Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space
Confluentes Mathematici, Tome 16 (2024), pp. 1-17.

We provide a new description of the scaling limit of dimer fluctuations in homogeneous Aztec diamonds via the intrinsic conformal structure of a space-like maximal surface in the three-dimensional Minkowski space 2,1 . This surface naturally appears as the limit of the graphs of origami maps associated to symmetric t-embeddings of Aztec diamonds, fitting the framework recently developed in [7, 8].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.94
Classification : 82B20, 05C10, 53A10, 53C18
Mots-clés : dimer model, Aztec diamond, maximal surfaces in Minkowski 3-space, conformal invariance

Dmitry Chelkak 1, 2, 3 ; Sanjay Ramassamy 4

1 Département de mathématiques et applications de l’ENS, Ecole normale supérieure PSL Research University, CNRS UMR 8553, Paris, France.
2 On leave from St. Petersburg, Department of Steklov Mathematical Institute RAS, Russia.
3 Current address: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA.
4 Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191 Gif-sur-Yvette, France. (Corresponding author)
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2024__16__1_0,
     author = {Dmitry Chelkak and Sanjay Ramassamy},
     title = {Fluctuations in the {Aztec} diamonds via a space-like maximal surface in {Minkowski} 3-space},
     journal = {Confluentes Mathematici},
     pages = {1--17},
     publisher = {Institut Camille Jordan},
     volume = {16},
     year = {2024},
     doi = {10.5802/cml.94},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.94/}
}
TY  - JOUR
AU  - Dmitry Chelkak
AU  - Sanjay Ramassamy
TI  - Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space
JO  - Confluentes Mathematici
PY  - 2024
SP  - 1
EP  - 17
VL  - 16
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.94/
DO  - 10.5802/cml.94
LA  - en
ID  - CML_2024__16__1_0
ER  - 
%0 Journal Article
%A Dmitry Chelkak
%A Sanjay Ramassamy
%T Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space
%J Confluentes Mathematici
%D 2024
%P 1-17
%V 16
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.94/
%R 10.5802/cml.94
%G en
%F CML_2024__16__1_0
Dmitry Chelkak; Sanjay Ramassamy. Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space. Confluentes Mathematici, Tome 16 (2024), pp. 1-17. doi : 10.5802/cml.94. https://cml.centre-mersenne.org/articles/10.5802/cml.94/

[1] Niklas C. Affolter Miquel dynamics, Clifford lattices and the dimer model, Lett. Math. Phys., Volume 111 (2021) no. =, 61, 23 pages | DOI | Zbl

[2] Nicolas Allegra; Jérôme Dubail; Jean-Marie Stéphan; Jacopo Viti Inhomogeneous field theory inside the arctic circle, J. Stat. Mech. Theory Exp., Volume 2016 (2016) no. 5, 053108, 76 pages | DOI | Zbl

[3] Tomas Berggren; Matthew Nicoletti; Marianna Russkikh Perfect t-embeddings of uniformly weighted Aztec diamonds and tower graphs, Int. Math. Res. Not., Volume 2024 (2024) no. 7, pp. 5963-6007 | DOI

[4] Dan Betea; Cédric Boutillier; Jérémie Bouttier; Guillaume Chapuy; Sylvie Corteel; Mirjana Vuletić Perfect sampling algorithms for Schur processes, Markov Process. Relat. Fields, Volume 24 (2018) no. 3, pp. 381-418 | Zbl

[5] Mireille Bousquet-Mélou; James Propp; Julian West Perfect matchings for the three-term Gale–Robinson sequences, Electron. J. Comb., Volume 16 (2009) no. 1, r125, 37 pages | Zbl

[6] Alexey Bufetov; Vadim Gorin Fluctuations of particle systems determined by Schur generating functions, Adv. Math., Volume 338 (2018), pp. 702-781 | DOI | Zbl

[7] Dmitry Chelkak; Benoît Laslier; Marianna Russkikh Bipartite dimer model: perfect t-embeddings and Lorentz-minimal surfaces (2021) | arXiv

[8] Dmitry Chelkak; Benoît Laslier; Marianna Russkikh Dimer model and holomorphic functions on t-embeddings of planar graphs, Proc. Lond. Math. Soc., Volume 126 (2023) no. 5, pp. 1656-1739 | DOI | Zbl

[9] Sunil Chhita; Kurt Johansson; Benjamin Young Asymptotic domino statistics in the Aztec diamond, Ann. Appl. Probab., Volume 25 (2015) no. 3, pp. 1232-1278 | DOI | Zbl

[10] Henry Cohn; Noam Elkies; James Propp Local statistics for random domino tilings of the Aztec diamond, Duke Math. J., Volume 85 (1996) no. 1, pp. 117-166 | DOI | Zbl

[11] Noam Elkies; Greg Kuperberg; Michael Larsen; James Propp Alternating-sign matrices and domino tilings. I, J. Algebr. Comb., Volume 1 (1992) no. 2, pp. 111-132 | DOI | Zbl

[12] Noam Elkies; Greg Kuperberg; Michael Larsen; James Propp Alternating-sign matrices and domino tilings. II, J. Algebr. Comb., Volume 1 (1992) no. 3, pp. 219-234 | DOI | Zbl

[13] Vadim Gorin Lectures on random lozenge tilings, Cambridge Studies in Advanced Mathematics, 193, Cambridge University Press, 2021 | DOI | Zbl

[14] Etienne Granet; Louise Budzynski; Jérôme Dubail; Jesper Lykke Jacobsen Inhomogeneous Gaussian free field inside the interacting arctic curve, J. Stat. Mech. Theory Exp., Volume 2019 (2019) no. 1, 013102, 31 pages | DOI

[15] William Jockusch; James Propp; Peter Shor Random Domino Tilings and the Arctic Circle Theorem (1998) (https://arxiv.org/abs/9801068)

[16] Richard Kenyon Lectures on dimers, Statistical mechanics (IAS/Park City Mathematics Series), Volume 16, American Mathematical Society, 2009, pp. 191-230 | Zbl

[17] Richard Kenyon; Wai Yeung Lam; Sanjay Ramassamy; Marianna Russkikh Dimers and Circle patterns, Ann. Sci. Éc. Norm. Supér., Volume 55 (2022) no. 3, pp. 863-901 | DOI | Zbl

[18] Osamu Kobayashi Maximal surfaces in the 3-dimensional Minkowski space L 3 , Tokyo J. Math., Volume 6 (1983), pp. 297-309 | DOI | Zbl

[19] James Propp Generalized domino-shuffling. Tilings of the plane, Theor. Comput. Sci., Volume 303 (2003), pp. 267-301 | DOI | Zbl

[20] David E. Speyer Perfect matchings and the octahedron recurrence, J. Algebr. Comb., Volume 25 (2007) no. 3, pp. 309-348 | DOI | Zbl

[21] William P. Thurston Conway’s tiling groups, Am. Math. Mon., Volume 97 (1990) no. 8, pp. 757-773 | DOI | Zbl

Cité par Sources :