Group Extensions with Infinite Conjugacy Classes

Confluentes Mathematici, Volume 5 (2013) no. 1, p. 73-95

Received : 2012-05-18

Revised : 2013-01-22

Accepted : 2013-12-03

Published online : 2017-03-27

Classification: 20E45, 20E22

Revised : 2013-01-22

Accepted : 2013-12-03

Published online : 2017-03-27

Classification: 20E45, 20E22

@article{CML_2013__5_1_73_0, author = {Jean-Philippe Pr\'eaux}, title = {Group Extensions with Infinite Conjugacy Classes}, journal = {Confluentes Mathematici}, publisher = {Institut Camille Jordan}, volume = {5}, number = {1}, year = {2013}, pages = {73-95}, language = {en}, url = {https://cml.centre-mersenne.org/item/CML_2013__5_1_73_0} }

Préaux, Jean-Philippe. Group Extensions with Infinite Conjugacy Classes. Confluentes Mathematici, Volume 5 (2013) no. 1, pp. 73-95. cml.centre-mersenne.org/item/CML_2013__5_1_73_0/

[1] K. Brown, Cohomology of groups, Graduate Texts in Maths, 87, Springer-Verlag, 1982.

[2] M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes: les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, 1441, Springer-Verlag, 1991.

[3] Y. de Cornulier, Infinite conjugacy classes in groups acting on trees, Groups Geom. Dyn. 3(2):267–277, 2009.

[4] J. Dixmier, von Neumann algebras, Translated from French by F. Jellett, Mathematical Library, 27, North-Holland, 1981.

[5] P. de la Harpe, On simplicity of reduced C*-algebras of groups, Bull. Lond. Math. Soc. 39:1–26, 2007.

[6] P. de la Harpe and J.-P. Préaux, Groupes fondamentaux des variétés de dimension 3 et algèbres d’opérateurs, Ann. Fac. Sci. Toulouse Math., ser. 6, 16(3):561–589, 2007.

[7] R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, 1977.

[8] D. McDuff, Uncountably many $II-1$ factors, Ann. Math. 90(2):372–377, 1969.

[9] F.J. Murray and J. von Neumann, On rings of operators, IV, Ann. Math. 44:716–808, 1943.

[10] J. Rotman, An Introduction to the Theory of Groups, fourth edition, Graduate Texts in Mathematics, 148, Springer-Verlag, 1995.