We show that any nonabelian free group F of finite rank is homogeneous; that is for any tuples , having the same complete n-type, there exists an automorphism of F which sends to .
We further study existential types and show that for any tuples , if and have the same existential n-type, then either has the same existential type as the power of a primitive element or there exists an existentially closed subgroup (respectively ) of F containing (respectively ) and an isomorphism with .
We will deal with non-free two-generated torsion-free hyperbolic groups and we show that they are ∃-homogeneous and prime. In particular, this gives concrete examples of finitely generated groups which are prime and not quasi axiomatizable, giving an answer to a question of A. Nies.
Abderezak Ould Houcine 1
@article{CML_2011__3_1_121_0, author = {Abderezak Ould Houcine}, title = {Homogeneity and prime models in torsion-free hyperbolic groups}, journal = {Confluentes Mathematici}, pages = {121--155}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {1}, year = {2011}, doi = {10.1142/S179374421100028X}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.1142/S179374421100028X/} }
TY - JOUR AU - Abderezak Ould Houcine TI - Homogeneity and prime models in torsion-free hyperbolic groups JO - Confluentes Mathematici PY - 2011 SP - 121 EP - 155 VL - 3 IS - 1 PB - World Scientific Publishing Co Pte Ltd UR - https://cml.centre-mersenne.org/articles/10.1142/S179374421100028X/ DO - 10.1142/S179374421100028X LA - en ID - CML_2011__3_1_121_0 ER -
%0 Journal Article %A Abderezak Ould Houcine %T Homogeneity and prime models in torsion-free hyperbolic groups %J Confluentes Mathematici %D 2011 %P 121-155 %V 3 %N 1 %I World Scientific Publishing Co Pte Ltd %U https://cml.centre-mersenne.org/articles/10.1142/S179374421100028X/ %R 10.1142/S179374421100028X %G en %F CML_2011__3_1_121_0
Abderezak Ould Houcine. Homogeneity and prime models in torsion-free hyperbolic groups. Confluentes Mathematici, Tome 3 (2011) no. 1, pp. 121-155. doi : 10.1142/S179374421100028X. https://cml.centre-mersenne.org/articles/10.1142/S179374421100028X/
[1] I. Belegradek, Geom. Dedicata 129, 119 (2007), DOI: 10.1007/s10711-007-9199-8.
[2] G. Baumslag, A. Myasnikov and V. Remeslennikov, J. Algebra 219, 16 (1999), DOI: 10.1006/jabr.1999.7881.
[3] C. Champetier and V. Guirardel, Israel J. Math. 146, 1 (2005), DOI: 10.1007/BF02773526.
[4] T. Delzant, Group Theory from a Geometrical Viewpoint (World Scientific, 1991) pp. 177–189.
[5] V. Guirardel and G. Levitt, JSJ decompositions: Definitions, existence, uniqueness. I: The JSJ deformation space, preprint .
[6] V. Guirardel and G. Levitt, JSJ decompositions: Definitions, existence, uniqueness. II. Compatibility and acylindricity, preprint .
[7] D. Groves and H. Wilton, Conjugacy classes of solutions to equations and inequations over hyperbolic groups, 2007 .
[8] W. Hodges , Model Theory , Encyclopedia of Mathematics and its Applications 42 ( Cambridge Univ. Press , 1993 ) .
[9] E. Jaligot and A. Ould Houcine, J. Algebra 280, 772 (2004).
[10] O. Kharlampovich and A. Myasnikov, Trans. Amer. Math. Soc. 350, 571 (1998), DOI: 10.1090/S0002-9947-98-01773-5.
[11] O. Kharlampovich and A. Myasnikov, J. Algebra 302, 451 (2006).
[12] I. Kapovich and R. Weidmann, Math. Z. 231, 783 (1999), DOI: 10.1007/PL00004753.
[13] R. C. Lyndon and P. E. Schupp , Combinatorial Group Theory ( Springer-Verlag , 1977 ) .
[14] D. Marker , Model Theory: An Introduction ( Springer-Verlag , 2002 ) .
[15] A. Nies, J. Algebra 263, 119 (2003), DOI: 10.1016/S0021-8693(02)00665-8.
[16] A. Nies, Internat. J. Algebra Comput. 13, 287 (2003), DOI: 10.1142/S0218196703001286.
[17] A. Nies, J. Group Theory 10, 347 (2007), DOI: 10.1515/JGT.2007.027.
[18] A. Ould Houcine, Geometric Group Theory (Birkhäuser, 2007) pp. 103–119.
[19] A. Ould Houcine, Ann. Pure Appl. Logic 154, 1 (2008).
[20] A. Ould Houcine, On finitely generated models of theories with at most countably many nonisomorphic finitely generated models, submitted .
[21] A. Ould Houcine, Commun. Algebra 38, 2825 (2010).
[22] A. Ould Houcine, J. Algebra 134, 159 (2010).
[23] A. Ould Houcine and D. Vallino, Algebraic and definable closure in free groups, in preparation .
[24] A. Yu. Ol′shanskiĭ, Izv. Akad. Nauk SSSR Ser. Mat. 44, 309 (1980).
[25] A. Yu. Ol″shanskiĭ , Geometry of Defining Relations in Groups , Mathematics and its Applications (Soviet Series) 70 ( Kluwer Academic Press , 1991 ) .
[26] F. Oger and G. Sabbagh, J. Group Theory 9, 95 (2006), DOI: 10.1515/JGT.2006.005.
[27] J. C. O’Neill and E. C. Turner, New York J. Math. 6, 107 (2000).
[28] C. Perin, Plongements élémentaires dans un groupe hyperbolique sans torsion, Thèse de doctorat, Université de Caen/Basse-Normandie, 2008 .
[29] C. Perin, Elementary embeddings in torsion-free hyperbolic groups , arXiv:0903.0945 .
[30] A. Pillay, J. Inst. Math. Jussieu 7, 375 (2008).
[31] A. Pillay, Proc. Amer. Math. Soc. 137, 3911 (2009), DOI: 10.1090/S0002-9939-09-09956-0.
[32] C. Perin and R. Sklinos, Homogeneity in the free group, preprint .
[33] E. Rips and Z. Sela, Geom. Funct. Anal. 4, 337 (1994), DOI: 10.1007/BF01896245.
[34] E. Rips and Z. Sela, Ann. Math. 146, 53 (1997), DOI: 10.2307/2951832.
[35] Z. Sela, Geom. Funct. Anal. 7, 561 (1997), DOI: 10.1007/s000390050019.
[36] Z. Sela, Israel J. Math. 150, 1 (2005).
[37] Z. Sela, Geom. Funct. Anal. 16, 537 (2006).
[38] Z. Sela, Geom. Funct. Anal. 16, 707 (2006).
[39] Z. Sela, Proc. Lond. Math. Soc. 99, 217 (2009), DOI: 10.1112/plms/pdn052.
Cité par Sources :