On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces
Confluentes Mathematici, Tome 14 (2022) no. 2, pp. 139-147.

We study the density of half-horocycles or half-orbits of the horocyclic flow on the unit tangent bundle of geometrically infinite hyperbolic surfaces. In [10] Schapira proved that under some assumptions, both half-horocycles (h s v) s0 and (h s v) s0 are simultaneously dense or not in the nonwandering set of the horocyclic flow. We construct a counterexample, when the assumptions are not satisfied, on a surface of first kind, answering a question of Schapira [10].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.89
Classification : 51M10, 51M09, 37D40, 20B07, 37C10
Mots clés : Geodesic flow, horocyclic flow, geometrically infinite surfaces

Adamou Saidou 1

1 Université Dan Dicko Dankoulodo de Maradi, Niger
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2022__14_2_139_0,
     author = {Adamou Saidou},
     title = {On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces},
     journal = {Confluentes Mathematici},
     pages = {139--147},
     publisher = {Institut Camille Jordan},
     volume = {14},
     number = {2},
     year = {2022},
     doi = {10.5802/cml.89},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.89/}
}
TY  - JOUR
AU  - Adamou Saidou
TI  - On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces
JO  - Confluentes Mathematici
PY  - 2022
SP  - 139
EP  - 147
VL  - 14
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.89/
DO  - 10.5802/cml.89
LA  - en
ID  - CML_2022__14_2_139_0
ER  - 
%0 Journal Article
%A Adamou Saidou
%T On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces
%J Confluentes Mathematici
%D 2022
%P 139-147
%V 14
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.89/
%R 10.5802/cml.89
%G en
%F CML_2022__14_2_139_0
Adamou Saidou. On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces. Confluentes Mathematici, Tome 14 (2022) no. 2, pp. 139-147. doi : 10.5802/cml.89. https://cml.centre-mersenne.org/articles/10.5802/cml.89/

[1] A. Beardon. The geometry of discrete groups, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | Zbl

[2] P. Buser. Geometry and spectra of compact Riemanian surfaces, Birkhäuser 1992. | Zbl

[3] F. Dal’bo. Topologie du feuilletage fortement stable, Ann. Inst. Fourier 50(3):981–993, 2000. | DOI | MR | Zbl

[4] F. Dalbo. Geodesic and Horocyclic Trajectories, Universitext, Springer-Verlag, London, 2011 | DOI

[5] D. Borthwick. Spectral Theory of Infinite-Area Hyperbolic Surfaces, Progress in Mathematics Volume 256, Birkhäuser, 2007. | DOI | Zbl

[6] P. Eberlein. Geodesic flows on negatively curved manifolds I, Ann. Math. (2) 95:492–510, 1972. | DOI | MR | Zbl

[7] A. Hatcher, P. Lochak and L. Schneps. On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521:1–24, 2000. | DOI | Zbl

[8] G.A. Hedlund. Fuchsian groups and transitive horocycles, Duke Math. J. 2:530–542, 1936. | DOI | MR | Zbl

[9] B. Schapira. Density and equidistribution of half-horocycles on geometrically finite hyperbolic surface. J. Lond. Math. Soc. 84(3):785–806, 2011. | DOI | MR | Zbl

[10] B Schapira. Density of half-horocycles on geometrically infinite hyperbolic surfaces. Erg. Th. Dyn. Sys. 33(4):1162–1177, 2013. | DOI | MR | Zbl

Cité par Sources :