Amer. Math. Soc., Providence, RI, 2000, pp. 263-302

[20] Hugues Randriambololona Harder-Narasimhan theory for linear codes, To appear in J. Pure Appl. Algebra (2016) https://arxiv.org/abs/1609.00738 | arXiv:1609.00738

[21] Steven Roman Lattices and ordered sets, Springer, New York, 2008, xvi+305 pages | MR 2446182

[22] Burt Totaro Tensor products in p-adic Hodge theory, Duke Math. J., Tome 83 (1996) no. 1, pp. 79-104 | Article | MR 1388844 (97d:14032)