We give a new proof of quantifier elimination in the theory of all ordered abelian groups in a suitable language. More precisely, this is only "quantifier elimination relative to ordered sets" in the following sense. Each definable set in the group is a union of a family of quantifier free definable sets, where the parameter of the family runs over a set definable (with quantifiers) in a sort which carries the structure of an ordered set with some additional unary predicates.
As a corollary, we find that all definable functions in ordered abelian groups are piecewise linear on finitely many definable pieces.
Raf Cluckers 1 ; Immanuel Halupczok 1
@article{CML_2011__3_4_587_0, author = {Raf Cluckers and Immanuel Halupczok}, title = {Quantifier elimination in ordered abelian groups}, journal = {Confluentes Mathematici}, pages = {587--615}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {4}, year = {2011}, doi = {10.1142/S1793744211000473}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744211000473/} }
TY - JOUR AU - Raf Cluckers AU - Immanuel Halupczok TI - Quantifier elimination in ordered abelian groups JO - Confluentes Mathematici PY - 2011 SP - 587 EP - 615 VL - 3 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - https://cml.centre-mersenne.org/articles/10.1142/S1793744211000473/ DO - 10.1142/S1793744211000473 LA - en ID - CML_2011__3_4_587_0 ER -
%0 Journal Article %A Raf Cluckers %A Immanuel Halupczok %T Quantifier elimination in ordered abelian groups %J Confluentes Mathematici %D 2011 %P 587-615 %V 3 %N 4 %I World Scientific Publishing Co Pte Ltd %U https://cml.centre-mersenne.org/articles/10.1142/S1793744211000473/ %R 10.1142/S1793744211000473 %G en %F CML_2011__3_4_587_0
Raf Cluckers; Immanuel Halupczok. Quantifier elimination in ordered abelian groups. Confluentes Mathematici, Tome 3 (2011) no. 4, pp. 587-615. doi : 10.1142/S1793744211000473. https://cml.centre-mersenne.org/articles/10.1142/S1793744211000473/
[1] O. Belegradek, V. Verbovskiy and F. O. Wagner, Coset-minimal groups, Ann. Pure Appl. Logic 121 (2003) 113–143.
[2] R. Cluckers and I. Halupczok, Approximations and Lipschitz continuity in p-adic semi-algebraic and subanalytic geometry, 2010, to appear in Selecta Mathematica.
[3] Y. Gurevich, Elementary properties of ordered Abelian groups, Am. Math. Soc., Transl., II. Ser. 46 (1964) 165–192 (English, Russian original).
[4] , The decision problem for some algebraic theories, 1968, Doctor of Mathemat- ics dissertation.
[5] Y. Gurevich and P. H. Schmitt, The theory of ordered abelian groups does not have the independence property, Trans. Amer. Math. Soc. 284 (1984) 171–182.
[6] I. Halupczok, A language for quantifier elimination in ordered abelian groups, Séminaire de Structures Algébriques Ordonnées 2009–2010, eds. F. Delon, M. A. Dick- mann and D. Gondard, Équipe de Logique Mathématique, Vol. 85 (Université Paris 7, 2011).
[7] B. Poizat, Cours de théorie des modèles, Bruno Poizat, Lyon, 1985, Une introduc- tion à la logique mathématique contemporaine. [An introduction to contemporary mathematical logic].
[8] M. Rubin, Theories of linear order, Israel J. Math. 17 (1974) 392–443.
[9] P. H. Schmitt, Model theory of ordered abelian groups, 1982, Habilitationsschrift.
[10] , Model- and substructure-complete theories of ordered abelian groups, in Mod- els and Sets (Aachen, 1983), Lecture Notes in Math., Vol. 1103 (Springer, 1984), pp. 389–418.
[11] V. Weispfenning, Elimination of quantifiers for certain ordered and lattice-ordered abelian groups, Proc. of the Model Theory Meeting (Univ. Brussels, Brussels/Univ. Mons, Mons, 1980), Vol. 33 (1981) 131–155.
Cité par Sources :