We study the density of half-horocycles or half-orbits of the horocyclic flow on the unit tangent bundle of geometrically infinite hyperbolic surfaces. In [10] Schapira proved that under some assumptions, both half-horocycles and are simultaneously dense or not in the nonwandering set of the horocyclic flow. We construct a counterexample, when the assumptions are not satisfied, on a surface of first kind, answering a question of Schapira [10].
Révisé le :
Accepté le :
Publié le :
Mots clés : Geodesic flow, horocyclic flow, geometrically infinite surfaces
Adamou Saidou 1
@article{CML_2022__14_2_139_0, author = {Adamou Saidou}, title = {On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces}, journal = {Confluentes Mathematici}, pages = {139--147}, publisher = {Institut Camille Jordan}, volume = {14}, number = {2}, year = {2022}, doi = {10.5802/cml.89}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.89/} }
TY - JOUR AU - Adamou Saidou TI - On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces JO - Confluentes Mathematici PY - 2022 SP - 139 EP - 147 VL - 14 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.89/ DO - 10.5802/cml.89 LA - en ID - CML_2022__14_2_139_0 ER -
%0 Journal Article %A Adamou Saidou %T On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces %J Confluentes Mathematici %D 2022 %P 139-147 %V 14 %N 2 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.89/ %R 10.5802/cml.89 %G en %F CML_2022__14_2_139_0
Adamou Saidou. On the half-trajectories of horocyclic flow on geometrically infinite hyperbolic surfaces. Confluentes Mathematici, Tome 14 (2022) no. 2, pp. 139-147. doi : 10.5802/cml.89. https://cml.centre-mersenne.org/articles/10.5802/cml.89/
[1] A. Beardon. The geometry of discrete groups, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | Zbl
[2] P. Buser. Geometry and spectra of compact Riemanian surfaces, Birkhäuser 1992. | Zbl
[3] F. Dal’bo. Topologie du feuilletage fortement stable, Ann. Inst. Fourier 50(3):981–993, 2000. | DOI | MR | Zbl
[4] F. Dalbo. Geodesic and Horocyclic Trajectories, Universitext, Springer-Verlag, London, 2011 | DOI
[5] D. Borthwick. Spectral Theory of Infinite-Area Hyperbolic Surfaces, Progress in Mathematics Volume 256, Birkhäuser, 2007. | DOI | Zbl
[6] P. Eberlein. Geodesic flows on negatively curved manifolds I, Ann. Math. (2) 95:492–510, 1972. | DOI | MR | Zbl
[7] A. Hatcher, P. Lochak and L. Schneps. On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521:1–24, 2000. | DOI | Zbl
[8] G.A. Hedlund. Fuchsian groups and transitive horocycles, Duke Math. J. 2:530–542, 1936. | DOI | MR | Zbl
[9] B. Schapira. Density and equidistribution of half-horocycles on geometrically finite hyperbolic surface. J. Lond. Math. Soc. 84(3):785–806, 2011. | DOI | MR | Zbl
[10] B Schapira. Density of half-horocycles on geometrically infinite hyperbolic surfaces. Erg. Th. Dyn. Sys. 33(4):1162–1177, 2013. | DOI | MR | Zbl
Cité par Sources :