On malnormal peripheral subgroups of the fundamental group of a 3-manifold
Confluentes Mathematici, Tome 6 (2014) no. 1, pp. 41-68.

Let K be a non-trivial knot in the 3-sphere, E K its exterior, G K =π 1 (E K ) its group, and P K =π 1 (E K )G K its peripheral subgroup. We show that P K is malnormal in G K , namely that gP K g -1 P K ={e} for any gG K with gP K , unless K is in one of the following three classes: torus knots, cable knots, and composite knots; these are exactly the classes for which there exist annuli in E K attached to T K which are not boundary parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral subgroups in the fundamental group of a compact orientable irreducible 3-manifold of which the boundary is a non-empty union of tori (Theorem 3). Proofs are written with non-expert readers in mind. Half of our paper (Appendices A to D) is a reminder of some three-manifold topology as it flourished before the Thurston revolution.

In a companion paper [15], we collect general facts on malnormal subgroups and Frobenius groups, and we review a number of examples.

Reçu le : 2013-01-17
Révisé le : 2014-12-01
Accepté le : 2014-12-05
Publié le : 2014-09-08
DOI : https://doi.org/10.5802/cml.12
Classification : 57M25,  57N10
Mots clés: knot, knot group, peripheral subgroup, torus knot, cable knot, composite knot, malnormal subgroup, 3-manifold.
@article{CML_2014__6_1_41_0,
     author = {Pierre de la Harpe and Claude Weber},
     title = {On malnormal peripheral subgroups  of the fundamental group of a $3$-manifold},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {6},
     number = {1},
     year = {2014},
     pages = {41-68},
     doi = {10.5802/cml.12},
     mrnumber = {3266884},
     zbl = {1319.57010},
     language = {en},
     url = {cml.centre-mersenne.org/item/CML_2014__6_1_41_0/}
}
Pierre de la Harpe; Claude Weber. On malnormal peripheral subgroups  of the fundamental group of a $3$-manifold. Confluentes Mathematici, Tome 6 (2014) no. 1, pp. 41-68. doi : 10.5802/cml.12. https://cml.centre-mersenne.org/item/CML_2014__6_1_41_0/

[1] R.H. Bing and Joseph M. Martin. Cubes with knotted holes, Trans. Amer. Math. Soc., 151:217–231, 1971. | Article | MR 278287 | Zbl 0213.25005

[2] Michel Boileau. Uniformisation en dimension trois, Sém. Bourbaki, Exp. 855, Astérisque 266, 137–174, 2000. | Numdam | Zbl 0942.57013

[3] Francis Bonahon. Geometric Structures on 3-manifolds, in: Handbook of Geometric Topology (R.B. Daverman, R. Sher, Editors), 93–164, Elsevier, 2002. | Article | Zbl 0997.57032

[4] Francis Bonahon and Laurence C. Siebenmann. New geometric splittings of classical knots and the classification and symmetries of arborescent knots, first version (around 1979) unpublished, revised version (June 12, 2010)

[5] Steven Boyer. Dehn surgery on knots, in: Handbook of Geometric Topology (R.B. Daverman, R. Sher, Editors), 165–218, Elsevier, 2002. | Article | Zbl 1058.57004

[6] Ryan Budney. JSJ decompositions of knot and link complements in S 3 , L’Enseignement Math., 52:319–359, 2006. | Zbl 1114.57004

[7] Gerhard Burde and Kunio Murasugi. Links and Seifert fiber spaces, Duke J. Math., 37:89–93, 1970. | Article | MR 253313 | Zbl 0195.54003

[8] James W. Cannon and C.D. Feustel. Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. Amer. Math. Soc., 215:219–239, 1976. | Article | Zbl 0314.55004

[9] Albrecht Dold. Lectures on algebraic topology, Springer, 1972. | Article | Zbl 0872.55001

[10] David B.A. Epstein. Periodic flows on three-manifolds, Ann. Math., 95:66–82, 1972. | Article | MR 288785 | Zbl 0231.58009

[11] C.D. Feustel. Some applications of Waldhausen’s results on irreducible surfaces, Trans. Amer. Math. Soc., 149:575–583, 1970. | Article | MR 261575 | Zbl 0203.25901

[12] André Gramain. Rapport sur la théorie classique des noeuds (2ème partie), Sém. Bourbaki, exp. 732, Astérisque 201–203, 89–113, 1991. | Numdam | Zbl 0752.57003

[13] André Haefliger. Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16:367–397, 1962. | Article | Zbl 0122.40702

[14] Allen Hatcher. Notes on basic 3-manifold topology, Course Notes, September 2000,

[15] Pierre de la Harpe and Claude Weber, with an appendix by Denis Osin. Malnormal subgroups and Frobenius groups: basics and examples, Confl. Math., 6:65–76, 2014. | Article | MR 3266885 | Zbl 1327.20030

[16] John Hempel. 3–manifolds, Ann. Math. Studies, Princeton University Press, 1976. | Zbl 0345.57001

[17] William Jaco. Lectures on three-manifold topology, Regional Conference Series in Mathematics 43, Amer. Math. Soc., 1980. | Article | Zbl 0433.57001

[18] William H. Jaco and Peter B. Shalen. Seifert fibered spaces in 3-manifolds, in: Geometric Topology (Proc. Georgia Top. Conf., Athens, Ga., 1977), 91–99, Academic Press, 1979. | Article | Zbl 0471.57001

[19] William H. Jaco and Peter B. Shalen. Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21, 220(1), 1979.

[20] Klaus Johannson. Homotopy equivalences of 3-manifolds with boundary, Lecture Notes in Mathematics 761, Springer 1979. | Article | Zbl 0412.57007

[21] Rinat Kashaev. On ring-valued invariants of topological pairs, preprint, 21 January 2007, arXiv:math/07015432v2 | Zbl 1133.58003

[22] Rinat Kashaev. Δ-groupoids in knot theory, Geom. Dedicata, 150:105–130, 2011. | Article | MR 2753700 | Zbl 1245.57015

[23] Jean-Louis Koszul. Sur certains groupes de transformations de Lie, in: Géométrie différentielle, Strasbourg, 26 mai – 1er juin 1953, 137–141, CNRS, 1953. | Zbl 0101.16201

[24] Walter D. Neumann and Gadde A. Swarup. Canonical decompositions of 3-manifolds, Geom. & Top., 1:21–40, 1997. | Article | MR 1469066 | Zbl 0886.57009

[25] Peter Orlik and Frank Raymond. Actions of SO(2) on 3-manifolds, in: Prof. Conf. Transform. Groups, New Orleans 1967, 297–318, Springer, 1968. | Article

[26] Frank Raymond. Classification of the actions of the circle on 3-manifolds, Trans. Amer. Math. Soc., 131:51–78, 1968. | Article | MR 219086 | Zbl 0157.30602

[27] Dale Rolfsen. Knots and links, Publish or Perish, 1976. | Article | Zbl 0339.55004

[28] Horst Schubert. Knoten und Vollringe, Acta Math., 90(1):131–286, 1953. | Article | MR 72482 | Zbl 0051.40403

[29] Peter Scott. The geometries of 3-manifolds, Bull. Lond. Math. Soc., 15:401–487, 1983, with errata on | Article | MR 705527 | Zbl 0561.57001

[30] Herbert Seifert. Topologie dreidimensionaler gefaserter Räume, Acta Math., 60:147–288, 1933. Translated by W. Heil, appendix to [31], 359–422. | Article | Zbl 59.1241.02

[31] Herbert Seifert and William Threlfall. A textbook of topology, Academic Press, 1980. German original: Lehrbuch der Topologie, Teubner, 1934. | Article

[32] Jonathan Simon. Roots and centralizers of peripheral elements in knot groups, Math. Ann., 222:205–209, 1976. | Article | MR 418079 | Zbl 0314.55003

[33] William P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6:357–381, 1982. | Article | MR 648524 | Zbl 0496.57005

[34] Friedhelm Waldhausen. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I & II, Inv. Math., 3:308–333 & 4:87–117, 1967. | Article | MR 235576

[35] Friedhelm Waldhausen. On irreducible 3-manifolds which are sufficiently large, Ann. Math., 87:56–88, 1968. | Article | MR 224099 | Zbl 0157.30603

[36] Friedhelm Waldhausen. On the determination of some bounded 3-manifolds by their fundamental groups alone, Proc. Int. Symposium on Top. and its Appl. (Herceg-Novi, Yugoslavia, 1968), 331–332, Beograd, 1969. | Zbl 0202.54702

[37] Friedhelm Waldhausen. Recent results on sufficiently large 3-manifolds, Proc. Symposia in Pure Math., 32:21–38, 1978. | Article | Zbl 0391.57011

[38] Wilbur Whitten. Algebraic and geometric characterizations of knots, Inv. Math., 26:259–270, 1974. | Article | MR 365548 | Zbl 0291.55004