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MODEL COMPLETENESS FOR FINITELY RAMIFIED
HENSELIAN FIELDS VALUED IN A Z-GROUP AND FOR

PSEUDO-ALGEBRAICALLY CLOSED FIELDS

JAMSHID DERAKHSHAN AND ANGUS MACINTYRE

Abstract. We prove that the theory of a finitely ramified Henselian valued field of character-
istic zero with perfect residue field of positive characteristic whose value group is a Z-group
is model-complete in the language of rings if the theory of its residue field is model-complete
in the language of rings. This extends results of Ax–Kochen [4], Macintyre [15], Ziegler [22],
Basarab [5], and Prestel–Roquette [17].

We also prove that the theory of a perfect pseudo-algebraically closed (PAC) field K such
that the absolute Galois group Gal(K) is pro-cyclic is model-complete in the language of
rings if and only if every finite algebraic extension of K is generated by elements that are
algebraic over the prime subfield of K.

From these we deduce that every infinite algebraic extension of the field of p-adic numbers
Qp with finite ramification is model-complete in the language of rings.

Our proofs of model completeness for Henselian fields use only basic model-theoretic and
algebraic tools including Cohen’s structure theorems for complete local rings and basic results
on coarsenings of valuations. These enable us to obtain short proofs of model completeness
in the language of rings without any need to extend the ring language.

Our proofs on PAC fields use the model theory of the absoute Galois group dual to the
field and elementary invariants given by Cherlin–van den Dries–Macintyre [8] for the theory
of PAC fields generalizing Ax’s results for the pseudo-finite case [3].

1. Introduction

Model completeness for Henselian valued fields in characteristic zero has been
studied for a long time. Ax and Kochen [4, Theorem 15, p. 453] proved model
completeness for the theory of p-adically closed fields in a language extending the
language of valued fields with a cross section. Ziegler [22] proved relative model
completeness for Henselian fields with residue field of characteristic zero. Macin-
tyre [15] proved quantifier elimination for the theory of the field of p-adic numbers
Qp in the Macintyre language which is the language of rings augmented by predi-
cates for sets of n-powers for all n ⩾ 1, which implies model completeness of Qp in
the ring language.

It is not straightforward to extend this result to a finite extension of Qp as in
general use of constants gives results weaker than model completeness (e.g consider
Presburger arithmetic without a constant for the least positive element 1). The
extension to a finite extension of Qp was (almost) done in the work of Prestel
and Roquette [17, Theorem 5.1, pp. 86] with a slight defect that their language
is augmented by constants (relating to p-basis elements) and it is not quite trivial
to do without these constants. However, one can dispense with them. We have
given a new approach in [9] where we define “finite-by-Presburger” Abelian groups
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and prove their model completeness, and deduce model completeness of a finite
extension of Qp in the ring language. Examples of finite-by-Presburger groups are
Presburger arithmetic and the groups of multiplicative congruence classes K∗/1 +
Mn

K where n ⩾ 1, K is a valued field whose value group is a Z-group, and MK is
the valuation ideal of K. (These were studied in the case of Qp by Hasse).

In the general case of Henselian valued fields with finite ramification Basarab [5,
Theorem 2.3.1, p. 195] proved model completeness provided each of the residue
rings and the residue field are model-complete.

In this paper we give another approach using basic algebraic and model theoretic
results and prove model completeness in the ring language in a general context.

Recall that an ordered Abelian group is called a Z-group if it is elementarily
equivalent to Z as an ordered Abelian group. Recall also that the ramification
index e of a valued field K with valuation v and residue characteristic p > 0 is
defined to be the cardinality of the set {γ : 0 < γ ⩽ v(p)}. If e < ∞, the field K is
called finitely ramified.

If e = 0 or e = 1, then K is called unramified. For example, an extension of Qp

got by adjoining an eth root of p has ramification index e, whereas an extension
of Qp got by adjoining roots of unity of order prime to p is unramified. The
field obtained by adjoining all roots of unity of order prime to p to Qp is in fact
the maximal unramified extension of Qp, and is denoted by Qnr

p . Kochen [13]
established the basic model theory of this field, including decidability.

Theorem 1.1. — Let K be a finitely ramified Henselian valued field of charac-
teristic zero with perfect residue field of positive characteristic p. Suppose the value
group of K is a Z-group and the theory of the residue field of K is model-complete
in the language of rings. Then the theory of K is model-complete in the language
of rings.

This extends the results of Ax and Kochen [4, Theorem 15, p. 453], Basarab [5,
Theorem 2.3.1, p. 195], and Prestel and Roquette [17, Theorem 5.1, pp. 86] cited
above.

The proof of Theorem 1.1 uses the technique of coarsening a valuation (used
by Ax–Kochen [4] and Kochen [13]), the Ax–Kochen–Ershov Theorem (cf. van den
Dries’ paper [20, Theorem 7.2, p. 143]), and Cohen’s structure theorem for complete
local fields (cf. Serre’s book [19]).

In [13, Theorem 1, p. 409] Kochen proves that any two unramified ω-pseudo-
complete Henselian valued fields of cardinality ℵ1 with normalized cross-sections
are isomorphic if and only if their residue fields and value groups are isomorphic.
We can deduce from Theorem 1.1 the following closely related result.

Corollary 1.2. — The theory of the maximal unramified extension Qnr
p of Qp

is model-complete in the language of rings.

Recall that a field K is called pseudo-algebraically closed if every absolutely
irreducible variety defined over K has a K-rational point, see [3] and [10]. Denote
the absolute Galois group of a field K by Gal(K), and write Abs(K) for the field
of absolute numbers in K.

Theorem 1.3. — Let K be a perfect pseudo-algebraically closed field such that
Gal(K) is pro-cyclic. Let k denote the prime subfield of K. Then the theory of K
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in the language of rings is model-complete if and only if
Kalg = K ⊗Abs(K) k

alg, (1.1)
that is, every finite algebraic extension of K is generated by elements that are
algebraic over k.

In the proof of Theorem 1.3, we use the elementary invariants given by Cherlin–
van den Dries–Macintyre [8] for the theory of PAC fields (using a model theory for
Gal(K) dual to that of K) generalizing Ax’s work for the pseudo-finite case [3].

We can apply the preceding results to certain infinite algebraic extensions of Qp.
Theorem 1.4. — Let K be an infinite algebraic extension of Qp with finite

ramification. Then the theory of K in the language of rings is model-complete.

By the Lang–Weil estimates or the theorem of André Weil on the Riemann
hypothesis for curves over finite fields, any infinite algebraic extension K of Fp is
pseudo-algebraically closed (see for [10, Corollary 11.2.4]). For such a K, Gal(K) is
pro-cyclic (see [10, Chapter 1]). Thus Theorem 1.4 follows from Theorem 1.3 and
Theorem 1.1.

Notes (Added 20 June 2023). —
(1) After we had put this paper on arXiv:1603.08598 on 28 March 2016, a

number of related results were proved. Sylvy Anscombe and Franziska
Jahnke [2] have proved model completeness for Cohen rings which apply to
unramified Henselian valued fields with not necessarily perfect residue field
relative to the value group and residue field.

We are grateful to the anonymous referee for suggesting that using this
work of Anscombe and Jahnke [2] the proof of Theorem 1.1 in this paper
will go through in the case when the residue field is not necessarily perfect.
For this one can use the relative embedding [2, Theorem 6.4] instead of
the Cohen structure theorem for complete local rings in our proof of The-
orem 1.1. Then the proof goes through in the more general context as it
stands.

In a very recent preprint [1] Anscombe–Dittman–Jahnke prove relative
model completeness results for finitely ramified Henselian fields up to value
group and (not necessarily perfect) residue field which they derive from
mixed characteristic Ax–Kochen type results.

Originally, our main interest was in the case of infinite algebraic exten-
sions of Qp, so we had dealt only with perfect residue fields. However,
because of the appearance of [1], we now prefer to keep the exposition of
this paper restricted to perfect residue fields.

(2) Jochen Koenigsmann has informed us that Corollary 1.2 implies that there
is a complete recursive axiomatization of the theory of Qnr

p (either in the
language of rings or in the language of rings expanded by a predicate for
the valuation ring). These axioms state that the field is Henselian, the
value group is a Z-group, v(p) is a minimal element of the value group,
and the residue field is algebraically closed of characteristic p. This result
is related to Koenigsmann’s ideas for a complete axiomatization for the
maximal Abelian extension of Qp. See Koenigsmann’s survey paper in the
Proceedings of the International Congress of Mathematicians, Rio 2018 [14].

https://arxiv.org/abs/1603.08598
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2. Definability of valuations

Let K be a valued field. We shall denote the valuation on K by vK or v, the
ring of integers of K by OK , the valuation ideal by MK , and the value group by
ΓK or Γ. We denote the residue field by k.

Assume throughout that K has characteristic zero and residue characteristic
p > 0. We take the smallest convex subgroup ∆ of ΓK containing v(p) and consider
the quotient ΓK/∆ with the ordering coming from convexity of ∆ (see [18]). K
carries a valuation which is the composition of vK with the canonical surjection

ΓK → ΓK/∆.

This valuation will be denoted by v̇ : K → ΓK/∆ ∪ {∞} and is called the coarse
valuation corresponding to v. We denote the valued field (K, v̇) by K̇.

The valuation ring of OK̇ of v̇ is the set

{x ∈ K :∃ δ ∈ ∆ (v(x) ⩾ δ)}.

It is also the smallest overring of OK in which p becomes a unit, or the localization
of OK with respect to the multiplicatively closed set {pm : m ∈ N}.

The maximal ideal MK̇ of v̇ is the set

{x ∈ K :∀ δ ∈ ∆ (v(x) > δ)}.

Clearly MK̇ ⊆ MK .
The residue field of K with respect to the coarse valuation v̇ has characteristic

zero, and is called the core field of K corresponding to v. It is denoted by K◦.
The core field carries a valuation v0 defined by

v0(x+ MK̇) = v(x).

The valuation v0 has value group ∆, valuation ring OK/MK̇ , maximal ideal
MK/MK̇ , and residue field k.

The residue degree of K is defined to be the dimension over Fp of the residue
field k. We note that (OK/MK̇)/(MK/MK̇) ∼= OK/MK

∼= k.

Lemma 2.1. — The ramification index and residue degree of K and the core
field K◦ are the same.

Proof. — See [17, pp. 27]. □

We insert here the definition of, and a basic lemma about, ω-pseudo-convergence
(to be used this later in the proof of Theorem 1.1).

A sequence {an}n ∈ ω of elements of a valued field is called ω-pseudo-convergent
if for some integer n0, we have v(am −an) > v(an −ak) for all m > n > k > n0. An
element a ∈ K is called a pseudo-limit of the sequence {an} if for some integer n0
we have v(a− an) > v(a− ak) for all n > k > n0. The field K is called ω-pseudo-
complete if every ω-pseudo-convergent sequence of length ω has a pseudo-limit in
the field. We shall use the following lemma.

Lemma 2.2. — An ℵ1-saturated valued field is ω-pseudo-complete.

Proof. — Obvious. □

We shall need the following result on existential definability of valuation rings.
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Lemma 2.3. — Let K be a Henselian valued field of characteristic zero, residue
characteristic p > 0, and ramification index e > 0.

(1) Let n > e be an integer that is not divisible by p. Then OK is existentially
definable by the formula ∃ y (1 + pxn = yn).

(2) The maximal ideal MK is existentially definable, i.e. OK is universally
definable.

Proof. — (1) proved in [6, Lemma 1.5,pp. 4] under the assumption of a finite
residue field but the same proof goes through in the more general case as follows.
Let x ∈ OK . Let f(y) := yn − pxn − 1. Then v(f(1)) > 2v(f ′(1)), so f has a
root in K by Hensel’s Lemma. Conversely, suppose 1 + pxn is an nth power. If
v(x) < 0, then v(pxn) < 0, and so v(y) < 0, hence nv(y) = e+nv(x), thus n divides
e, contradiction to the choice of n.

To prove (2) it suffices to show that

MK =
{
x ∈ K : xep−1 ∈ OK

}
. (∗)

Indeed, by (1) OK is existentially definable, say by an existential Lrings-formula
Φ(x), then by (∗) MK is definable by the existential formula Ψ(x) := Φ(xep−1).

To prove (∗), suppose that x ∈ MK . Then ev(x)−e ⩾ 0, thus since v(p) = e, we
deduce that xep−1 ∈ OK . Conversely, suppose that x ∈ K satisfies the condition
xep−1 ∈ OK . Then ev(x) − e ⩾ 0, hence ev(x) ⩾ e, so v(x) ⩾ 1. □

Note. — The existential definitions above are uniform once one fixes p and a
finite bound on the ramification index e. In particular, for any extension K of
Qp with ramification index e, the valuation ring of K is defined by an existential
formula of the language of rings that depends only on p and e, and not K.

Corollary 2.4. — Suppose that K1 ⊆ K2 is an extension of Henselian valued
fields of characteristic 0 and residue characteristic p > 0, and whose value groups
are Z-groups. Suppose that the index of ramification of both K1 and K2 is e where
0 < e < ∞. Then

OK2 ∩K1 = OK1 .

Proof. — By Lemma 2.3, OK1 and OK2 are existentially definable by the same
formula, and MK1 and MK2 are existentially definable by the same formula. Thus

OK1 ⊆ OK2 ∩K1.

For the other direction, suppose there is β ∈ K1 ∩ OK2 such that β /∈ OK1 . Then
β−1 ∈ OK1 , so β−1 ∈ OK2 . Thus β is a unit in OK2 . From β /∈ OK1 we deduce
that β−1 ∈ MK1 , hence β−1 ∈ MK2 , contradiction. □

Remark 2.5. — Corollary 2.4 also follows from Lemma 2.3(2) together with Pres-
tel’s Characterization Theorem [16, p. 1260].

3. Proof of Theorem 1.1

Proof. — We now give the proof of Theorem 1.1. Let K1 → K2 be an embedding
of models of Th(K). By Corollary 2.4, this is an embedding of valued fields. Thus
there is a natural inclusion of the residue field (resp. value group) of K1 into the
residue field (resp. value group) of K2. We make a series of reductions.
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Step 1. — We may assume that K1 and K2 are ℵ1-saturated: Indeed, let U be
any non-principal ultrafilter on a large enough index set. Since KU

1 is an elementary
substructure of KU

2 and Ki is an elementary substructure of KU
i for i = 1, 2; we

deduce that K1 is an elementary substructure of K2.
Step 2. — It suffices to prove that the core field K◦

1 is an elementary substruc-
ture of the core fieldK◦

2 : since the coarse valued fields K̇1 and K̇2 have characteristic
zero residue fields K◦

1 and K◦
2 respectively, and divisible torsion-free abelian value

groups, and the theory of divisible torsion-free abelian groups is model-complete in
the extension of the language of groups by predicates Dn(x) expressing that x is
n-divisible, (see Zakon’s paper [21]), we can apply the Ax–Kochen–Ershov theorem
for equicharacteristic zero Henselian valued fields to deduce that the embedding of
K1 in K2 is elementary provided the embedding of K◦

1 into K◦
2 is elementary.

Step 3. — We prove the embedding of K◦
1 into K◦

2 is elementary. Since the fields
K1 and K2 are ℵ1-saturated, by Lemma 2.2 they are ω-pseudo-complete. Thus the
valued fields K◦

1 and K◦
2 are also ω-pseudo-complete (since the map Γ → Γ/∆

is order-preserving). However, these fields are valued in ∆ which is canonically
isomorphic to Z. Thus K◦

1 and K◦
2 are Cauchy complete. By Lemma 2.1, the

ramification index of K◦
1 and K◦

2 is the same as the ramification index of K1 and
K2 which equals the ramification index of K which is e.

By the structure theorem for complete fields with ramification index e (see [19,
Theorem 4,pp.37]), K◦

1 and K◦
2 are respectively finite extensions of degree e, ob-

tained by adjoining a uniformizing element, of the fields W (k1) and W (k2) which
are fraction fields of the rings of Witt vectors of k1 and k2 respectively, where k1
and k2 are the residue fields of K◦

1 and K◦
2 (which coincide with the residue fields

of (K1, vK1) and (K2, vK2) respectively).
Thus K◦

1 = W (k1)(π) for some uniformizing element π ∈ K◦
1 . The element π is

the root of a polynomial
E(x) := xe + c1x

e−1 + · · · + ce

that is Eisenstein over W (k1). So
cj ∈ MW (k1)

for all j and
ce ∈ MW (k1) − M2

W (k1).

Claim 3.1. — E(x) is Eisenstein over W (k2) and K◦
2 = W (k2)(π1).

Proof. — A coefficient cj is in the maximal ideal MW (k1) if and only if it is
divisible by p in the ring W [k1]. Since the ring W [k2] is a ring extension of W [k1],
if cj is p-divisible in W [k1], then it is p-divisible in W [k2]. Similarly if p−1ce ∈ W [k1]
is a unit, then it is also a unit in W [k2].

Since K◦
1 and K◦

2 have the same ramification index e, an Eisenstein polynomial
over W [k1] remains Eisenstein over W [k2], and π1 remains a uniformizer in K◦

2 .
Thus W (k2)(π1) has dimension e over W (k2). But

W (k2) ⊆ W (k2)(π1) ⊆ K◦
2

and K◦
2 is totally ramified with ramification index e over K♯

2, hence has dimension
e over W (k2). Therefore W (k2)(π1) = K◦

2 . □
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Claim 3.2. — The embedding of W (k1) in W (k2) is elementary.

Proof. — This follows from the Ax–Kochen theorem for mixed characteristic
Henselian valued fields, see for example van den Dries’ paper [20, Theorem 7.2,
p. 143]. Alternatively, one can give a direct proof as follows. Since k1 and k2
are residue fields of K1 an K2 for the valuation vK , the embedding of k1 in k2
is elementary. Since K1 and K2 are ℵ1-saturated, the fields k1 and k2 are also
ℵ1-saturated. Given any finitely many elements a1, . . . , am from W (k1), there is
an isomorphism from W (k1) to W (k2) fixing a1, . . . , am since elements of W (k1)
and W (k2) can be represented in the form

∑
i cip

i, where ci are from the residue
field. The countable subfields of k1 and k2 form a back-and-forth system. This
induces a back-and-forth system between W (k1) and W (k2), and it follows that
the embedding of W (k1) into W (k2) is elementary □

Step 4. — We prove that the embedding of K◦
1 into K◦

2 is elementary. This will
complete the proof of Theorem 1.1. We interpret K♯

i (π1) inside K♯
i (for i = 1, 2)

in the usual way as follows. We identify K♯
i (π1) with (K♯

i )e. On the e-tuples we
define addition as the usual addition on vector spaces and multiplication by

(x1, . . . , xe) × (y1, . . . , ye) =
(
x1Ie + x2Mπ + · · · + xeM

e−1
π

)
(y1, . . . , ye)T

where Ie is the identity e × e-matrix and Mπ is the e × e-matrix of multiplication
by π. Note that Mπ depends uniformly only on the coefficients c1, . . . , ce of E(x).
x2 In Steps 3 and 4 we had K◦

1 = K♯
1(π1) and K◦

2 = K♯
2(π1). Step 3 and Claim 3.1

imply that the embedding
K♯

1(π1) → K♯
2(π1)

is elementary. Thus K◦
1 → K◦

2 is elementary. The proof is complete. □

4. Model completeness for pseudo-algebraically closed fields and
proof of Theorem 1.3

Given a field K, the field of absolute numbers of K is defined by Abs(K) :=
kalg ∩ K, where k is the prime subfield of K. By a result of Ax [3], two perfect
pseudo-algebraically closed fields K1 and K2 whose absolute Galois groups are
isomorphic to Ẑ are elementarily equivalent if and only if Abs(K1) = Abs(K2). In
other words, the theory of a such a field is determined by its absolute numbers
Abs(K) (equivalently by the polynomials f ∈ k[x] that are solvable in K).

Elementary invariants for pseudo-algebraically closed fields were given by Cherlin–
van den Dries–Macintyre in [8] (see also [7]) in terms of the language for profinite
groups. In this case one has to preserve the degree of imperfection and the co-
elementary theory defined as follows.

The language CSIS for complete stratified inverse systems is a language with
infinitely many sorts indexed by N, each sort is equipped with the group opera-
tion. The nth sort describes properties for the set of groups in the inverse system
which have cardinality n. The language has in addition symbols for the connecting
canonical maps between the groups in different sorts.

Given any profinite group G, the set of finite quotients of G with the canonical
maps between them is a stratified inverse system. A coformula is a formula of the
language CSIS. A profinite group cosatisfies a cosentence if the associated stratified
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inverse system satisfies the cosentence. A cosentence or coformula has a translation
to the language of fields. For details see [8].

For any field K, the Galois diagram of K is defined to be the theory{
∃ x̄, ȳ, z̄, t̄

(
φ(x̄, ȳ, z̄, t̄) ∧ δ(x̄, ȳ, z̄, t̄)

)
:

∃ ā, b̄, c̄, d̄ ∈ Abs(K)
(
K |= φ′ (

ā, b̄, c̄
)

∧ δ(ā, b̄, c̄, d̄)
)}

where δ(x̄, ȳ, z̄, t̄) describes the isomorphism type of the field generated by x̄, ȳ, z̄, t̄,
and φ is a coformula and φ′ its “translation” into the language of rings (cf. [8]).

The theorem of Cherlin–ven den Dries–Macintyre extending Ax’s result is the
following.

Theorem 4.1 ([8, Theorem 6, p. 53]). — Two pseudo-algebraically closed fields
K and L are elementarily equivalent if and only if K and L have the same charac-
teristic and same degree of imperfection, and ∆(K) = ∆(K).

To prove Theorem 1.3 we also need the following results.

Theorem 4.2 ([10]). — Infinite finitely generated fields are Hilbertian.

Proof. — See [10, Theorem 13.4.2, pp. 242]. □

Theorem 4.3 ((Jarden)). — If L is a countable Hilbertian field, then the set
{σ ∈ Gal(L) : Fix(σ) is pseudofinite}

has measure 1.

Proof. — See [11, pp. 76] or [10, Theorem 18.6.1,pp. 380]. □

Proof of Theorem 1.3. The condition 1.1 implies that every finite algebraic
extension K(α) of K is generated by elements algebraic over k, and thus by the
primitive element theorem, by a single algebraic element α.

Now all this is part of the theory Th(K). For example, the unique extension of
K of dimension n is generated by a root α of some polynomial f over k. Fix the
minimum polynomial f of α. Then we just say that some root of f generates the
unique extension of K of dimension n. This will be true for any L with L ≡ K.
It follows that any embedding L → K1 of models of Th(K) is regular, and thus
elementary (cf. Cherlin–van den Dries–Macintyre [8] or Jarden–Kiehne [12]).

Conversely, Suppose that 1.1 does not hold. We shall prove that Th(K) is
not model-complete. Since Kalg ̸= K ⊗Abs(K) k

alg, there is some finite algebraic
extension K(α) that is not included in any K(β), where β is algebraic over k.

Now consider such a field K(α) of minimal dimension d over K. K(α) is normal
cyclic over K, so d is a prime p, otherwise, d = pk1

1 . . . pkr
r , where n > 1, and each

of the degree pkj

j extensions is included in some K(β) that is algebraic over k, and
so K(α) is too, contradiction. Thus K(α) is a dimension p extension of K.

Now let f be the minimum polynomial of α over K. Put
Λ:=Diag(K) ∪ ΣP AC ∪ {∃ x (f(x) = 0)}

∪ {∀ x (g(x) ̸= 0), g ∈ Θ} ∪ ∆(K)
were ΣP AC denotes the set of sentences expressing the condition of being pseudo-
algebraically closed, Θ is the set of polynomials in one variable over k which are
unsolvable in K, and ∆(K) is the Galois diagram of K.
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Claim 4.4. — Λ is consistent.

Proof. — We do a compactness argument. Consider a finite subset Λ0 of Λ. It
involves a finite set c0, . . . , cm from K including coefficients of f and a finite part of
Diag(K), finitely many g1, . . . , gl from Θ, a t with f(t) = 0, and a finite part of the
Galois diagram ∆(K). Given a finite part S of the Galois diagram ∆(K), S contains
finitely many statements describing the isomorphism types of fields generated by
finitely many finite subsets S1, . . . , Sk of K, and translations to the language of
rings of finitely many coformulas. The translations of the coformulas involve Galois
groups of finitely many finite extensions of K. The compositum of these is a finite
Galois extension K(T ) of K, for a finite set T .

Note that tr.deg.(k(α, c0, . . . , cm, S0, . . . , Sk, T )) ⩾ 1, so by Theorem 4.2,
k′ := k (α, c0, . . . , cm, S0, . . . , Sk, T )

is Hilbertian. f is irreducible of dimension p over k′. Now if we adjoin to k′ a root
α of f , then none of g1, . . . , gl get a root. For if one does, that root is either in
k′ which is impossible, or has dimension congruent to zero modulo p over k′, and
then α ∈ K(β), for some β which is algebraic over k.

We apply Theorem 4.3 to k′ and deduce that the set of all σ ∈ G(k′) such that
Fix(σ) is pseudofinite has measure 1. Note that given a polynomial g(x) over k,
the set

Gg := {σ ∈ G(k′) : Fix(σ) does not contain a root of g}
is open in G(k′) since U := Gal(k′alg/F ) is a basic open set containing the identity
in G(k′) where F is the splitting field of g(x), and σU ∈ Gg for any σ ∈ Gg. Thus
the set of all σ ∈ G(k′) such that g1, . . . , gl do not have a root in Fix(σ) and
Fix(σ) is pseudofinite has non-zero measure.

Note that for any such σ, the fixed field Fix(σ) contains the given finite part
of Diag(K), contains a root of f (namely α), and contains T . Thus Fix(σ) must
satisfy the finitely many given statements from the Galois diagram ∆(K) and the
diagram Diag(K) as these can be witnessed by finitely many elements from

S1 ∪ · · · ∪ Sk ∪ T

(by adding constants symbols). We deduce that Fix(σ) is a model of Λ0. Thus Λ
has a model L. □

We need to show that ∆(K) = ∆(L). It is obvious that ∆(K) ⊆ ∆(L). We
show that ∆(L) ⊆ ∆(K). Suppose that ψ ∈ ∆(L) and ψ /∈ ∆(K). Then ψ involves
statements on isomorphism type and translations of coformulas corresponding to a
finite subset of Abs(L) that does not hold forK. But Abs(K) = Abs(L), so ¬ψ holds
for the finitely many elements of Abs(K), hence ¬ψ ∈ ∆(L) by adding constants
for the distinguished elements of Abs(K) = Abs(L), which is a contradiction.

Applying Theorem 4.1, we deduce that K and L are elementarily equivalent.
Clearly K is not an elementary submodel of L. This completes the proof. □
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