We provide a new description of the scaling limit of dimer fluctuations in homogeneous Aztec diamonds via the intrinsic conformal structure of a space-like maximal surface in the three-dimensional Minkowski space . This surface naturally appears as the limit of the graphs of origami maps associated to symmetric t-embeddings of Aztec diamonds, fitting the framework recently developed in [7, 8].
Révisé le :
Accepté le :
Publié le :
Mots-clés : dimer model, Aztec diamond, maximal surfaces in Minkowski 3-space, conformal invariance
Dmitry Chelkak 1, 2, 3 ; Sanjay Ramassamy 4
@article{CML_2024__16__1_0, author = {Dmitry Chelkak and Sanjay Ramassamy}, title = {Fluctuations in the {Aztec} diamonds via a space-like maximal surface in {Minkowski} 3-space}, journal = {Confluentes Mathematici}, pages = {1--17}, publisher = {Institut Camille Jordan}, volume = {16}, year = {2024}, doi = {10.5802/cml.94}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.94/} }
TY - JOUR AU - Dmitry Chelkak AU - Sanjay Ramassamy TI - Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space JO - Confluentes Mathematici PY - 2024 SP - 1 EP - 17 VL - 16 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.94/ DO - 10.5802/cml.94 LA - en ID - CML_2024__16__1_0 ER -
%0 Journal Article %A Dmitry Chelkak %A Sanjay Ramassamy %T Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space %J Confluentes Mathematici %D 2024 %P 1-17 %V 16 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.94/ %R 10.5802/cml.94 %G en %F CML_2024__16__1_0
Dmitry Chelkak; Sanjay Ramassamy. Fluctuations in the Aztec diamonds via a space-like maximal surface in Minkowski 3-space. Confluentes Mathematici, Tome 16 (2024), pp. 1-17. doi : 10.5802/cml.94. https://cml.centre-mersenne.org/articles/10.5802/cml.94/
[1] Miquel dynamics, Clifford lattices and the dimer model, Lett. Math. Phys., Volume 111 (2021) no. =, 61, 23 pages | DOI | Zbl
[2] Inhomogeneous field theory inside the arctic circle, J. Stat. Mech. Theory Exp., Volume 2016 (2016) no. 5, 053108, 76 pages | DOI | Zbl
[3] Perfect t-embeddings of uniformly weighted Aztec diamonds and tower graphs, Int. Math. Res. Not., Volume 2024 (2024) no. 7, pp. 5963-6007 | DOI
[4] Perfect sampling algorithms for Schur processes, Markov Process. Relat. Fields, Volume 24 (2018) no. 3, pp. 381-418 | Zbl
[5] Perfect matchings for the three-term Gale–Robinson sequences, Electron. J. Comb., Volume 16 (2009) no. 1, r125, 37 pages | Zbl
[6] Fluctuations of particle systems determined by Schur generating functions, Adv. Math., Volume 338 (2018), pp. 702-781 | DOI | Zbl
[7] Bipartite dimer model: perfect t-embeddings and Lorentz-minimal surfaces (2021) | arXiv
[8] Dimer model and holomorphic functions on t-embeddings of planar graphs, Proc. Lond. Math. Soc., Volume 126 (2023) no. 5, pp. 1656-1739 | DOI | Zbl
[9] Asymptotic domino statistics in the Aztec diamond, Ann. Appl. Probab., Volume 25 (2015) no. 3, pp. 1232-1278 | DOI | Zbl
[10] Local statistics for random domino tilings of the Aztec diamond, Duke Math. J., Volume 85 (1996) no. 1, pp. 117-166 | DOI | Zbl
[11] Alternating-sign matrices and domino tilings. I, J. Algebr. Comb., Volume 1 (1992) no. 2, pp. 111-132 | DOI | Zbl
[12] Alternating-sign matrices and domino tilings. II, J. Algebr. Comb., Volume 1 (1992) no. 3, pp. 219-234 | DOI | Zbl
[13] Lectures on random lozenge tilings, Cambridge Studies in Advanced Mathematics, 193, Cambridge University Press, 2021 | DOI | Zbl
[14] Inhomogeneous Gaussian free field inside the interacting arctic curve, J. Stat. Mech. Theory Exp., Volume 2019 (2019) no. 1, 013102, 31 pages | DOI
[15] Random Domino Tilings and the Arctic Circle Theorem (1998) (https://arxiv.org/abs/9801068)
[16] Lectures on dimers, Statistical mechanics (IAS/Park City Mathematics Series), Volume 16, American Mathematical Society, 2009, pp. 191-230 | Zbl
[17] Dimers and Circle patterns, Ann. Sci. Éc. Norm. Supér., Volume 55 (2022) no. 3, pp. 863-901 | DOI | Zbl
[18] Maximal surfaces in the -dimensional Minkowski space , Tokyo J. Math., Volume 6 (1983), pp. 297-309 | DOI | Zbl
[19] Generalized domino-shuffling. Tilings of the plane, Theor. Comput. Sci., Volume 303 (2003), pp. 267-301 | DOI | Zbl
[20] Perfect matchings and the octahedron recurrence, J. Algebr. Comb., Volume 25 (2007) no. 3, pp. 309-348 | DOI | Zbl
[21] Conway’s tiling groups, Am. Math. Mon., Volume 97 (1990) no. 8, pp. 757-773 | DOI | Zbl
Cité par Sources :