Cohomologie à support compact d’un espace au-dessus de l’immeuble de Bruhat-Tits de GL n sur un corps local. Représentations cuspidales de niveau zéro.
Confluentes Mathematici, Tome 10 (2018) no. 1, pp. 95-124.

Soit G le groupe GL n (F), où F est un corps localement compact non-archimédien, et 𝔅(G) son immeuble de Bruhat-Tits. Nous construisons un complexe simplicial 𝒲 ˜, doté d’une action de G et d’une projection propre simpliciale G-équivariante p:𝒲 ˜𝔅(G). Nous démontrons qu’en dimension supérieure la cohomologie à support compact H c n-1 (𝒲 ˜,) contient comme sous-quotient toutes les représentations cuspidales irréductibles de niveau zéro.

Let G the group GL n (F), where F is a non-archimedean locally compact field, and 𝔅(G) its Bruhat-Tits building. We construct a simplicial complex 𝒲 ˜, equipped with an action of G and with a G-equivariant proper simplicial projection p:𝒲 ˜𝔅(G). We prove that the cohomology with compact support in higher dimensions H c n-1 (𝒲 ˜,) contains as subquotients all irreducible cuspidal level zero representations.

Reçu le : 2017-03-21
Révisé le : 2017-01-11
Accepté le : 2017-11-13
Publié le : 2018-09-10
DOI : https://doi.org/10.5802/cml.47
Classification : 22E50
Mots clés: Representations of the general linear p-adic groups, Bruhat-Tits buildings, Cohomology with compact support.
@article{CML_2018__10_1_95_0,
     author = {Anis Rajhi},
     title = {Cohomologie \`a support compact d'un espace au-dessus de l'immeuble de Bruhat-Tits de ${\protect \rm GL}\_{n}$ sur un corps local. Repr\'esentations cuspidales de niveau z\'ero.},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {10},
     number = {1},
     year = {2018},
     pages = {95-124},
     doi = {10.5802/cml.47},
     language = {fr},
     url = {cml.centre-mersenne.org/item/CML_2018__10_1_95_0/}
}
Rajhi, Anis. Cohomologie à support compact d’un espace au-dessus de l’immeuble de Bruhat-Tits de ${\protect \rm GL}_{n}$ sur un corps local. Représentations cuspidales de niveau zéro.. Confluentes Mathematici, Tome 10 (2018) no. 1, pp. 95-124. doi : 10.5802/cml.47. https://cml.centre-mersenne.org/item/CML_2018__10_1_95_0/

[1] Abramenko, Peter and Brown, Kenneth S. Buildings : Theory and Applications (Graduate Texts in Mathematics), Springer, Softcover reprint of hardcover 1st ed. 2008.

[2] Brown, K.S. Cohomology of Groups (Graduate Texts in Mathematics, No. 87), Springer, 1st ed. 1982. Corr. 2nd printing 1994.

[3] Broussous, P. Representations of PGL(2) of a local field and harmonic cochains on graphs, Annales de la Faculté des Sciences de Toulouse, vol XVIII, 541–559 (2009).

[4] Broussous, P. and Courtès, F. Distinction of the Steinberg representation, IMRN. International Mathematics Research Notices, 11, 3140–3157 (2014).

[5] Borel, A. and Serre, J.P. Cohomologie à support compacts des immeubles de Bruhat-Tits, applications à la cohomologie des groupes S-arithmétiques, C.R.Acad.sc.Paris, 1971.

[6] Bredon, G.E. Introduction to compact transformation groups, Volume 46 (Pure and Applied Mathematics), Academic Press, 1972.

[7] Carayol, H. Représentations cuspidales du groupe linéaire, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série, 17, 191–225 (1984).

[8] Garrett, P.B. Buildings and Classical Groups, Chapman and Hall/CRC, 1997.

[9] Munkers, J.R. Elements Of Algebraic Topology, Westview Press, 1996.

[10] Murnaghan, F. Representations of reductive p-adic groups, "http://www.math.toronto.edu/murnaghan/courses/mat1197/", 2009.

[11] Rotman, J. An Introduction to Homological Algebra (Universitext), Springer, 2008

[12] Spanier, E.H. Algebraic Topology, Springer, 1994.

[13] Schneider, P. and Stuhler, U. Representation theory and sheaves on the Bruhat-Tits building, Publications mathématiques de l’I.H.E.S, 85, 97-191 (1997).

[14] Tits, J. Buildings of Spherical Type and Finite BN-Pairs (Lecture Notes in Mathematics), Springer, 1986.

[15] Wagoner, J.B. Homotopy Theory for the p-adic Special Linear group,Commentarii Mathematici Helvetici, 50, 535–559 (1975).