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THE PERMUTON LIMIT OF RANDOM RECURSIVE
SEPARABLE PERMUTATIONS

VALENTIN FÉRAY AND KELVIN RIVERA-LOPEZ

Abstract. We introduce and study a simple Markovian model of random separable permu-
tations. Our first main result is the almost sure convergence of these permutations towards
a random limiting object in the sense of permutons, which we call the recursive separable
permuton. We then prove several results on this new limiting object: a characterization of
its distribution via a fixed-point equation, a combinatorial formula for its expected pattern
densities, an explicit integral formula for its intensity measure, and lastly, we prove that its
distribution is absolutely singular with respect to that of the Brownian separable permuton,
which is the large size limit of uniform random separable permutations.

1. Introduction

1.1. Our model. Fix p ∈ (0, 1). We consider a sequence of random permutations
(σ(n),p)n ⩾ 1 starting from the unique permutation of size 1 and defined recursively.
Given σ(n),p, a permutation of size n, we obtain σ(n+1),p, a permutation of size
n + 1, by the following procedure.

(1) Take j uniformly at random between 1 and n.
(2) In the one line notation of σ(n),p, we increase all values bigger than j by 1.
(3) With probability p (resp. 1 − p), we replace j by j, j+1 (resp. by j+1, j).

An example is given on Figure 1.1; here and throughout the paper, permutations
are represented by their diagrams (the diagram of a permutation π of size n is the
set of dots (j, π(j)) drawn in an n × n grid). This operation of replacing a point
in the diagram by two consecutive points (consecutive at the same time in value
and in position) will be referred to as inflation. We call the inflation increasing or
decreasing, depending on the relative position of the two new points.

The set of permutations which can be obtained from the permutation 1 by re-
peated inflations (either increasing or decreasing) is known as the set of separable
permutations. Alternatively, separable permutations are those permutations that
avoid the patterns 3142 and 2413, see, e.g., [12]. By construction, the permuta-
tions (σ(n),p)n ⩾ 1 are separable and any given separable permutation will appear in
this sequence with nonzero probability. We therefore refer to σ(n),p as the random
recursive separable permutation (of size n and parameter p). This model differs
from the model of uniform random separable permutations (studied, e.g. in [5, 22])
and, as we will see in Proposition 1.3, it yields a different object in the limit.

Remark 1.1. — It was asked in a recent survey on permutons whether uniform
separable permutations can be sampled in a Markovian way [17, Section 5.4].
Though we do not answer this question here, this served as an additional moti-
vation to study a natural Markovian model of random separable permutations.
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τ1
τ2

ρ1
ρ2

Figure 1.1. Examples of possible inflation steps from τ := σ(n),p

to ρ := σ(n+1),p. For i = 1 or 2, the point of τi chosen uniformly
at random, as well as the two new adjacent points in ρi replacing
it, are painted in red. In ρ1, these two new points are in increas-
ing order (we say that we have performed an increasing inflation),
while, in ρ2, they are in decreasing order (in this case, we have
performed a decreasing inflation).

1.2. The limiting permuton. Throughout the paper, let Leb be the Lebesgue
measure on [0, 1]. Recall that if ν is a measure on A and g is a measurable map
from A to B, then the formula g#ν(C) = ν(g−1(C)) for any measurable subset C
of B defines a measure g#ν on B, called the push-forward measure. Finally, we
denote by π1 and π2 the projection map from [0, 1]2 to [0, 1] on the first and second
coordinates, respectively.

By definition, a permuton is a probability measure µ on the unit square [0, 1]2
whose projections on the horizontal and vertical axes are both uniform, i.e. (π1)#µ
= (π2)#µ = Leb. Permutons are natural limit objects for permutations of large
sizes, see [17] for a recent survey on the topic. Indeed, we can encode a permutation
π of size n by a permuton µπ = 1

n

∑n
i=1 λ(i, π(i)), where λ(i, π(i)) is the measure

of mass 1 uniformly spanned on the square [ i−1
n ; i

n ] × [ π(i)−1
n ; π(i)

n ]. Equivalently,
µπ has a piecewise constant density

g(x, y) =
{

n if π(⌈nx⌉) = ⌈ny⌉;
0 otherwise.

A sequence of permutations π(n) then converges to a permuton µ if the associated
measures µπ(n) converge to µ, in the sense of the weak convergence of measures.
We can now state the first main result of this paper.

Theorem 1.2. — The random permutations (σ(n),p)n⩾1 converge a.s. to a ran-
dom permuton. We call this permuton the recursive separable permuton (of pa-
rameter p) and denote it by µrec

p .

A sample of σ(n),p for n ∈ {10, 100, 1000} and p = 1/2 is given in Figure 1.2. In
this simulation, the three permutations are taken from the same realization of the
random process (σ(n),p)n ⩾ 1. The a.s. convergence towards a limiting permuton is
visible on this simulation.

This theorem should be compared with the limit result for uniform random
separable permutations obtained in [5]. In the latter case, the limit is the so-called
Brownian separable permuton. This Brownian separable permuton belongs to the
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Figure 1.2. A sample of permutations σ(10), 0.5, σ(100), 0.5,
σ(1000), 0.5 corresponding to the same realization of the process
(σ(n), 0.5)n ⩾ 1.

larger family of biased Brownian separable permutons, also indexed by a parameter
p in (0, 1), and denoted µBr

p (we will often drop the word biased in the latter).
The constructions of the recursive and Brownian separable permutons share some

similarities, but these are different distributions on the set of permutons. In fact,
we prove in Section 4.4 the following stronger statement.

Proposition 1.3. — Let p ̸= q be fixed in (0, 1). Then the distributions of the
four permutons µrec

p , µrec
q , µBr

p and µBr
q are pairwise singular1.

Thus our model of increasing separable permutations yields a much different
limiting object than the uniform separable permutations. This is in contrast with
the result of [6], where the Brownian separable permuton was shown to be the limit
of uniform random permutations in many permutation classes. It seems that going
from the uniform model to a recursive model as the one studied here allows to
escape the universality class of the Brownian separable permuton (see Remark 1.4
for further discussion).

Another difference with the setting of uniform permutations is that the conver-
gence in Theorem 1.2 holds in the almost sure sense. In particular, we cannot use
the criterium stating that convergence of permutons in distribution is equivalent
to the convergence of expected pattern densities. Instead, we need to construct
the limiting permuton on the same probability space as the process (σ(n),p)n ⩾ 1 of
random permutations and to prove the convergence with adhoc arguments.

Remark 1.4. — There are other cases in the literature of combinatorial objects
for which the uniform measure and a natural recursive random construction yield
different asymptotic behaviors. Most famously, for many families of trees, the
typical height of a random tree is of order

√
n in the uniform model [2] and log(n)

in recursive models [23]. A situation closer to the one of this paper in which we
have nontrivial but different limits for the uniform and recursive models is that of
noncrossing sets of chords in a regular n-gon. Indeed, in [14], Curien and LeGall
consider recursive models of noncrossing sets of chords and show that they converge
to a random limiting object L∞. This random set L∞ is different from the limit
of uniform random triangulations of the n-gon, previously identified by Aldous and
known as the Brownian triangulation [3]. Let us also mention recent results on
random graphs with fixed degree sequences and random chirotopes (chirotopes are

1We recall that two measures µ and ν are singular if there exists a measurable set A such that
µ(A) = 1 but ν(A) = 0.
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µ

ν

S = ⊕, u = 1
3

µ

ν

S = 	, u = 1
3

Figure 1.3. The permuton µ ⊗(u,S) ν.

combinatorial objects encoding the relative positions of a set of points in the plane),
which both exhibit differences in the asymptotic behaviors between recursive and
uniform models [16, 21]. We do not have a satisfactory intuitive explanation of
these facts.

Remark 1.5. — In the theory of permutons (see, e.g., [18, Lemma 4.2]), there
is an explicit construction for permutations that converge almost surely to a given
permuton. It is natural to compare the permutations obtained by applying this
construction to the random permuton µrec

p with the recursive separable permuta-
tions. As sequences, these two objects are clearly different: the recursive separable
permutations are constructed via repeated inflations while the other sequence is
not. However, we shall see in Section 4.2 that these sequences do have the same
marginal distributions.

1.3. Properties of the recursive separable permuton.

1.3.1. Self-similarity. The distribution of the recursive separable permuton µrec
p can

be characterized by a fixed-point equation. To state this property, we first need to
introduce some notation.

Given two permutons µ and ν, a real number u in [0, 1] and a sign S in {⊕, ⊖}, we
construct a new permuton ρ = µ⊗(u,S) ν as follows. If S = ⊕, we let ρ be supported
on [0, u]2 ∪ [u, 1]2 such that the restriction ρ|[0,u]2 (resp. ρ|[u,1]2) is a rescaled version
of µ of total weight u (resp. a rescaled version of ν of total weight 1 − u). If S = ⊖,
then ρ is defined similarly, but is supported on [0, u] × [1 − u, 1] ∪ [u, 1] × [0, 1 − u].
We refer to Figure 1.3 for an illustration.

Now, given a random permuton µ, we denote by Φp(µ) the random permuton
µ0 ⊗(U,S) µ1, where µ0 and µ1 are two copies of µ, U is a uniform r.v. in [0, 1] and
S is a random sign in {⊕, ⊖} with P(S = ⊕) = p, all variables µ0, µ1, U and S
being independent.

Proposition 1.6. — For any p in [0, 1], we have µrec
p

d= Φp(µrec
p ). Moreover,

the distribution of µrec
p is characterized by this property, in the following sense: if

a random permuton ν satisfy ν
d= Φp(ν), then ν

d= µrec
p .

1.3.2. Expected pattern densities. We recall that if π is a pattern (i.e. a permuta-
tion) of size k and µ a permuton, we can define the random permutation Sample(µ;
k) and the pattern density dens(π, µ) of π in µ as follows. Let (xi, yi) be i.i.d. points
in [0, 1]2 with distribution µ. We reorder them as (x(1), y(1)),. . . , (x(k), y(k)) such
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that y(1) < · · · < y(k). Then there exists a unique (random) permutation τ such
that x(τ1) < · · · < x(τk). This random permutation τ is denoted Sample(µ; k). We
also write

dens(π, µ) = P
(

Sample(µ; k) = π
)
.

These functionals plays a key role in the theory of permutons. In particular, con-
vergence of permutons is equivalent to convergence of all pattern densities, see [18].
Also the distribution of a random permuton is uniquely determined by its expected
pattern densities [6, Proposition 2.4]. The next proposition provides combinatorial
descriptions of these expected pattern densities in the case of the recursive separable
permuton.

To state it, we introduce some terminology. Let π and σ be two permutations
of respective sizes k and ℓ. Their direct sum and skew sum are the permutations
of size k + ℓ defined in one-line notation as follows

π ⊕ σ =π1 . . . πk(σ1 + k) . . . (σℓ + k);
π ⊖ σ =(π1 + ℓ) . . . (πk + ℓ)σ1 . . . σℓ.

Examples with k = 3 and ℓ = 2 are provided in Figure 1.4. They illustrate the
graphical interpretation of these operations on permutation diagrams.

132

21

= = 13254132⊕ 21 = 132	 21 =
132

21
= = 35421

Figure 1.4. Direct sum and skew sum of permutations.

In the following, we consider rooted (complete) binary trees, meaning that every
internal node has exactly two ordered children. Additionally, internal nodes are
labeled with numbers from 1 to some k (where each integer in this range is used
exactly once). The tree is said to be increasing if labels are increasing on any path
from the root to a leaf. Finally, each internal node carries a decoration, which is
either ⊕ or ⊖. To such a tree T , we associate a permutation σ = Perm(T ) as follows
(an example of a rooted increasing binary tree and the associated permutation is
given in Figure 1.5).

• If T is reduced to a single leaf, then σ is the one-element permutation 1.
• Otherwise, the root of T has two (ordered) children and we call T1 and T2

the subtree rooted at these children. Let σ1 and σ2 be the permutations
associated with T1 and T2. Then we associate σ1 ⊗ σ2 with T , where ⊗ is
the decoration of the root of T (⊗ ∈ {⊕, ⊖}).

We note that Perm(T ) does not depend on the labeling of the internal nodes of
T (only on the shape of T and on the decorations of its internal nodes). By
construction, Perm(T ) is always a separable permutation. A separable permutation
σ is in general associated with more than one tree T . We note that, except for the
labeling of internal nodes of T , this is a standard construction in the theory of
separable permutations, see, e.g., [12].
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Figure 1.5. A rooted increasing binary tree and the associated
permutation. The permutation associated to the left subtree of the
root is 4132, the one associated to its right-subtree 1243. Since the
root has decoration ⊕, the permutation associated to the whole
tree is 4132 ⊕ 1243, which is equal to 41325687.

Proposition 1.7. — For any pattern π of size n, we have

E
[

dens
(
π, µrec

p

) ]
= P

[
σ(n),p = π

]
= Ninc(π)

(n − 1)! (1 − p)des(π) pn−1−des(π),

where des(π) is the number of descents in π and Ninc(π) the number of increasing
binary trees T such that Perm(T ) = π.

If π is not a separable pattern, then Ninc(π) = 0, implying dens(π, µrec
p ) = 0 a.s.

Remark 1.8. — The fact that dens(π, µrec
p ) = 0 a.s. for non-separable patterns

π implies that the distribution of µrec
p is also singular with respect to that of the

so-called skew Brownian permutons µρ,q with parameter (ρ, q) in (−1, 1) × (0, 1).
Indeed, the latter satisfy dens(π, µrec

p ) > 0 a.s., see [11, Theorem 1.10].

1.3.3. The intensity measure. Permutons are measures, so that random permutons
are random measures. Given a random measure µ, one can define its intensity
measure Iµ, sometimes also denoted Eµ as follows: for any measurable set A of
the ground space, we have Iµ(A) = E[µ(A)].

Our next result is a simple description of the intensity measure of the random
permuton µrec

p in terms of beta distributions. Recall that the distribution β(a, b)
with positive parameters a and b is given by

Γ(a + b)
Γ(a) Γ(b)xa−1(1 − x)b−1 dx.

Proposition 1.9. — The intensity measure Iµrec
p of the recursive separable

permuton is the distribution of(
U, UXp + (1 − U)X ′

p

)
,

where U , Xp and X ′
p are independent random variables in [0, 1], with distribution

Leb, β(p, 1 − p) and β(1 − p, p) respectively.

From this, we can get an explicit formula for the density of Iµrec
p .



RANDOM RECURSIVE SEPARABLE PERMUTATIONS 51

Corollary 1.10. — Iµrec
p is absolutely continuous with respect to Lebesgue

measure on [0, 1]2 and has density

1
Γ(p)2Γ(1 − p)2

∫ min(x,y)

max(x+y−1,0)

dz

z1−p(x − z)p(y − z)p(1 − x − y + z)1−p
.

Figure 1.6 shows 3D plots of the density of Iµrec
p for p = 0.5 and p = 0.6

(obtained with Mathematica). We note that the density diverges for x = y when
p ⩾ 1/2 and for x + y = 1 when p ⩽ 1/2. This is different from the Brownian
separable permuton case where the density of the intensity measure diverges only
in the corners (i.e. when both x and y are 0 or 1; see [20] for an explicit formula
for the density in this case).

Figure 1.6. 3D plots of the density of Iµrec
p for p = 0.5 (left) and

p = 0.6 (right).

We conclude this paragraph with a discussion presenting the intensity measure
of the recursive separable permuton as a limit of a natural discrete object. This in-
terpretation is a motivation for computing the intensity measure, and is not needed
later in the article. Note also that this is not specific to the recursive separable
permutation; a similar discussion could be made for other models of permutations
converging to random permutons.

For n ⩾ 1 and N ⩾ 1, let σ
(n),p
1 , . . . , σ

(n),p
N be independent copies of the

recursive random separable permutation σ(n),p. We then consider the average of
the associated permutons:

µ
(n),p
N = 1

N

N∑
i=1

µ
σ

(n),p
i

. (1.1)

This is a measure on [0, 1]2 with piecewise constant density

g
(n),p
N (x, y) = n

N

N∑
i=1

1

[
σ

(n),p
i

(
⌈nx⌉

)
= ⌈ny⌉

]
.

When N tends to infinity, µ
(n),p
N converges to I µσ(n),p , the intensity measure of the

random permuton associated to σ(n),p. This measure I µσ(n),p in turn converges to
I µrec

p as n tends to +∞, as a consequence of Theorem 1.2. Therefore, for large
n and N with N ≫ n, the empirical average measures µ

(n),p
N defined in (1.1) can
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be seen as a discrete approximation of I µrec
p . On Figure 1.7, we plot the density

g
(n),p
N for n = 200, N = 10000 and p ∈ {.5, .6}. The convergence to that of I µrec

p

(Fig. 1.6) is plausible on the pictures.

Figure 1.7. 3D plots of the density g
(n),p
N for n = 200, N = 10000

and p being either 0.5 (left) or 0.6 (right).

1.4. Analog results for cographs. With a permutation σ of size n, it is standard
to associate its inversion graph Gσ on vertex set {1, . . . , n}. By definition, {i, j}
is an edge of Gσ if and only if it is an inversion in σ, i.e. (i − j)(σ(i) − σ(j)) < 0.
Inversion graphs of separable permutation are called cographs. Cographs can al-
ternatively be described as graphs avoiding the path P4 on four vertices as induced
subgraph, or as graphs that can be obtained starting from single vertex graphs and
iterating “disjoint union” and “taking the complement” operations. We refer to the
introduction of [7] for more background on cographs.

Uniform random cographs have recently been studied in [4, 7, 24]. Considering
the inversion graphs of random recursive separable permutations yields a natural
Markovian model of random cographs. It can be described directly on graphs,
without going through permutations.

Namely, we consider a sequence of random graphs (G(n),p)n⩾1 starting from the
unique graph with one vertex and defined recursively. Given G(n),p, a graph with n
vertices, we obtain G(n+1),p, a graph with n+1 vertices, by the following procedure.

(1) Let v be a uniform random vertex of G(n),p.
(2) Add a new vertex v′ to G(n),p, with the same set of neighbours as v.
(3) With probability 1 − p, we connect v and v′ with an edge.

A simulation of this random graph process for p = 1/2 is shown on Figure 1.8.
Here graphs are represented by a collection of dots, namely two dots at coordinates
(i, j) and (j, i) for each edge {i, j} in the graph (in some sense, this is a pictorial
version of the adjacency matrix of the graph). We now state a convergence result
for G(n),p, which is the analogue of Theorem 1.2. We assume the reader to be
familiar with the notion of graphon convergence.

Theorem 1.11. — The random graphs (G(n),p)n ⩾ 1 converge a.s. to a random
graphon, which we call recursive cographon (of parameter p) and denote by W rec

p .

A representative of the limiting graphon W rec
p can be constructed using the

random order ≺ on [0, 1], which we define later in Section 3. Namely, for x < y in
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Figure 1.8. A sample of graphs G(10), 0.5, G(100), 0.5, G(1000), 0.5

corresponding to the same realization of the process (G(n), 0.5)n⩾1.

[0, 1] we set

W rec
p (x, y) = W rec

p (y, x) =
{

0 if x ≺ y;
1 if y ≺ x.

Moreover, W rec
p has the following properties, which are analogues of Proposi-

tions 1.3, 1.6 and 1.7.
Proposition 1.12. — Let p ̸= q be fixed in (0, 1). Then the distributions of

the four random graphons W rec
p , W rec

q , W Br
p and W Br

q are pairwise singular, where
W Br

p is the Brownian cographon of parameter p introduced in [7, 24].
Proposition 1.13. — Fix p in [0, 1], and let W1 and W2 be independent copies

of W rec
p . Let also U be a uniform random variable in [0, 1] and S be a Bernoulli ran-

dom variable of parameter 1 − p, independent from each other and from (W1, W2).
We define a graphon W by

W (x, y) =


W1(x/U, y/U) if x, y ⩽ U ;
W2((x − U)/(1 − U), (y − U)/(1 − U)) if x, y > U ;
S if x ⩽ U < y or y ⩽ U < x.

Then W has the same law as W rec
p . Moreover the law of W rec

p is characterized by
this property.

For the last statement, we write dens(H, W ) for the (induced) density of H in a
graphon W . We also recall that cographs can be encoded by decorated trees called
cotrees, see, e.g., [7, Section 2.2]. Here, we will consider cotrees where internal
nodes are labeled by integers from 1 to some k, and say that a cotree is increasing
if labels are increasing from the root to the leaves.

Proposition 1.14. — For any graph H of size n, we have

E
[

dens
(
H, W rec

p

) ]
= P

[
G(n),p = H

]
= Ninc(H)

(n − 1)! pZ(H) (1 − p)n−1−Z(H),

where Ninc(H) the number of increasing binary cotrees T encoding H, and Z(H)
is the number of decorations 0 in any binary cotree encoding H.

All of these results are easily obtained, either by applying the inversion graph
mapping to the permutation results, or by adapting the proofs. Since the space of
graphons has no natural convex structure, there is no natural notion of expectation
of the random graphon W rec, and Proposition 1.9 and Corollary 1.10 have no
analogues for W rec.
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1.5. Outline of the paper. The remainder of this paper is organized as follows. In
Section 2, we discuss some background material that is needed later. In Section 3,
we go through an explicit construction of the recursive separable permuton and
prove Theorem 1.2. In Section 4, we investigate the properties of the recursive
separable permuton and prove all of our other results.

2. Background

This section gathers some material needed in the rest of the paper. The first
two items (permutation patterns and the Wasserstein metric) consist of standard
material. The last item (push-forward permutons) is more specific to this project.

2.1. Permutation patterns. If σ is a permutation of size n (we simply write
“permutation of n” from now on) and I a subset of {1, . . . , n} with k elements,
then the pattern induced by σ on the set of positions I is the unique permutation
τ = patI(σ) of k with the following property: writing I = {i1, . . . , ik} with i1
< · · · < ik, we have, for all 1 ⩽ g, h ⩽ k,

σ(ig) < σ(ih) ⇔ τ(g) < τ(h).

In other words, τ is obtained by considering the subsequence σ(i1) σ(i2) . . . σ(ik)
of σ and replacing the smallest element by 1, the second smallest by 2, and so on.
For example, the pattern induced by 3 2 5 6 4 7 1 on positions {2, 3, 5} is 132.

2.2. Wasserstein metric. Some arguments in Sections 4.1 and 4.3 use the notion
of the Wasserstein distance between probability distributions. We briefly recall
some main facts about it.

Let X be a complete metric space with distance dX . For each p ⩾ 1, consider
the space Mp

1(X) of probability measures on X with a finite pth moment. This
space can be endowed with the so-called pth Wasserstein distance (also called the
optimal cost distance or the Kantorovich–Rubinstein distance):

dW,p(ν, ν′)p := inf
X,X′:

X∼ν, X′∼ν′

E
[
dX (X, X ′)p]

,

where the infimum is taken over all pairs (X, X ′) of random variables defined on the
same probability space with distributions ν and ν′, respectively. It is well-known
that this defines a metric on Mp

1(X); see, e.g., [13].
In this article, we will be interested in the cases X = [0, 1] and X = [0, 1]2.

In these cases, and more generally whenever X is compact, we have Mp
1(X) =

M1(X) for all p. Also, convergence in the Wasserstein metric is equivalent to the
weak convergence of measures (in general, on non necessarily compact spaces, it is
equivalent to weak convergence and convergence of the pth moment). In particular,
it is sometimes fruitful to think of permuton convergence as convergence for the
(first) Wasserstein distance.

2.3. Push-forward permutons. Given a function f : [0, 1] → [0, 1], we can con-
sider the measure µf := ( · , f( · ))# Leb on [0, 1]2, i.e. the push-forward of the
Lebesgue measure on [0, 1] by the map x 7→ (x, f(x)). The projection of µf on the
first coordinate is always the Lebesgue measure on [0, 1], while its projection on
the second coordinate is f# Leb. Thus, if f preserves the Lebesgue measure, then
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µf is a permuton. Such permutons will be referred here as push-forward permu-
tons. Both the recursive and the Brownian separable permutons are push-forward
permutons (for random functions f).

The permuton µπ associated to a permutation is not a push-forward permuton.
We can, however, approximate it by a push-forward measure easily. Given a per-
mutation π of n, let us define the function fπ : [0, 1] → [0, 1] by fπ(0) = 0 and, for
x > 0,

fπ(x) = π(⌈nx⌉)
n

.

We also write µ̂π = µfπ
= ( · , fπ( · ))# Leb . The measure µ̂π is not a permu-

ton (its projection on the y-axis is not uniform), but it resembles the permuton
µπ: while µπ has, for each i, a mass 1/n uniformly distributed on the square
[ i−1

n ; i
n ] × [ π(i−1)

n ; π(i)
n ], the measure µ̂π has the same mass distributed on the seg-

ment [ i−1
n ; i

n ] ×
{π(i)

n

}
. This clearly implies

dW,1 (µ̂π, µπ) ⩽ 1
n

(2.1)

for any permutation π of n. It follows that, given a sequence of permutations π(n)

of increasing size, the sequences {µ̂π(n)}n⩾1 and {µπ(n)}n⩾1 have the same limit
points in M1([0, 1]2).

We end this section with a convergence criterium for push-forward measures
µf , which will be used in the proof of our main result. Since particular cases of
push-forward permutons have been studied in the literature [5, 9, 10], it might also
be useful in other contexts. We also refer the reader to a paper of Bhattacharya
and Mukherjee [8], for a related result connecting pointwise convergence of ran-
dom permutations seen as functions, and convergence of the associated random
permutons.

Proposition 2.1. — Let f, f1, f2, . . . be measurable functions on [0, 1] with
values in [0, 1]. Then the following statements are equivalent:

(i) fn → f in Lp for some p ∈ [1, ∞),
(ii) fn → f in Lp for all p ∈ [1, ∞),
(iii) ( · , fn( · ))# Leb → ( · , f( · ))# Leb weakly.

Proof. — Letting U be a uniform random variable in [0, 1] on some probability
space Ω, the convergence of fn to f in Lp([0, 1]) is equivalent to the convergence
of the random variables fn(U) to f(U) in Lp(Ω). Since all fn(U) and f(U) are
uniformly bounded, (i) is equivalent to (ii), and they are both equivalent the weak
convergence of fn(U) to f(U).

It remains to show the equivalence with (iii). If (iii) holds, the pair (U, fn(U))
converges weakly to (U, f(U)). Restricting to the second coordinates, we know that
fn(U) converges weakly to f(U), implying (i).

Conversely, if (i) holds, fn(U) converges weakly to f(U), and thus (U, fn(U))
converges weakly to (U, f(U)), i.e. (iii) holds. This completes the proof of the
proposition. □

2.4. Permutations and pairs of total orders. In some constructions, it will be
convenient to see a permutation as a finite set endowed with two total orders. This
is a standard point of view in the context of permutation patterns, see, e.g., [1].
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a

b

c

d

e

Figure 2.1. A set of points E = {a, b, c, d, e}; comparing x-
coordinates and y-coordinates yield two orders < and ≺ on E.
The associated permutation σ = Perm(E, <, ≺) is 52413.

Let us explain how to associate a permutation with a triple (E, <, ≺), where E
is a finite set equipped with two total orders < and ≺. Indeed, using the first order,
we write E = {x1, . . . , xk} where k = |E| and x1 < · · · < xk. Then there exists a
unique permutation σ satisfying

σ(j) < σ(k) ⇐⇒ xj ≺ xk. (2.2)
We denote this permutation by σ = Perm(E, <, ≺). For example, we choose

E = {a, b, c, d, e}, with a < b < c < d < e and d ≺ b ≺ e ≺ c ≺ a, then σ = 52413.
To visualize this construction, we can represent elements of E as points in the plane,
so that < compares the x-coordinates, while ≺ compares the y-coordinates. Then
E ressembles the diagram of σ, see Figure 2.1.

Taking patterns is simple with this viewpoint. If E = {x1, . . . , xk} is as above
(in particular, assuming x1 < · · · < xk) and if I is a subset of {1, . . . , k}, then

patI

(
Perm(E, <, ≺)

)
= Perm

(
{xi, i ∈ I}, <, ≺

)
.

Finally, σ = Perm(E, <, ≺) is also given by an explicit formula. As above, let
xk be the kth smallest element in E for the first order <. Then, if xk is the ℓth

smallest element for the order ≺, we have

σ(k) = ℓ = 1 +
∑

x ∈ E

1[x ≺ xk]. (2.3)

3. Construction and convergence

In this section, we construct the recursive separable permutations and the recur-
sive separable permuton on a common probability space and establish the almost
sure convergence of the permutations to the permuton.

Fix p in (0, 1). Throughout the section, we consider two independent random
i.i.d. sequences (Uj)j ⩾ 1 and (Sj)j ⩾ 1, where the Uj are uniform in [0, 1] and the Sj

are random signs in {⊕, ⊖} with P(Sj = ⊕) = p. For convenience, the signs ⊕ and
⊖ will often be regarded as 1 and −1, respectively, and we set U0 = 0 and U−1 = 1.

To illustrate our construction, we sampled sequences (Uj)j⩾1 and (Sj)j⩾1 as
above (setting p = 1/2), and used them in examples throughout the section. The
first sampled values (rounded to 2 decimal digits for Uj) are

U1 = 0.72, U2 = 0.82, U3 = 0.54, U4 = 0.13, U5 = 0.60,

S1 = ⊕, S2 = ⊖, S3 = ⊖, S4 = ⊖, S5 = ⊕.
(3.1)
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Step 5 (S5 = ⊕)
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Figure 3.1. Illustration of the first five partial orders associated
with the sequences (Uj)j ⩽ 5 and (Sj)j ⩽ 5 given in (3.1). An interval
drawn at a higher level than another one means that its elements
are larger.

3.1. The general strategy. To construct our permutations and permuton, we will
construct a sequence of partial orders on [0, 1] that will give rise to a total order
on [0, 1] in “the limit”. These partial orders will then be identified as permutations
(in a similar spirit as in Section 2.4), while the total order will lead to a permuton.

With (Uj)j ⩾ 1 and (Sj)j ⩾ 1 defined as above, we define our first partial order by
using U1 to split [0, 1] into the two intervals [0, U1) and [U1, 1] and declaring that
every element in [0, U1) is less than every element in [U1, 1] if S1 = ⊕ and that
[U1, 1] is instead the smaller interval if S1 = ⊖. The second partial order is to be
obtained from the first one by using U2 to further split one of the intervals into
two new intervals and declare that the leftmost interval is the smaller of the two
if S2 = ⊕ and that it is the larger of the two if instead S2 = ⊖. We repeat this
process to obtain a sequence of partial orders, at each step using the next uniform
random variable to split an interval into two intervals and declaring the leftmost
interval to be the smaller interval when the corresponding sign is ⊕ and the larger
interval otherwise. See Figure 3.1.

We show that these partial orders can be identified as the recursive separable
permutations in Section 3.5, but this can be seen intuitively. Indeed, the splitting
of intervals into two and then assigning a sign to compare them mimics the inflation
operation. Moreover, the distribution of the signs ensures that increasing adjacen-
cies are created at the right rate. Finally, the properties of the uniform sequence
ensure that the interval to be split at each step is chosen uniformly at random,
as in our permutation model. Another motivation for the choice of the uniform
sequence is the fact that the proportion of intervals to the left of U1 must resemble
the proportion of points in σ(n),p that were obtained from subdividing the leftmost
point in σ(2),p. The number of such points has the same law as the number of white
balls in the standard Pólya urn process, and its proportion is known to converge
a.s. to a uniform random variable in [0, 1].

The above partial orders naturally lead in the limit n → ∞ to a total order on
[0, 1]. Thus we expect that the limiting permuton can be retrieved from this order.
This retrieval is executed in Section 3.2, as a natural extension of the construction
of Section 2.4.
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3.2. The total order and the limiting permuton. We start by offering an
explicit formal description of the order described informally in the previous section.
Given x < y in [0, 1] such that (x, y] ∩ {Uj}j ⩾ 1 ̸= ∅, we consider the minimal j ⩾ 1
such that Uj ∈ (x, y]. We set {

x ≺ y if Sj = ⊕;
y ≺ x if Sj = ⊖.

(3.2)

Alternatively, letting

Ix,y =
(

min(x, y), max(x, y)
]
, x, y ∈ [0, 1],

ix,y = inf {j ⩾ 1 : Uj ∈ Ix,y} , x, y ∈ [0, 1],

and using the convention
S∞ = 0,

we can describe this relation concisely as

x ≺ y ⇐⇒ (y − x)Six,y
> 0.

Using the random relation ≺, we define a random function ϕ : [0, 1] → [0, 1] and
a random measure on [0, 1]2 by

ϕ(x) = Leb ({y ∈ [0, 1] : y ≺ x}) , (3.3)
µrec

p = µϕ = ( · , ϕ( · ))# Leb, (3.4)

where, in the last equation, we use the notation µf of Section 2. We note that (3.3)
is a natural infinite version of (2.3), while (3.4) mimicks the way we associate a
measure µ̂π with a permutation π (see Section 2.3).

In Proposition 3.7 below, we will see that the following properties hold almost
surely: the relation ≺ is a total order on [0, 1], the function ϕ is Lebesgue-preserving,
and the measure µrec

p is a permuton. We define the recursive separable permuton
(of parameter p) as the random measure µrec

p on [0, 1]2.

Remark 3.1. — Our construction is inspired by the construction of the (biased)
Brownian separable permuton µBr

p given in [20]. Indeed, the construction of µBr
p also

goes through the construction of a random order ≺. However, instead of taking
i.i.d. uniform random variables {Uj}j⩾1, we consider a Brownian excursion e on
[0, 1] and attach signs to its local minima. We then define, for x < y in [0, 1],{

x ≺ y if Sm = ⊕;
y ≺ x if Sm = ⊖,

where Sm is the sign attached to the local minimum m of e on the interval [x, y]. The
rest of the construction, namely Eqs. (3.3) and (3.4), is the same in the construc-
tions of µBr

p and µrec
p . As said in the introduction, even though the constructions

are similar, the resulting random permutons are different, and even more, their
distributions are singular to each other (see Section 4.4).
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3.3. The Glivenko–Cantelli theorem and some consequences. For µrec
p to

be a permuton, we need the sequence (Uj)j⩾1 to satisfy some good properties. The
fact that these properties hold a.s. is essentially given by the well-known Glivenko–
Cantelli theorem, which we now recall, together with straightforward consequences.
To this end, we consider the following objects, for any n ⩾ 1:

• the ordered statistics of {U−1, U0, . . . , Un},

0 = U(0,n) ⩽ U(1,n) ⩽ . . . ⩽ U(n,n) ⩽ U(n+1,n) = 1;

• the length of the largest interval in [0, 1] \ {U1, . . . , Un},

∆n = max
1 ⩽ j ⩽ n+1

U(j, n) − U(j−1, n),

and
• the empirical measures

Pn = 1
n

n−1∑
j=0

δUj ,

where δx is the Dirac measure at x.
In addition, we consider the event

E =

(Uj)j ⩾ 1 are distinct, sup
x ∈ [0,1]

∣∣∣∣∣∣x − 1
n

n∑
j=1

1 (Uj ⩽ x)

∣∣∣∣∣∣ −−−−→
n → ∞

0

 . (3.5)

The following result summarizes the properties of these objects that will be useful
to us.

Proposition 3.2. — The event E occurs almost surely and on E , the following
statements hold (all limits are to be taken as n → ∞):

(i) supt ∈ [0,1] |U(⌈nt⌉, n−1) − t| −→ 0,

(ii) ∆n → 0,
(iii) for every k ⩾ 1, supJ ∈ Ak

| Leb(J) − Pn(J)| −→ 0, where Ak consists of all
subsets of [0, 1] that are a disjoint union of at most k intervals.

Proof. — The fact that E occurs almost surely is a classical result known as
the Glivenko–Cantelli Theorem. We assume for the remainder of the proof that E
occurs.

Since U(⌈nt⌉, n−1) ∈ [0, 1] for all t ∈ [0, 1] and n ⩾ 1, we can apply the limit
in (3.5): as n → ∞, we have the convergence

sup
t ∈ [0,1]

∣∣∣∣∣∣U(⌈nt⌉, n−1) − 1
n

n∑
j=1

1
(
Uj ⩽ U(⌈nt⌉, n−1)

)∣∣∣∣∣∣ −→ 0. (3.6)

Recalling that the sequence (Uj)j ⩾ 1 contains distinct values, we obtain the estimate∣∣∣∣∣∣ 1n
n∑

j=1
1
(
Uj ⩽ U(⌈nt⌉, n−1)

)
− t

∣∣∣∣∣∣ ⩽ 1
n

+

∣∣∣∣∣∣ 1n
n−1∑
j=1

1
(
Uj ⩽ U(⌈nt⌉, n−1)

)
− t

∣∣∣∣∣∣ ⩽ 2
n
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which shows that t can replace 1
n

∑n
j=1 1(Uj ⩽ U(⌈nt⌉, n−1)) in the convergence (3.6).

This establishes (i). Writing∣∣U(j, n) − U(j−1, n)
∣∣ ⩽ ∣∣∣∣U(j, n) − j

n

∣∣∣∣+
∣∣∣∣ jn − j − 1

n

∣∣∣∣+
∣∣∣∣j − 1

n
− U(j−1, n)

∣∣∣∣
for n ⩾ 1 and 1 ⩽ j ⩽ n + 1, we see that (ii) follows immediately from (i).

For x ∈ [0, 1], we can write

∣∣Leb([0, x]) − Pn([0, x])
∣∣ =

∣∣∣∣∣∣x − 1
n

n−1∑
j=0

1 (Uj ⩽ x)

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣x − 1
n

n∑
j=1

1 (Uj ⩽ x)

∣∣∣∣∣∣+ 1
n

|1 (Un ⩽ x) − 1 (U0 ⩽ x)|

and apply the limit in (3.5) to see that

sup
x ∈ [0,1]

∣∣Leb([0, x]) − Pn([0, x])
∣∣ −→ 0

as n → ∞. Using the decomposition

ν((x, y]) = ν([0, y]) − ν([0, x])

for any probability measure ν on [0, 1] and x < y in [0, 1], we then obtain the
convergence

sup
x < y

∣∣Leb((x, y]) − Pn((x, y])
∣∣ −→ 0

as n → ∞. Recalling that the sequence (Uj)j ⩾ 1 contains distinct values, we have
the bound

Pn{x} = 1
n

n−1∑
j=0

1 (Uj = x) ⩽ 1
n

for any x ∈ [0, 1]. In particular, we can add or remove the endpoints of the interval
(x, y] above while maintaining the convergence. This establishes the result for k = 1.
The extension to general k follows from the additivity property of measures. □

3.4. Useful properties of the relation ≺ and the function ϕ. This section is
dedicated to analyzing the relation ≺ and the function ϕ. The goal is twofold: not
only will this allow us to establish that µrec

p is a permuton a.s., but it will prepare
us for the convergence argument. We begin with basic properties of the relation ≺.

Lemma 3.3. — Let x, y, z ∈ [0, 1]. Then ix,y, iy,z, and ix,z can be assigned the
labels a, b, and c so that

a = b ⩽ c.

Moreover, if
ix,y = iy,z < ∞,

then
y ≺ x, z or x, z ≺ y.
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Proof. — The intervals Ix,y, Iy,z, and Ix,z can be assigned the labels A, B, and
C so that they satisfy

A = B ⊔ C. (3.7)
It follows immediately that

inf {j ⩾ 1 : Uj ∈ A} = inf {j ⩾ 1 : Uj ∈ B ⊔ C}
= min

(
inf {j ⩾ 1 : Uj ∈ B}, inf {j ⩾ 1 : Uj ∈ C}

)
,

establishing the first claim. Assume now that ix,y = iy,z < ∞, or equivalently,
inf {j ⩾ 1 : Uj ∈ Ix,y} = inf {j ⩾ 1 : Uj ∈ Iy,z} < ∞.

Then the intervals Ix,y and Iy,z are not disjoint (Uix,y
∈ Ix,y ∩ Iy,z). This implies

that y is either the minimum or maximum of {x, y, z}. In particular, the inequality
(y − z)/(y − x) > 0 holds. From this, we obtain the equivalence

x ≺ y ⇐⇒ (y − x)Six,y > 0 ⇐⇒ (y − z)Siy,z > 0 ⇐⇒ z ≺ y.

The equivalence
y ≺ x ⇐⇒ y ≺ z

can be obtained similarly. Recalling that y ̸= x and ix,y < ∞, it follows that
(y − x)Six,y

̸= 0, so either x ≺ y or y ≺ x. Applying one of the above equivalences
concludes the proof. □

Corollary 3.4. — The relation ≺ is a partial order.

Proof. — Irreflexivity and asymmetry are straightforward to prove, let us con-
sider transitivity. Suppose that x ≺ y and y ≺ z. Since y ̸≺ x, z ̸≺ y, and
ix,y, iy,z < ∞, Lemma 3.3 implies that ix,y ̸= iy,z. Applying Lemma 3.3 again
reveals that ix,z = min(ix,y, iy,z) and x ≺ z. This shows that ≺ is transitive. □

Now we turn our attention to the function ϕ. For this analysis, we make use of
the functions

ϕk(x) = Leb
({

y ∈ [0, 1] : y ≺ x, ix,y ⩽ k
})

, k ⩾ 0,

which serve as approximations to ϕ. Indeed, the continuity of measure property
implies that ϕk ↗ ϕ pointwise as k → ∞. In some sense, the function ϕk encodes
the kth partial order defined in Section 3.1. See Figure 3.2 for an illustration. The
basic properties of these functions are summarized in the following result.

Figure 3.2. Graphs of the functions ϕk for k ∈ {4, 5, 49}, asso-
ciated with our sampled sequences (Uj)j ⩽ 5 and (Sj)j ⩽ 6, whose
first values are given in Eq. (3.1).
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Proposition 3.5. — Let x, y ∈ [0, 1] and k ⩾ 0. The following statements
hold:

(i) ix,y > k ⇐⇒ ϕk(x) = ϕk(y),
(ii) x ≺ y, ix,y ⩽ k ⇐⇒ ϕk(x) < ϕk(y),
(iii) ϕk(x) = Leb

({
y ∈ [0, 1] : ϕk(y) < ϕk(x)

})
;

(iv) ϕk is constant on each of the intervals[
0, U(1,k)

)
,
[
U(1,k), U(2,k)

)
, . . . ,

[
U(k−1,k), U(k,k)

)
,
[
U(k,k), 1

]
,

and assumes different values on distinct intervals.

Proof. — (i)(=⇒) Let x, y ∈ [0, 1] and k ⩾ 0. Suppose that ix,y > k. Let us
show that Lx = Ly, where

Lt = {s : s ≺ t, is,t ⩽ k}, t ∈ [0, 1].
Let z ∈ Lx. This implies ix,z ⩽ k, and in particular ix,z < ix,y. From this,
Lemma 3.3 gives us that iy,z = ix,z ⩽ k and z ≺ y. Therefore, z ∈ Ly, establishing
the containment Lx ⊂ Ly. The reverse containment holds by symmetry. Writing
ϕk(x) = Leb(Lx) = Leb(Ly) = ϕk(y) establishes the desired result.

(i) (⇐=) Suppose now that ix,y ⩽ k. It follows that x ̸= y and Six,y
̸= 0, so

either x ≺ y or y ≺ x. Without loss of generality, we can assume that x ≺ y.
Let us show that Lx ⊂ Ly. Take z ∈ Lx. Since z ≺ x ≺ y, Corollary 3.4 implies
that z ≺ y and Lemma 3.3 implies that ix,z ̸= ix,y. Applying Lemma 3.3 again, we
find that iy,z = min(ix,z, ix,y) ⩽ k, and consequently, z ∈ Ly. This establishes the
containment Lx ⊂ Ly.

Thus we can write ϕk(y) = ϕk(x) + Leb(Ly \ Lx), and it only remains to show
that Ly \ Lx has positive Lebesgue measure. To this end, we define

U− =
{

max {Uj : −1 ⩽ j ⩽ k, Uj ⩽ x} , x ̸= 1,

max {Uj : 0 ⩽ j ⩽ k} x = 1,

and

U+ =
{

min {Uj : −1 ⩽ j ⩽ k, x < Uj} , x ̸= 1,

1 x = 1,

and will show that (U−, U+) is a nonempty interval contained in Ly \Lx. It should
be clear that (U−, U+) is nonempty, that x ∈ [U−, U+) (except when x = 1) and
that

(U−, U+) ∩ {U1, . . . , Uk} = ∅.

Now take z ∈ (U−, U+). We have Ix,z ⊂ (U−, U+) (except in the case x = 1, where
U+ should be included). Recalling that Uj ∈ (0, 1) for j ⩾ 1, it can be verified that

Ix,z ∩ {U1, . . . , Uk} ⊂ (U−, U+) ∩ {U1, . . . , Uk} = ∅.

It follows immediately that ix,z > k, so z /∈ Lx. Since ix,y ⩽ k and x ≺ y, we have
ix,y < ix,z and Lemma 3.3 gives us that iy,z = ix,y ⩽ k and z ≺ y, so z ∈ Ly. This
establishes the containment (U−, U+) ⊂ Ly \ Lx, concluding the proof.

(ii) (=⇒) This statement was proved in the proof of (i) (⇐=).
(ii) (⇐=) Let x, y ∈ [0, 1] and k ⩾ 0 and suppose that ϕk(x) < ϕk(y). Using (i),

we have that ix,y ⩽ k. As before, we must have that x ≺ y or y ≺ x. However, the
forward implication in (ii) implies that y ̸≺ x. Therefore, x ≺ y.

(iii) This claim follows from the definition of ϕk and (ii)
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(iv) This claim follows immediately from (i). □

The above result leads to the following estimate for ϕ, which plays a crucial role
in the convergence argument.

Corollary 3.6. — Let k ⩾ 1 and ν be a probability measure on [0, 1]. The
following inequality holds:

sup
x ∈ [0,1]

∣∣ν{y : y ≺ x} − ν{y : ϕk(y) < ϕk(x)}
∣∣ ⩽ ∆k + sup

J ∈ A1

| Leb(J) − ν(J)|. (i)

Consequently, the following convergence holds on E :
sup

x ∈ [0,1]
|ϕ(x) − Pn{y : y ≺ x}| −→ 0 as n → ∞. (ii)

Proof. — Let k ⩾ 1 and ν be a probability measure on [0, 1]. Using Proposi-
tion 3.5, we have that

|ν{y : y ≺ x} − ν{y : ϕk(y) < ϕk(x)}| = ν{y : y ≺ x, ix,y > k}
⩽ ν{y : ix,y > k} = ν{y : ϕk(y) = ϕk(x)} = ν

(
ϕ−1

k (ϕk(x))
)

.

From Proposition 3.5(iv), ϕ−1
k (ϕk(x)), is an interval between two consecutive values

in the set {U−1, U0, · · · , Uk}. Therefore
Leb

(
ϕ−1

k (ϕk(x))
)
⩽ ∆k and

∣∣ν (ϕ−1
k (ϕk(x))

)
− Leb

(
ϕ−1

k (ϕk(x))
)∣∣

⩽ sup
J ∈ A1

| Leb(J) − ν(J)|,

establishing (i). Taking ν = Leb and ν = Pn in (i) gives us that, for k ⩾ 1,
sup

x ∈ [0,1]

∣∣Leb {y : y ≺ x} − Leb{y : ϕk(y) < ϕk(x)}
∣∣ ⩽ ∆k (3.8)

and, for n, k ⩾ 1,
sup

x ∈ [0,1]

∣∣Pn{y : y ≺ x} − Pn{y : ϕk(y) < ϕk(x)}
∣∣ ⩽ ∆k + sup

J ∈ A1

| Leb(J) − Pn(J)|.

Note that A1 can be replaced by Ak above since A1 ⊂ Ak for all k ⩾ 1. Ob-
serve also that the set {y : ϕk(y) < ϕk(x)} lies in Ak for every x ∈ [0, 1] (see
Proposition 3.5(iv)), from which we obtain the following inequality (for n, k ⩾ 1):

sup
x ∈ [0,1]

∣∣Leb{y : ϕk(y) < ϕk(x)}−Pn{y : ϕk(y) < ϕk(x)}
∣∣ ⩽ sup

J ∈ Ak

| Leb(J)−Pn(J)|.

Collecting these bounds, we obtain the estimates (again for n, k ⩾ 1)
sup

x ∈ [0,1]

∣∣Leb{y : y ≺ x} − Pn{y : y ≺ x}
∣∣ ⩽ 2 ∆k + 2 sup

J ∈ Ak

| Leb(J) − Pn(J)|.

Since Leb{y : y ≺ x} = ϕ(x), applying Proposition 3.2 (items (ii) and (iii)) con-
cludes the proof. □

Finally, we establish the main properties of the objects ≺, ϕ, and µrec
p .

Proposition 3.7. — On E , the following statements hold:
(i) the relation ≺ is a total order,
(ii) ϕk → ϕ uniformly on [0, 1] as k → ∞,
(iii) ϕ is continuous on [0, 1] \ {Uj}j⩾1,
(iv) ϕ preserves the measure Leb, and thus µϕ is a permuton.
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Proof. — Take x ̸= y in [0, 1] and suppose that E occurs. From Proposition 3.2,
we know that the maximal gap ∆k of the sequence (Uj)j ⩽ k tends to 0, so the
infinite sequence (Uj)j ⩾ 1 must intersect the nonempty interval Ix,y. It follows
that x and y are comparable in the order ≺. This establishes (i).

The uniform convergence in (ii) follows immediately from Proposition 3.5(iii),
Eq. (3.8) and Proposition 3.2(ii). The continuity in (iii) then follows from the
uniform convergence in (ii) and from Proposition 3.5(iv), which describes the con-
tinuity of each ϕk.

It remains to prove (iv), i.e. that ϕ preserves the Lebesgue measure. Let b ∈
(0, 1). From Proposition 3.5(iii) and (iv), we see that each ϕk attains only finitely
many values and that the gap between consecutive values is bounded by ∆k. In
particular, defining yk such that ϕk(yk) is the smallest element in the range of
ϕk above b (which exists for large k), we have limk → +∞ ϕk(yk) = b. Also, using
Proposition 3.5(iii), we have

ϕk(yk) = Leb
({

z : ϕk(z) < ϕk(yk)
})

= Leb
({

z : ϕk(z) ⩽ b
})

.

Recalling that ϕk ↗ ϕ, we have that

(ϕ# Leb)([0, b]) = Leb
({

z : ϕ(z) ⩽ b
})

= lim
k → ∞

Leb
({

z : ϕk(z) ⩽ b
})

= lim
k → ∞

ϕk(yk) = b.

Since this holds for every b ∈ (0, 1), the measures ϕ# Leb and Leb are the same,
and (iv) holds. □

3.5. The permutations. We continue our construction by realizing the recursive
separable permutations on our probability space. As mentioned earlier, the strategy
will be to identify the partial orders from Section 3.1 as permutations. Informally,
we do this by viewing the intervals in a partial order as forming a “shape” that
defines a permutation diagram. For example, the 2nd partial order illustrated in
Figure 3.1 has the shape of the permutation 132 since its leftmost interval [0, U1) is
placed at the lowest level, its middle interval [U1, U2) is placed at the highest level,
and its rightmost interval [U2, 1] is placed at an intermediate level. Note that this
shape can also be deduced from simply considering the left endpoints 0, U1, and
U2, which satisfy 0 < U1 < U2 and 0 ≺ U2 ≺ U1.

Throughout this section, we will assume that the (Uj)j ⩾ 1 are distinct and dif-
ferent from 0 and 1. This ensures that the random set En = {Uj , 0 ⩽ j ⩽ n − 1}
has size n. Equipping each En with the natural order < and the random order ≺,
the above considerations prompt us to define

λn = Perm
(

En, <, ≺
)

, n ⩾ 1. (3.9)

An illustration is provided in Figure 3.3, which should be compared with Fig-
ures 3.1 and 3.2.

In Proposition 3.9, we confirm that this permutation sequence has the same
distribution as (σ(n),p)n ⩾ 1. The proof uses some standard exchangeability proper-
ties of i.i.d. random variables, implying for example that the relative order of the
(Ui)i ⩽ n is independent from the set of their values {Ui, i ⩽ n}. As a first step, we
establish a recursion for λn, which will require some notation.
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Figure 3.3. The permutations λn for n ∈ {5, 6, 50}, associated
with our sampled sequences (Uj)j ⩽ 5 and (Sj)j ⩽ 6, whose first val-
ues are given in Eq. (3.1).

Given a permutation τ of n, a sign s ∈ {⊕, ⊖}, and an integer k ∈ {1, . . . , n},
let τs,k be the permutation obtained by writing τ in one-line notation, increasing all
values bigger than j = τ(k), and replacing j by j j+1 if s = ⊕ or by j+1 j if s = ⊖.
For a permutation σ of n and an integer k, we denote by σ↓k the pattern induced
by σ on the set of positions {1, . . . , n} \ {k} (in other words, we erase σk in the
one-line notation and decrease by 1 all values bigger than σk to get a permutation).

With this notation in hand, it can be verified that τs,k is the unique permutation
σ of n + 1 satisfying the following properties:

(i) σ↓k and σ↓(k+1) are both equal to τ ;
(ii) σ(k + 1) > σ(k) if s = ⊕ (resp. σ(k + 1) < σ(k) if s = ⊖).

Proposition 3.8. — Suppose that the elements (Uj)n
j=1 are distinct. Let Rn

denote the rank of Un in {Uj}n
j=1 (i.e. the unique integer satisfying U(Rn, n) = Un).

The following recursion holds:
λn+1 = (λn)Sn,Rn , n ⩾ 1.

Before proving the result, let us consider an example using the sampled values
(Uj)j ⩽ 5 and (Sj)j ⩽ 5 in Eq. (3.1). Taking n = 5, the relevant quantities are S5 = ⊕,
R5 = 3, and the permutations λ5 and λ6 depicted in Figure 3.3. It can be seen
from the diagrams that the identity λ6 = (λ5)⊕,3 does hold: λ6 is obtained from
λ5 by an increasing inflation of its third point from the left.

Proof. — We will verify that λn+1 satisfies the three conditions that characterize
(λn)Sn,Rn

. Writing k = Rn, we note that Un corresponds to the (k + 1)st point
from the left in λn+1 (note that the index j starts from 0 in eq. (3.9)). Therefore
we have

(λn+1)↓k+1 = Perm
(
{Uj , 0 ⩽ j ⩽ n − 1}, <, ≺

)
= λn.

Let us consider the pattern (λn+1)↓k. The kth point from the left in λn+1
corresponds to U(k−1,n), so that

(λn+1)↓k = Perm
(
{Uj , 0 ⩽ j ⩽ n} \ {U(k−1,n)}, <, ≺

)
.

To show that this is also λn, we need to show that Un and U(k−1,n) compare in the
same way with other Uj ’s (j ⩽ n), both for the natural order < and for the random
order ≺.

The case of the natural order < is trivial by definition of the ordered statistics,
since Un = U(k,n). Consider the random order ≺. Since Un = U(k,n), the element
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Un is the U with smallest index in the interval (U(k−1,n), Un], i.e. iU(k−1,n),Un
= n.

On the other hand, for j < n and Uj ̸= U(k−1,n), the interval IU(k−1,n),Uj contains
either Uj or U(k−1,n), so that iU(k−1,n),Uj < n. Applying Lemma 3.3, we then find
that iU(k−1,n),Uj

= iUj ,Un
< ∞, and U(k−1,n) and Un compare in the same way with

Uj in the order ≺, which is what we needed to show. Thus λn+1 verifies the first
condition in the characterization of (λn)Sn,Rn .

It remains to show that λn+1(k) < λn+1(k + 1) if Sn = ⊕, (resp. λn+1(k) >
λn+1(k + 1) if Sn = ⊖). We consider the case Sn = ⊕. Since the kth and (k + 1)st

points from the left in λn+1 correspond to U(k−1,n) and Un respectively, it suffices
to show that U(k−1,n) ≺ Un. This follows from the fact that iU(k−1,n),Un = n (see
above) and the assumption Sn = ⊕ (recall that U(k−1,n) < Un for the natural
order).

We have proved that λn+1 verifies the second condition in the characterization
of (λn)Sn,Rn

, implying λn+1 = (λn)Sn,Rn
, as desired. □

Proposition 3.9. — The permutations (λn)n ⩾ 1 are recursive separable per-
mutations. In other words,

(λn)n ⩾ 1
d= (σ(n),p)n ⩾ 1.

Proof. — We start with the following observation.
• To compare Uj and Uk in the order ≺, we need to look at the sign SiUj ,Uk

.
If j, k < n and Uj ̸= Uk, then the interval IUj ,Uk

contains either Uj or Uk,
and thus iUj ,Uk

< n. Therefore, the restriction of ≺ to {U0, . . . , Un−1}
only depends on the restriction of the natural order < to {U0, . . . , Un−1}
and on the signs S1, . . . , Sn−1. Consequently, the tuple of permutations
(λ1, . . . , λn) only depends on this data as well.

• On the other hand, Rn describes how Un fits into the gaps of the set
{U0, . . . , Un−1}, and is independent of its order structure.

Therefore the random variables (λ1, . . . , λn), Sn, and Rn are independent. Com-
bining this with Proposition 3.8, this implies that (λn)n ⩾ 1 is a Markov process and
we can compute its transition kernel. If π and τ are permutations of n and n + 1
respectively, one has

P (λn+1 = τ | λn = π) =
n∑

j=1

∑
s ∈ {⊕,⊖}

1 (πs,j = τ)P (Rn = j, Sn = s)

=
n∑

j=1

(
p

n
1 (π⊕,j = τ) + 1 − p

n
1 (π⊖,j = τ)

)
= P

(
σ(n+1), p = τ

∣∣∣σ(n), p = π
)

Since (λn)n ⩾ 1 and (σ(n), p)n ⩾ 1 are both Markov chains with the same transition
kernel and the same initial distribution (λ1 and σ(1), p are both equal to the unique
permutation of 1 a.s.), they have the same distribution. □

The following result is the last one in this section. Here, we show that our
permutation model satisfies another type of recursion, referred to as consistency.
It is not needed for the convergence argument, but it is useful in the next section
for studying the expected pattern densities of µrec

p .
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Proposition 3.10. — The sequence (λn)n ⩾ 1 is a consistent family of random
permutations, in the sense of [6, Definition 2.8]: namely, for n ⩾ 1, the permutation
obtained by removing a uniformly random point from λn+1 is distributed as λn.

Proof. — To avoid repetition, let us take the following convention throughout
the proof: each new random variable introduced in this proof should be assumed
to be independent of all previously defined random variables.

The n = 1 case of the proposition is trivial. Proceeding by induction, we fix
n > 1 and assume that the result holds for n − 1. Let j be a uniformly random
integer in {1, . . . , n + 1} and A be the event {Rn ⩽ j ⩽ Rn + 1}. As we will show
later, the following statements hold:

(i) λn is independent of A,
(ii) λ↓j

n+1 = λn on A, and
(iii) conditionally given Ac, λ↓j

n+1 is distributed as λn.

The result follows from these statements. Indeed, if τ is a permutation of n, then

P
(

λ↓j
n+1 = τ

)
= P

(
λ↓j

n+1 = τ |Ac
)
P(Ac) + P

(
λ↓j

n+1 = τ |A
)
P(A).

Provided that (iii) holds, we have P(λ↓j
n+1 = τ |Ac) = P(λn = τ), while (i), (ii)

would imply P(λ↓j
n+1 = τ |A) = P(λn = τ |A) = P(λn = τ). Therefore, given (i), (ii),

(iii), one has

P
(

λ↓j
n+1 = τ

)
= P(λn = τ)P(Ac) + P(λn = τ)P(A) = P(λn = τ).

It remains, then, to verify the above statements. As explained in the proof
of Proposition 3.9, λn is independent from Rn. Moreover, by construction, j is
independent from (λn, Rn). Thus λn is independent from (j, Rn) and hence from
the event A, proving (i).

Moreover it follows from Proposition 3.8 that, a.s., λ↓Rn

n+1 = λ↓Rn+1
n+1 = λn, imply-

ing (ii). For the third statement, we introduce the random variables
X = j − 1(j > Rn),
Y = Rn − 1(Rn > j).

Using Proposition 3.8 and an obvious commutation relation between the operator
↓ j and (·)s,k, we have

λ↓j
n+1 =

(
(λn)Sn,Rn

)↓j =
(
λ↓X

n

)
Sn,Y

, on Ac.

Notice also that Sn, λn, X, and Y are mutually independent given Ac, Sn and λn are
independent of Ac, X is uniformly distributed in {1, . . . , n} conditionally given Ac,
and Y is uniformly distributed in {1, . . . , n−1} conditionally given Ac. Therefore,
the conditional distribution of (Sn, λn, X, Y ) given Ac is exactly the distribution
of (Sn, λn, k, ℓ), where k is a uniformly random integer in {1, . . . , n} and ℓ is a
uniformly random integer in {1, . . . , n − 1}. Recalling from Proposition 3.9 that
λn−1, Sn−1, and Rn−1 are mutually independent and making use of the induction
hypothesis, we find that conditionally given Ac,

λ↓j
n+1 =

(
λ↓X

n

)
Sn,Y

d=
(
λ↓k

n

)
Sn,ℓ

d= (λn−1)Sn−1,ℓ

d= λn.

This establishes the third fact and concludes the proof. □
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3.6. The convergence argument.
Proof of Theorem 1.2. — We recall that the event

E =

(Uj)j ⩾ 1 are distinct, sup
x ∈ [0,1]

∣∣∣∣∣∣x − 1
n

n∑
j=1

1 (Uj ⩽ x)

∣∣∣∣∣∣ −−−−→
n → ∞

0


holds almost surely. Also, since the permutations (λn)n ⩾ 1 are recursive separable
permutations (see Proposition 3.9),

it suffices to show the permuton convergence
µλn −−−−→

n → ∞
µrec

p on E .

Making use of (2.1), the identity µrec
p = ( · , ϕ( · ))# Leb, and Proposition 2.1, we

can reformulate this convergence as the convergence of functions
fλn

−→ ϕ in L1[0, 1] on E .

We will establish this convergence by showing that fλn
→ ϕ pointwise almost

everywhere in [0, 1] whenever E occurs.
To this end, fix x ∈ (0, 1] \ {Uj}j ⩾ 1 and suppose that E occurs. Since x > 0, the

quantity ⌈nx⌉ lies in {1, . . . , n} and we can write

|fλn(x) − ϕ(x)| ⩽
∣∣fλn(x) − Pn

({
y : y ≺ U(⌈nx⌉−1,n−1)

})∣∣
+
∣∣Pn

({
y : y ≺ U(⌈nx⌉−1,n−1)

})
− ϕ

(
U(⌈nx⌉−1,n−1)

)∣∣
+
∣∣ϕ (U(⌈nx⌉−1,n−1)

)
− ϕ(x)

∣∣ . (3.10)
Corollary 3.6(ii) tells us that the second term above will converge to zero as n → ∞.
The third term also converges to zero: indeed, Proposition 3.2 implies that∣∣x − U(⌈nx⌉−1,n−1)

∣∣ ⩽ ∣∣x − U(⌈nx⌉,n−1)
∣∣+
∣∣U(⌈nx⌉,n−1) − U(⌈nx⌉−1,n−1)

∣∣
⩽
∣∣x − U(⌈nx⌉,n−1)

∣∣+ ∆n−1

−−−−→
n → ∞

0,

and ϕ is continuous at x (see Proposition 3.7(iii)). It only remains, then, to show
that the first term in the upper bound (3.10) also converges to zero. This follows
from the definition of λn and Eq. (2.3), which allows us to write

fλn
(x) = λn(⌈nx⌉)

n
= 1

n
+ 1

n

n−1∑
j=0

1
(
Uj ≺ U(⌈nx⌉−1, n−1)

)
= 1

n
+ Pn

({
y : y ≺ U(⌈nx⌉−1,n−1)

})
.

Hence, whenever E occurs, for any x ∈ (0, 1] \ {Uj}j ⩾ 1, the quantity fλn
(x) tends

to ϕ(x). This concludes the proof. □

4. Properties of the recursive separable permuton

4.1. Self-similarity. Fix p ∈ (0, 1). We recall informally the definition of Φp from
the introduction. If µ is a random permuton, then Φp(µ) is the random permuton
obtained as follows.

• We let U and S be independent random variables, U being uniform in [0, 1]
and S being ⊕ with probability p and ⊖ with probability 1 − p.
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• We construct Φp(µ) by juxtaposing two independent copies µ0 and µ1 of
µ, where µ0 is scaled by a factor U , while µ1 is scaled by a factor 1 − U .
If S = ⊕, we put µ0 below and on the left of µ1, while, if S = ⊖, we put
µ0 above and on the left of µ1.

The goal of this section is to prove Proposition 1.6, which states that the law of
µrec

p is the unique probability distribution invariant by Φp.
We first prove the uniqueness of such an invariant probability distribution. For

this, we see, with a small abuse of notation, Φp as a map from the set M1(P)
of probability measures on the set P of permutons to itself. Both P and M1(P)
are endowed with the first Wasserstein distance; to avoid confusion, we will use a
boldface notation dW for the distance on M1(P) and a standard dW for that on P.

Lemma 4.1. — The map Φp : M1(P) → M1(P) is a contraction with Lipschitz
constant at most 2/3.

Proof. — Let P and Q be two probability measures on the set P of permutons
and call d := dW (P,Q) their Wasserstein distance. Fix ε > 0. By definition
of Wasserstein distance, one can find random permutons µ and ν on the same
probability space such that µ has distribution P, ν has distribution Q and

E(dW (µ, ν)) < d + ε.

We consider two independent copies (µ0, ν0) and (µ1, ν1) of the pair (µ, ν). We
also consider a single pair (U, S), where U is a uniform random variable in [0, 1] and
S a random sign with P(S = ⊕) = p, such that U and S are independent from each
other and from (µ0, ν0) and (µ1, ν1). By definition of Φp, the measure Φp(P) (resp.
Φp(Q)) is the distribution of the random permuton µ0 ⊗(U,S) µ1 (resp. ν0 ⊗(U,S) ν1).
Therefore

dW (Φp(P), Φp(Q)) ⩽ E
(
dW (µ0 ⊗(U,S) µ1, ν0 ⊗(U,S) ν1)

)
. (4.1)

It is straightforward to see that, a.s.,

dW

(
µ0 ⊗(U,S) µ1, ν0 ⊗(U,S) ν1

)
⩽ U2dW

(
µ0, ν0

)
+ (1 − U)2dW

(
µ1, ν1

)
, (4.2)

where the factor U2 is explained by the rescaling of distances and of weights of µ0,
both by a factor U in the construction of µ0 ⊗(U,S) µ1 (and similarly the factor
(1 − U)2 comes from the rescaling of distances and weigths in µ1 by 1 − U). From
Eqs. (4.1) and (4.2), using the independence of U from (µ0, ν0) and (µ1, ν1) and
the equality (µ0, ν0) d= (µ1, ν1), we get

dW

(
Φp(P), Φp(Q)

)
⩽ E

(
U2 + (1 − U)2)E(dW

(
µ0, ν0

))
< 2

3 (d + ε).

Since this holds for any ε > 0, we have

dW

(
Φp(P), Φp(Q)

)
⩽ 2

3 d = 2
3 dW (P,Q).

This proves the lemma. □

Lemma 4.1 implies in particular the existence and uniqueness of a probability
measure Pp on the set of permutons such that Pp = Φp(Pp). We still need to
identify Pp with the distribution of the recursive separable permuton µrec

p . To do
this, we first show that the recursive separable permutations exhibit self-similarity
and then use Theorem 1.2 to carry this property over to the limit. It might be
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possible to establish the self-similarity of the permuton directly, but we think that
the self-similarity of the permutations is of its own interest.

Below, we denote the distribution of a random variable X by Law(X). In addi-
tion, we use the notion of skew sums and direct sums of permutations introduced
in Section 1.3.2.

Proposition 4.2. — Let (σ(n),p)n ⩾ 1, (τ (n),p)n ⩾ 1 and (ρ(n),p)n ⩾ 1 be indepen-
dent copies of the permutation process defined in Section 1.1, and let I be a uniform
integer in {1, . . . , n − 1}. Then, for any fixed n ⩾ 1, we have

Law(σ(n),p) = p Law
(

τ (I),p ⊕ ρ(n−I),p
)

+ (1 − p) Law
(

τ (I),p ⊖ ρ(n−I),p
)

.

We note that this is an equality for fixed n ⩾ 1, and it does not extend to a
recursive description of the law of the process (σ(n),p)n ⩾ 1.

Proof. — For n = 2, we have σ(2),p = 12 with probability p and σ(2),p = 21 with
probability 1 − p. We will show that conditionally on σ(n),p = 12, we have

Law
(

σ(n),p
∣∣∣σ(2),p = 12

)
= Law

(
τ (I),p ⊕ ρ(n−I),p

)
. (4.3)

We recall that (σ(n),p)n ⩾ 1 is defined recursively via inflation operations, where
one point is replaced by two adjacent points (either in ascending or descending
positions). In such operations, we will think at the two new points as the “children”
of the point they replace. This defines an ascendant/descendant relation on the set
of points of all σ(n),p for n ⩾ 1.

In particular, points in σ(n),p can be split in two parts, defined as the descendants
of the points 1 and 2 in σ(2),p. Let us call τ , resp. ρ, the pattern formed the
descendants of 1, resp. 2. Since points are always replaced by pairs of adjacent
points, when σ(2),p = 12, we have σ(n),p = τ ⊕ ρ. Conditionally of its size, which
we call k, the permutation τ has the same distribution as τ (k),p since it is obtained
from 1 by successive random inflations. Similarly, ρ has the same distribution as
ρ(n−k),p. Moreover, both are independent conditionally on k.

Therefore, the only remaining thing to be proven in order to establish (4.3) is
that k is uniformly distributed in {1, . . . , n − 1}. Letting Ij being the number of
descendants of 1 in σ(j),p, we see that (Ij)j ⩾ 1 has the Markov property and{

P (Ij = k | Ij−1 = k − 1) = k−1
j−1

P (Ij = k | Ij−1 = k) = j−1−k
j−1

Using this and the base case I2 = 1 a.s., an immediate induction shows that, for any
j ⩾ 2, the random variable Ij is uniformly distributed in {1, . . . , j −1} (we remark
that this is a basic model of Pólya urn.) This concludes the proof of Eq. (4.3).

With similar arguments, one can prove

Law
(

σ(n),p
∣∣∣σ(2),p = 21

)
d= Law

(
τ (I),p ⊖ ρ(n−I),p

)
. (4.4)

Since P(σ(n),p = 12) = p = 1 − P(σ(n),p = 21), the proposition follows from
Eqs. (4.3) and (4.4). □

Proof of Proposition 1.6. — Taking the limit n → +∞ in Proposition 4.2 gives
µrec

p
d= Φp(µrec

p ) (recall from Theorem 1.2 that σ(n),p converge a.s., and hence in
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distribution to µrec
p ). The uniqueness statement in Proposition 1.6 follows from

Lemma 4.1. □

4.2. Expected pattern densities.
Proof of Proposition 1.7. — From Proposition 3.10, we know that (σ(n),p)n⩾1

is a consistent family of random permutations. By [6, Proposition 2.9], there exists
a random permuton µ such that σ(n),p converge to µ in distribution and, for each
n ⩾ 1, the random permutation Sample(µ, n) has the same distribution as σ(n),p.
On the other hand, σ(n),p converges almost surely to µrec

p (Theorem 1.2), so µ and
µrec

p must be equal in distribution. Therefore,

σ(n),p d= Sample(µ, n) d= Sample
(
µrec

p , n
)

, n ⩾ 1.

Together with [6, Theorem 2.5], this implies that

E
[
dens

(
π, µrec

p

)]
= P

[
Sample

(
µrec

p , n
)

= π
]

= P
[
σ(n),p = π

]
, π ∈ Sn.

This proves the first part of Proposition 1.7.
For the second part, we associate with a realization of the random sequence

(σ(k),p)k ⩽ n a (rooted binary increasing decorated) tree Tn such that Perm(Tn) =
σ(n),p (where we use the map Perm from trees to permutations introduced in Sec-
tion 1.3.2). We proceed by induction on n. For n = 1, the tree T1 is reduced to
a single leaf. For n ⩾ 1, assume that Tn is constructed and that in the sampling
process for σ(n+1),p (Section 1.1), we have chosen some integer j and some sign s
(where s = ⊕ means that j is replaced by j j+1 and s = ⊖ means that j is replaced
by j+1 j). Then Tn+1 is obtained by replacing the jth leaf of Tn by an internal node
with label n and decoration s, with two children which are leaves. It can be verified,
using the induction hypothesis Perm(Tn) = σ(n),p, that Perm(Tn+1) = σ(n+1),p. In-
formally, Tn encodes the history of the construction of σ(n),p. An example is given
on Figure 4.1.

+

+

++

−

−

−

2

3

4

5

6

7

1

Figure 4.1. A realization of the process (σ(k),p)k ⩽ 8 and the as-
sociated tree T8. Colors indicate points which have been selected
for inflation at each step, and the internal node created in the cor-
responding step in the construction of Tn.
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The above construction yields a random tree Tn living in the same probability
space as (σ(k),p)k ⩽ n. For a fixed (rooted binary increasing decorated) tree T , the
event Tn = T amounts to making specific choices of integers j and signs s at each
step of the construction of (σ(k),p)k ⩽ n. Thus we have

P[Tn = T ] = 1
(n − 1)!p

⊕(T )(1 − p)⊖(T ),

where ⊕(T ) and ⊖(T ) denote the number of ⊕ decorations and ⊖ decorations in T
respectively. Since Perm(Tn) = σ(n),p, this implies that for a given permutation π
of n,

P
[
σ(n),p = π

]
= 1

(n − 1)!
∑

T :Perm(T )=π

p⊕(T )(1 − p)⊖(T ).

But an immediate inductive argument shows that whenever Perm(T ) = σ, we have
⊖(T ) = des(σ), and consequently ⊕(T ) = n − 1 − des(σ). Therefore, all terms in
the above sum are equal, and we obtain

P
[
σ(n),p = π

]
= Ninc(π)

(n − 1)! (1 − p)des(π) pn−1−des(π). □

4.3. Intensity measure. Recall that the intensity measure of µrec
p , denoted Iµrec

p ,
is a probability measure on [0, 1]2 defined as follows: for all Borel subsets A of
[0, 1]2, we have Iµrec

p (A) = E[µrec
p (A)]. The goal of this section is to compute this

intensity measure. We start with a lemma.
Lemma 4.3. — The intensity measure Iµrec

p of the recursive separable permuton
is the distribution of (U, ϕ(U)), where U is a uniform random variable in [0, 1], ϕ is
the random function of Section 3.2, and U and ϕ are independent from each other.

Proof. — For any function f , we denote f2 the map x 7→ (x, f(x)). Then, for
any measurable set A ⊂ [0, 1]2, we have

µf (A) = Leb
(
f−1

2 (A)
)

=
∫ 1

0
1[(x, f(x)) ∈ A]dx = E

[
1[(U, f(U)) ∈ A]

]
,

where U is a uniform random variable in [0, 1]. Recalling that µrec
p = µϕ, where ϕ

the random function of Section 3.2, we have
Iµrec

p (A) = E[µϕ(A)] = E
[
1[(U, ϕ(U)) ∈ A]

]
,

where in the first expectation, only ϕ is random but, in the second one, both U and
ϕ are random, independent from each other. This proves the lemma. □

Remark 4.4. — A similar statement (proved in the same way) for the Brownian
separable permuton is given in [20, Lemma 6.1], and serves as a basis of Maazoun’s
computation of the intensity measure of the Brownian separable permuton.
4.3.1. Distributional equations. To go further, we consider the following map Ψp

from the set M1([0, 1]) of probability measures on [0, 1] to itself. If ν is a probability
measure on [0, 1], we let X be a r.v. with distribution ν, and set

Y = V · B + (1 − V ) · X,

where B is a Bernoulli variable with parameter p, V is a uniform random variable
in [0, 1], and the two are independent from each other and from X. We then define
Ψp(ν) as the distribution of Y .
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Lemma 4.5. — The equation ν = Ψp(ν) has a unique solution in M1([0, 1]).

This solution will be denoted νp from now on.
Proof. — We will prove that Ψp is a contracting map from M1([0, 1]) to itself,

when we equip it with the first Wasserstein metric. Namely, we let ν1 and ν2 be
two probability measures of [0, 1] and we shall prove that

dW,1
(
Ψp(ν1), Ψp(ν2)

)
⩽ 1

2 dW,1
(
ν1, ν2

)
. (4.5)

Fix ε > 0 and choose r.v. (X1, X2) on the same probability space such that

E
[

|X1 − X2|
]
⩽ dW,1

(
ν1, ν2

)
+ ε.

We then take a Bernoulli variable B with parameter p and a uniform random
variable V in [0, 1], independent from each other and from (X1, X2). We set

Y1 = V · B + (1 − V ) · X1, Y2 = V · B + (1 − V ) · X2.

Note that the variables V and B used to define Y1 and Y2 are the same. We have

E
[

|Y1 − Y2|
]
⩽ E

[
|1 − V | · |X1 − X2|

]
⩽ 1

2E
[

|X1 − X2|
]
⩽ 1

2 dW,1
(
ν1, ν2

)
+ 1

2 ε.

The random variables Y1 and Y2 are defined on the same probability space, and
have distributions Ψp(ν1) and Ψp(ν2) respectively. By definition of the Wasserstein
distance, we have

dW,1
(
Ψp(ν1), Ψp(ν2)

)
⩽ E

[
|Y1 − Y2|

]
⩽ 1

2 dW,1
(
ν1, ν2

)
+ 1

2 ε.

Since this holds for any ε > 0, we have proved Eq. (4.5). We conclude with Banach
fixed point theorem that Ψp has exactly one fixed point, concluding the proof of
the lemma. □

Proposition 4.6. — The intensity measure Iµrec
p of the recursive separable

permuton is the distribution of

(U, UXp + (1 − U)X1−p) ,

where U , Xp and X1−p are independent r.v. with distribution Leb([0, 1]), νp and
ν1−p distribution respectively.

Proof. — From Lemma 4.3, Iµrec
p is the distribution of (U, ϕ(U)), where U is

a uniform random variable in [0, 1] and ϕ the random mapping constructed in
Section 3.2. We write ϕ(U) = Y1 + Y2, with{

Y1 = Leb
(
{y : (y < U) ∧ (y ≺ U)

)
;

Y2 = Leb
(
{y : (y > U) ∧ (y ≺ U)

)
;

In each of these equations, the first comparison is for the natural order on [0, 1],
while the second is for the random order ≺.

We shall describe the distribution of Y2, conditionally on U . Let V1 be the first Ui

larger than U , “first” meaning here the one with smallest index. We then denote V2
to be the first Ui between U and V1 and define V3, V4 . . . similarly. Clearly, setting
for convenience V0 = 1, we have

(Vj+1 − U)j ⩾ 0
d= (Tj+1 (Vj − U))j ⩾ 0 ,
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where (T1, T2, · · · ) is a sequence of i.i.d. uniform random variable in [0, 1], indepen-
dent from U . This implies

(Vj)j ⩾ 0
d=
(
U + (1 − U)T1 · · · Tj

)
j ⩾ 0.

Each Vj inherits a sign, i.e. if Vj = Ui, we set Σj = Si. By construction, if Σj = ⊖,
every y in the interval [Vj , Vj−1] satisfies y ≺ U . On the other hand, Σj = ⊕, every
y in the interval [Vj , Vj−1] satisfies y ≻ U . Hence

Y2 =
∑

j ⩾ 1: Σj=⊖

(Vj−1 − Vj) = (1 − U)
∑

j ⩾ 1: Σj=⊖

T1 · · · Tj−1 (1 − Tj) .

Setting Ỹ 2 = Y2/(1 − U) and interpreting ⊕ as 1 and ⊖ as 0, we have

Ỹ 2 = (1 − Σ1)(1 − T1) + T1

 ∑
j ⩾ 2: Σj=⊖

T2 · · · (1 − Tj)

 .

Note that Ỹ 2 is independent from U . Moreover, the variable 1 − Σj is a Bernoulli
r.v. of parameter 1−p, while T1 is uniform in [0, 1]. Finally, the sum in parentheses
has the same distribution as Ỹ 1, and is independent from Σ1 and T1. This shows
that the distribution of Ỹ 2 is a fixed point of Ψ1−p. From Lemma 4.5, Ỹ 2 has
distribution ν1−p.

With similar arguments, one can show that Y1 = UỸ 1, where Ỹ 1 has distribution
νp and is independent from U (and from Ỹ 2). This ends the proof of the proposition.

□

4.3.2. Explicit formulas for densities.

Lemma 4.7. — The unique solution νp of the equation νp = Ψ(νp) is the beta
distribution of parameters (p, 1 − p). Explicitly it is given by

νp(dx) = 1
Γ(p) Γ(1 − p)xp−1(1 − x)−p dx,

where Γ is the usual gamma function.

Proof. — Let X be a random variable with distribution Beta(p, 1 − p), and set
Y = V ·B +(1−V ) X, where B and V are as above. We want to show that Y

d= X,
which would imply the distribution of X is a fixed point of Ψ as wanted.

Let f be a continuous function on [0, 1]. Setting Z = Γ(p) Γ(1 − p), we have

E[f(Y )] = p

Z

∫
[0,1]2

f
(
v + (1 − v)x

)
xp−1(1 − x)−p dvdx

+ 1 − p

Z

∫
[0,1]2

f
(
(1 − v)x

)
xp−1(1 − x)−p dvdx

= p

Z

∫ 1

0
f(u)

(∫ u

0
xp−1(1 − x)−p−1dx

)
du

+ 1 − p

Z

∫ 1

0
f(u)

(∫ 1

u

xp−2(1 − x)−pdx

)
du.

(4.6)

(In the first integral, we have performed the change of variables u = v + (1 − v)x,
yielding dv = dx

1−x ; in the second, we set u = (1 − v)x, yielding dv = du
x .)
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We claim that there exists a constant A in R, such that, for every u in (0, 1),

p

∫ u

0
xp−1(1 − x)−p−1dx + (1 − p)

∫ 1

u

xp−2(1 − x)−pdx = up−1(1 − u)−p + A.

Indeed, one checks easily that both sides have the same derivative. With this
equality in hand, (4.6) rewrites as

E[f(Y )] = 1
Z

∫ 1

0
f(u)up−1(1 − u)p−1du + A

Z

∫ 1

0
f(u)du

= E[f(X)] + A

Z

∫ 1

0
f(u)du.

Choosing for f the function constant equal to 1 shows that necessarily A = 0. Thus
we have that E[f(Y )] = E[f(X)] for any continuous function f of [0, 1], implying
that X and Y have the same distribution. This ends the proof of the Lemma 4.7. □

Propostion 4.6 and Lemma 4.7 imply Proposition 1.9. It remains to prove Corol-
lary 1.10.

Proof of Corollary 1.10. Let f be a continuous function from [0, 1]2 to R. From
Proposition 1.9, we have

Γ(p)2Γ(1 − p)2
∫

f(x, y) Iµrec
p (dx, dy)

=
∫

[0,1]3
f
(
u, ua + (1 − u)b

)
du ap−1(1 − a)−pda b−p(1 − b)p−1db

We perform the change of variable
x = u; y = ua + (1 − u)b; z = ua

This maps bijectively the (u, a, b)-domain [0, 1]3 to the set{
(x, y, z) : max(x + y − 1, 0) ⩽ z ⩽ min(x, y)

}
.

The Jacobian matrix of the transformation is

J := ∂(x, y, z)
∂(u, a, b) =

 1 0 0
a − b u 1 − u

a u 0

 ,

whose determinant satisfies | det(J)| = u(1 − u) = x(1 − x). Therefore we have

Γ(p)2Γ(1 − p)2
∫

f(x, y) Iµrec
p (dx, dy) =

∫
[0,1]2

[
f(x, y)·

·

(∫ min(x,y)

max(x+y−1,0)

(
z
x

)p−1(1 − z
x

)−p ( y−z
1−x

)−p(1 − y−z
1−x

)p−1
dz

)
dx dy

x(1 − x)

]
.

After elementary simplifications, we get

Γ(p)2Γ(1 − p)2
∫

f(x, y) Iµrec
p (dx, dy) =

∫
[0,1]2

[
f(x, y)

·

(∫ min(x,y)

max(x+y−1,0)

dz

z1−p(x − z)p(y − z)p(1 − x − y + z)1−p

)
dx dy

]
.
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This proves Corollary 1.10. □

4.4. Mutual singularity of the limiting permutons. In this section, we prove
Proposition 1.3 in two independent steps. First, we prove the singularity of sepa-
rable Brownian or recursive separable permutons associated with different values p
and q of the parameter. Then we compare specifically Brownian and recursive sep-
arable permutons µrec

p and µBr
p , associated with the same value p of the parameter.

Before starting the proof, let us recall, more formally than in Remark 3.1, the
construction of µBr

p , as given in [20]. We start with a Brownian excursion e on [0, 1]
and a sequence (Sm)m∈Min(e) of signs indexed by local minima of e. Conditionally
on e, the variables (Sm)m∈Min(e) are i.i.d. with distribution

P(Sm = ⊕) = p = 1 − P(Sm = ⊖).

Given such a sequence we define a partial order ≺Br as follows: for x < y in [0, 1],
we let m be the position of the minimum of e on the interval [x, y] and set{

x ≺Br y if Sm = ⊕;
y ≺Br x if Sm = ⊖.

Note that, if m ∈ {x, y}, then m might not be a local minimum, in which case Sm

is ill-defined and x and y are incomparable by convention. This happens only for a
measure 0 subset of pairs (x, y) (w.r.t. Lebesgue measure).

The rest of the construction is then similar to that of the recursive separable
permuton: we define

ϕBr(x) = Leb({y ∈ [0, 1] : y ≺Br x}),

and let µBr
p be the push-forward of the Lebesgue measure on [0, 1] by the map

x 7→ (x, ϕBr(x)).

4.4.1. Comparing permutons with different values of p. We recall from Section 1.3.2
that given a permuton µ and an integer n ⩾ 1, we can define a random permu-
tation Sample(µ, n) by sampling independent points according to µ. Also, for a
permutation π, we let des(π) be its number of descents. We start with a lemma.

Lemma 4.8. — Let p be in (0, 1). Then the random variable

Dn = Dn(µrec
p ) := 1

n − 1E
[
des
(
Sample

(
µrec

p , n
)) ∣∣µrec

p

]
.

converges to 1 − p a.s. Moreover, the same holds replacing µrec
p by µBr

p .

Proof. — We have

E(Dn) = 1
n − 1E

[
des
(
Sample

(
µrec

p , n
))]

.

From the proof of Proposition 1.7, the permutation Sample(µrec
p , n) has the same

distribution as the permutation represented by a uniform random increasing binary
tree Tn, where each internal node is decorated with ⊕ independently with proba-
bility p. As already observed, if π is encoded by a binary decorated tree T , then
des(π) is the number of ⊖ signs in T . Hence des(Sample(µrec

p , n)) is the number of
minus signs in Tn, and its law is that of a binomial random variable Bin(n−1, 1−p).
We deduce that E(Dn) = 1 − p.
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To get a.s. convergence, we consider the fourth centered moment of Dn. We
have, using Jensen’s inequality for conditional expectation,

E
[
(Dn − (1 − p))4] = E

[
E
(

1
n−1 des

(
Sample

(
µrec

p , n
))

− (1 − p)
∣∣µrec

p

)4
]

⩽ E
[
E
[(

1
n−1 des

(
Sample

(
µrec

p , n
))

− (1 − p)
)4∣∣∣µrec

p

]]
= E

[(
1

n−1 des
(
Sample

(
µrec

p , n
))

− (1 − p)
)4
]
.

The expectation in the right-hand side is the centered fourth moment of the average
of n−1 independent Bernoulli random variables of parameter 1−p, which is known
to behave as O(n−2). We get that

E
[
(Dn − (1 − p))4] = O(n−2),

and hence it is a summable quantity. By a classical application of Borel–Cantelli
lemma, this implies that Dn converges a.s. to 1 − p.

The proof for the Brownian separable permuton is similar. Indeed, from [20,
Definition 2], we know that the quantity des(Sample(µBr

p , n)) is also distributed as
a binomial random variable Bin(n − 1, 1 − p). □

Corollary 4.9. — If p ̸= q are in (0, 1), then µrec
p and µrec

q are mutually sin-
gular. The same holds, replacing either µrec

p or µrec
q , or both, by µBr

p or µBr
q .

Proof. — Let Ep be the set of permutons µ such that

Dn(µ) = 1
n − 1E

[
des(Sample(µ, n))

]
converges to 1 − p (we do not take a conditional expectation here, since µ is de-
terministic). By Lemma 4.8, µrec

p and µBr
p belongs to Ep a.s. Since Ep and Eq are

disjoint for p ̸= q, the corollary follows. □

4.4.2. Comparing the Brownian and recursive separable permutons with the same
parameter. We now want to prove that µrec

p and µBr
p are singular. Since both

Dn(µrec
p ) and Dn(µBr

p ) converge to the same value 1−p a.s., we need to find another
distinguishing feature. We will prove that in the Brownian separable permuton, all
corners of the square a.s. carry some mass, which is not the case for the recursive
separable permuton.

To this end, for ε > 0, we introduce the following events (we recall that P is the
set of permutons):

BLε =
{

µ ∈ P : µ([0, ε]2) > 0
}

TLε =
{

µ ∈ P : µ([0, ε] × [1 − ε, 1]) > 0
}

.

In words, BLε is the set of permutons that have some mass in an ε-neighbourhood
of the bottom-left corner; TLε is the same using the top-left corner.

We now prove two lemmas, showing that the Brownian and recursive separa-
ble permutons behave differently with respect to these events. We start with the
recursive separable permuton.

Lemma 4.10. — Fix p ∈ (0, 1) and ε > 0. We have
P
(
µrec

p ∈ BLε ∩ TLε

)
⩽ 2ε.
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Proof. — We recall the construction of µrec
p from Section 3.2, and use the nota-

tion introduced there.
We temporarily assume that U1 is in (ε, 1 − ε) and that S1 = ⊕. We consider

some x < ε. For any y ⩾ U1, we have U1 ∈ (x, y], and therefore ix,y = 1 with the
notation of Section 3.2. Since x < y and S1 = ⊕, this implies x ≺ y. Taking the
contraposition, y ≺ x implies y < U1. Therefore,

ϕ(x) = Leb({y ∈ [0, 1] : y ≺ x}) ⩽ Leb({y ∈ [0, 1] : y < U1} ⩽ U1 < 1 − ε.

Thus there does not exists x such that (x, ϕ(x)) ∈ [0, ε] × [1 − ε, 1]. Consequently,
under the assumptions U1 ∈ (ε, 1 − ε) and S1 = ⊕, we have

µrec
p ([0, ε] × [1 − ε, 1]) = 0, or equivalenlty, µrec

p /∈ TLε .

Similarly, one can prove that, if U1 is in (ε, 1 − ε) and S1 = ⊖, then µrec
p /∈ BLε.

Therefore we have
P
(
µrec

p ∈ BLε ∩ TLε

)
⩽ P

(
U1 /∈ (ε, 1 − ε)

)
⩽ 2ε. □

Considering the Brownian separable permuton instead, we have the following.

Lemma 4.11. — Fix p ∈ (0, 1) and ε > 0. We have
P
(
µBr

p ∈ BLε

)
= 1.

Proof. — As recalled above, µBr
p can be constructed starting from a Brownian

excursion e and a sequence of signs (Sm)m ∈ Min(e) indexed by the (positions of) the
local minima of e. We fix a realization of e and S = (Sm)m ∈ Min(e) (and hence of
µBr

p ); most quantities below, including the random order ≺Br and the function ϕBr,
depend implicitly on e and S. Our first goal is to find a local minimum m0 of e,
such that Sm0 = ⊕, m0 < ε/2 and e(m0) < mint∈[m0,1−ε/2] e(t). Since the proof
involves quite a bit of notation, we illustrate it on Figure 4.2.

b

ε/2
x0x2 = m0t0

a0

a1
	

⊕

x1

Figure 4.2. Illustration of the notation involved in the proof of
Lemma 4.11. For readability, we have only represented an initial
segment of the Brownian excursion e. In the picture, we have
Sx1 = ⊖ so that we have to find another candidate x2 as explained
in the proof. This time we have Sx2 = ⊕ and we set m0 = x2.

We first let b = mint∈[ε/2,1−ε/2] e(t) and x0 = sup{t < ε/2 : e(t) = m}. A.s., we
can then find a0 < x0 such that e reaches its minimum on [a0, x0] somewhere in the
interior of this interval (if it was not the case, e would be increasing on an initial
segment [0, δ] for some δ, which is known to happen with probability 0). Let x1 be
the point where e is minimal on [a0, x0]. This is a local minimum, and therefore



RANDOM RECURSIVE SEPARABLE PERMUTATIONS 79

carries a sign Sx1 . If Sx1 = ⊕, we define m0 = x1, and we verify easily that it
satisfies the desired properties.

Otherwise, we iterate the process: a.s., we can then find a1 < x1 such that e
reaches its minimum on [a1; x1] somewhere in the interior of this interval. We call
x2 the point where this minimum is reached. If Sx2 = ⊕, we define m0 = x2. If not,
we iterate another time. Doing so, we will construct a sequence of local minima
x1, x2, . . . , and since the associated signs are i.i.d. and equal to ⊕ with positive
probability, we will eventually find xi with Sxi = ⊕. Then we set m0 = xi, and
verify easily that m0 satisfies the desired properties.

Having found m0, we look for the last time t0 before m0 with e(t0) = e(m0). By
construction, if we take x in (t0, m0) and y in (m0, 1 − ε/2) the minimum of e in
the interval [x, y] is reached in m0. Since Sm0 = ⊕, we have x ≺Br y, where ≺Br
is the order appearing in the construction of the Brownian separable permuton.
Therefore, for x in (t0, m0), we have

ϕBr(x) = Leb({y ∈ [0, 1] : y ≺Br x}) ⩽ 1 − Leb((m0, 1 − ε/2)) = m0 + ε/2 < ε.

Letting U be a uniform random variable in [0, 1], we have, a.s.,
µBr

p ([0, ε]2) = P
(
(U, ϕBr(U)) ∈ [0, ε]2|(e, S)

)
⩾ P

(
U ∈ (t0, m0)

∣∣ (e, S)
)

= m0 − t0 > 0;
(recall that m0 and t0 depends on (e, S) and thus are random variables themselves).
This proves the lemma. □

Corollary 4.12. — Fix p in (0, 1). Then the distributions of µrec
p and µBr

p are
mutually singular.

Proof. — We consider the decreasing intersection

E :=
⋂

ε > 0
(BLε ∩ TLε) .

From Lemma 4.10, we know that P
(
µrec

p ∈ E) = 0. On the other hand, Lemma 4.11
tells us that, for any ε > 0, we have

P
(
µBr

p ∈ BLε

)
= 1.

By symmetry, the same holds replacing BLε by TLε, and thus, for any ε > 0,
P
(
µBr

p ∈ BLε ∩ TLε

)
= 1.

Consequently, P(µrec
p ∈ E) = 1, proving the corollary. □

Remark 4.13. — The difference between recursive and Brownian separable per-
mutons which we exhibited in the proof can be observed on simulations. Figure 4.3
shows simulations of a random recursive separable permutation with parameter
p = 1/2 (on the left) and of a uniform random separable permutation (on the right),
both of size 1000. From the result of this paper and of [5], the corresponding lim-
iting permutons are the recursive and Brownian separable permutons, respectively,
each time of parameter p = 1/2. We see that in the Brownian case (picture on the
right), there are some points relatively close to each one of the four corners of the
square, which is not the case in the recursive case (picture on the left).

An informal explanation of that can also be given at the discrete level. As we
have seen, recursive separable permutations of size n are associated with uniform
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Figure 4.3. Diagram of random separable permutations of 1000:
on the left, the permutation has been generated via the recursive
algorithm given in Section 1.1; on the right it is a uniform random
separable permutation of size 1000 (sampled via the so-called re-
cursive method).

random labelled increasing binary trees (Section 4.2). It is known that in such
random trees, the two subtrees attached to the root splits both have macroscopic
size (this follows, for example, from the correspondence between increasing trees and
permutations; see, e.g., [15, Example II.7]). Hence σ(n),p = τ ⊕ ρ or σ(n),p = τ ⊖ ρ,
for some permutations τ and ρ of macroscopic sizes (this can also directly be seen
on Proposition 4.2). This explains why some corners of the permutation diagram
of σ(n),p are empty.

On the other hand, uniform random separable permutations of size n are as-
sociated with a uniform random Schroder tree (see [5]). In such a random tree,
among the subtree attached to the root, a single one of them contains most of the
vertices of the trees, the other ones having typically size O(1); see, e.g., the local
limit results given in [19]. Such unbalanced splits are repeated many times, with
signs either ⊕ and ⊖, before a macroscopic split arises, and this explains why we
find points in the permutation diagram near all corners of the square.
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