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NON-LOCAL APPROXIMATIONS OF THE GRADIENT

HAIM BREZIS AND PETRU MIRONESCU

Abstract. We revisit the proofs of a few basic results concerning non-local approximations
of the gradient. A typical such result asserts that, if (ρε) is a radial approximation to the
identity in RN and u belongs to a homogeneous Sobolev space Ẇ 1,p, then

Vε(x) := N

ˆ

RN

u(x + h) − u(x)
|h|

h

|h|
ρε(h) dh, x ∈ RN ,

converges in Lp to the distributional gradient ∇u as ε → 0.
We highlight the crucial role played by the representation formula Vε = (∇u) ∗ Fε, where

Fε is an approximation to the identity defined via ρε. This formula allows to unify the proofs
of a significant number of results in the literature, by reducing them to standard properties
of the approximations to the identity.

We also highlight the effectiveness of a symmetric non-local integration by parts formula.
Relaxations of the assumptions on u and ρε, allowing, e.g., heavy tails kernels or a

distributional definition of Vε, are also discussed. In particular, we show that heavy tails
kernels may be treated as perturbations of approximations to the identity.

1. A representation formula and applications

Let (ρε)0<ε<ε0 be a family functions on RN such that:

ρε is non-negative, integrable, radial, ∀ ε, (1.1)ˆ

RN

ρε=1, ∀ ε, (1.2)

lim
ε→ 0

ˆ

|h|>δ

ρε(h) dh = 0, ∀ δ > 0. (1.3)

Following Mengesha and Spector [7] (with roots in Bourgain, Brezis, and Mirone-
scu [1], Gilboa and Osher [6], Du, Gunzburger, Lehouck, and Zhou [5]; see also
a detailed list of references in [7, p. 254]), we set, for any measurable function
u ∈ L1

loc(RN ), and assuming that the integral below exists,
Vε(x) = Vε,u(x)

= Vε,u,ρε(x) := N

ˆ

RN

u(x+ h) − u(x)
|h|

h

|h|
ρε(h) dh, x ∈ RN . (1.4)

Vε may be seen as a non-local approximation of the gradient. Indeed (see Re-
mark 1.13), (i) when u is C1 and bounded, we have the pointwise convergence
Vε(x) → ∇u(x) as ε → 0, ∀ x ∈ RN ; (ii) when u is C1 and compactly supported,
we have Vε → ∇u uniformly.
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In what follows, we revisit the proofs of a few results establishing the validity of
the convergence

Vε → Du as ε → 0, (1.5)

in various functional settings. Many of these results were originally obtained, in
slightly different forms, in [7].

Before presenting the main results and methods, we make some easy observations
concerning the existence of Vε. Set

Wε(x) = Wε,u(x) = Wε,u,ρε
(x)

:=
ˆ

RN

|u(x+ h) − u(x)|
|h|

ρε(h) dh, x ∈ RN .

Clearly, the following holds.

Lemma 1.1. — Let u ∈ L1
loc(RN ) be such that Wε ∈ L1

loc(RN ). Then Vε is
well-defined a.e. and is measurable.

Moreover, we have |Vε| ⩽ N Wε a.e., and thus Vε ∈ L1
loc(RN ).

Remark 1.2. — In the above statements, the condition Wε,u ∈ L1
loc(RN ) seems

constraining. However, under the following assumption:

for every ε, there exist some δε, Rε > 0 such that
ρε(h) = 0 if |h| < δε or if |h| > Rε, (1.6)

we have Wε,u ∈ L1
loc(RN ), ∀ u ∈ L1

loc(RN ).
This is especially relevant for Propositions 2.2, 2.3, 2.5, 2.6, and 5.1 below.

We next present a sufficient condition for having Wε ∈ L1
loc(RN ) (and thus, by

Lemma 1.1, Vε ∈ L1
loc(RN )). For 1 ⩽ p < ∞, set

Iε,p = Iε,p,u = Iε,p,u,ρε
:=

ˆ

RN

ˆ

RN

|u(x+ h) − u(x)|p

|h|p
ρε(h) dxdh.

Lemma 1.3. — Assume (1.2). Let 1 ⩽ p < ∞ and u ∈ L1
loc(RN ). Then

∥Wε∥pLp(RN ) ⩽ Iε,p.
Consequently, if Iε,p < ∞, then Vε is well-defined a.e., measurable, and

∥Vε∥Lp(RN ) ⩽ N [Iε,p]1/p.

In the above and in what follows, the Lp-norms of vector fields F : RN → RN
are computed with respect to the Euclidean norm | |, i.e.,

∥F∥pLp(RN ) =
ˆ

RN

|F (x)|p dx.

Similarly, the mass of a measure F ∈ M (RN ;RN ) is computed with respect to
the Euclidean norm, i.e.,

∥F∥M (RN ) = sup


N∑
j=1

ˆ

RN

ζj dFj ; ζ ∈ C∞
c

(
RN ;RN

)
, |ζ(x)| ⩽ 1, ∀ x

 .
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Proof of Lemma 1.3. — The conclusion follows by integrating in x the inequality

[Wε(x)]p ⩽
ˆ

RN

|u(x+ h) − u(x)|p

|h|p
ρε(h) dh

 ˆ

RN

ρε(h) dh

p−1

=
ˆ

RN

|u(x+ h) − u(x)|p

|h|p
ρε(h) dh, ∀ x ∈ RN .

□

We now recall a few sufficient conditions for having Iε,p < ∞. Set

Ẇ 1,p:=
{
u ∈ D ′ (RN) ; Du ∈ Lp

(
RN
)}

=
{
u ∈ L1

loc

(
RN
)

; Du ∈ Lp
(
RN
)}
, 1 ⩽ p < ∞,

˙BV :=
{
u ∈ D ′ (RN) ; Du ∈ M

(
RN
)}

=
{
u ∈ L1

loc

(
RN
)

; Du ∈ M
(
RN
)}
.

In what follows, for u ∈ Ẇ 1,p, we denote the distributional gradient ∇u.
Let Kp,N :=

 
SN−1

|hj |p dσ(h) (which does not depend on j ∈ [[1, N ]]).
We have the following

Lemma 1.4 ([1]). — Assume (1.1).
(1) Let 1 ⩽ p < ∞ and u ∈ Ẇ 1,p. Then Iε,p ⩽ Kp,N ∥ρε∥L1(RN ) ∥∇u∥pLp(RN ).

In particular, Vε ∈ Lp(RN ) and

∥Vε∥Lp(RN ) ⩽ N [Kp,N ]1/p ∥ρε∥1/p
L1(RN ) ∥∇u∥Lp(RN ).

(2) Let u ∈ ˙BV . Then Iε,1 ⩽ K1,N ∥ρε∥L1(RN ) ∥Du∥M (RN ).
In particular, Vε ∈ L1(RN ) and

∥Vε∥L1(RN ) ⩽ N K1,N ∥ρε∥L1(RN ) ∥Du∥M (RN ).

We next present a crucial identity that illuminates the validity of (1.5): (1.10),
and its avatar (1.11). Although (1.10) was probably known to experts (it is implicit
in [7, proof of Lemma 3.3] and related to several identities in [5]), its intimate
connection to (1.5) seems to have remained relatively unnoticed.

Assume (1.1). Let fε : (0,∞) → [0,∞) be a measurable function such that
ρε(x) = fε(|x|) for a.e. x ∈ RN . Set

Fε(h) := N

∞̂

|h|

fε(t)
t

dt, ∀ h ∈ RN \ {0}. (1.7)

Let us note that

∥Fε∥L1(RN ) =
ˆ

RN

Fε = N
∣∣SN−1∣∣ ∞̂

0

rN−1
∞̂

r

fε(t)
t

dtdr

=
∣∣SN−1∣∣ ∞̂

0

tN−1 fε(t) dt =
ˆ

RN

ρε(h) dh = ∥ρε∥L1(RN ),

(1.8)
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so that, in particular,

Fε ∈ L1(RN ). (1.9)

Lemma 1.5. — Assume (1.1). Let Fε be as in (1.7).
(1) Let 1 ⩽ p < ∞ and u ∈ Ẇ 1,p. Then

Vε = (∇u) ∗ Fε a.e. (1.10)

(2) Let u ∈ ˙BV . Then

Vε = (Du) ∗ Fε a.e. (1.11)

Proof. —
Step 1. Proof of (1.10) when u ∈ C∞(RN ) and ρε ∈ C∞

c (RN ). — In this case,
we actually prove that

Vε(x) = (∇u) ∗ Fε(x), ∀ x ∈ RN .

For this purpose, we note that

Fε is compactly supported, (1.12)

∇Fε(h) = −N h

|h|2
ρε(h), ∀ h ∈ RN \ {0}, (1.13)

Fε(h) = O(| ln |h||) as h → 0. (1.14)

Using (1.12)–(1.14), we find, via an integration by parts, that

Vε(x) = −
ˆ

RN

[u(x+ h) − u(x)] ∇Fε(h) dh

= − lim
δ→ 0

ˆ

RN \B(0,δ)

[u(x+ h) − u(x)] ∇Fε(h) dh

=
ˆ

RN

∇u(x+ h)Fε(h) dh =
ˆ

RN

∇u(x− h)Fε(h) dh

= [(∇u) ∗ Fε](x), ∀ x ∈ RN .

Step 2. Proof of (1.10) and (1.11) when ρε ∈ C∞
c (RN \ {0}). – Let η be a radial

non-increasing normalized bump function. By Step 1, we have

Vε,u∗ηδ
(x) = (∇(u ∗ ηδ)) ∗ Fε(x) = (Du) ∗ (Fε ∗ ηδ)(x), ∀ x ∈ RN . (1.15)

On the one hand, as δ → 0, the right-hand side of (1.15) converges (possibly
along a subsequence) a.e. to (Du) ∗ Fε(x). (This follows by combining the Young
inequality with the fact that Fε ∗ ηδ → Fε in L1.)

In order to obtain (1.10), respectively (1.11), it suffices to prove that

Vε,u∗ηδ,ρε
(x) → Vε,u,ρε

(x) as δ → 0 for a.e. x ∈ RN . (1.16)

Property (1.16) is obtained via dominated convergence, using the standard in-
equality

|u ∗ ηδ(y)| ⩽ M1u(y),∀ 0 < δ < 1, ∀ y ∈ RN , (1.17)
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(see, e.g., [13, eq (17), p. 57]), where M1u is the centered truncated maximal
function of u,

M1u(x) := sup
{ 

Br(x)
|u|; 0 < r ⩽ 1

}
.

(Here, we use the fact that η is radial, non-increasing, and supported in the unit
ball.) Using (1.17) and the extra assumptions on ρε, we obtain the domination

|u ∗ ηδ(x+ h) − u ∗ ηδ(x)|
|h|

ρε(h)

⩽ [M1u(x+ h) + M1u(x)] g(h),∀ 0 < δ < 1, (1.18)

with g(h) := ρε(h)/|h| bounded and compactly supported. The right-hand side
of (1.18) is in L1(RN ) since M1u ∈ L1

loc(RN ) (and thus, in particular, M1u is
finite a.e.). The latter property follows by combining the Sobolev embeddings
Ẇ 1,p, ˙BV ↪→ L

N/(N−1)
loc (RN ) with the fact that, by the maximal function theorem,

we have M1u ∈ Lrloc(RN ) when u ∈ Lrloc(RN ) for some r > 1. We obtain that the
convergence in (1.16) holds on the full measure set{

x ∈ RN ; M1u(x) < ∞ and x is a Lebesgue point of u
}
.

Step 3. Proof of (1.10) and (1.11) in the general case. — For fixed ε, we approxi-
mate ρε in L1 with a sequence (ρε,j)j of kernels ρε,j ∈ C∞

c (RN \{0}) satisfying (1.1).
By Step 2, the corresponding associated kernels Fε,j satisfy

Vε,u,ρε,j
= (Du) ∗ Fε,j a.e. (1.19)

Let us note that Fε,j → Fε in L1(RN ) as j → ∞. (This follows from a straight-
forward variant of (1.8).)

We obtain (1.10), respectively (1.11), by letting j → ∞ in (1.19). Passing to the
limits is justified, on the left-hand side, by Lemma 1.4, and, on the right-hand side,
by the Young inequality combined with the fact that Fε,j → Fε in L1(RN ). □

Using Lemma 1.5, (1.8), and the Young inequality, we obtain the following

Lemma 1.6. — Assume (1.1)–(1.2).
(1) Let 1 ⩽ p < ∞ and u ∈ Ẇ 1,p. Then ∥Vε∥Lp(RN ) ⩽ ∥∇u∥Lp(RN ).
(2) Let u ∈ ˙BV . Then ∥Vε∥L1(RN ) ⩽ ∥Du∥M (RN ).

This is an improvement of Lemma 1.4, since N [Kp,N ]1/p > 1 when N ⩾ 2.
Indeed, the Jensen inequality yields

Kp,N ⩾

( 
SN−1

|hj | dσ(h)
)p

=
(

1
N

 
SN−1

N∑
k=1

|hk| dσ(h)
)p

>

(
1
N

 
SN−1

dσ(h)
)p

= 1
Np

.

We next present two direct consequences of Lemma 1.5, originally obtained, with
different arguments, in [7].
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Proposition 1.7 ([7, Theorem 1.1(b)]). — Assume (1.1)–(1.3).
Let u ∈ Ẇ 1,p(RN ). Then

Vε → ∇u in Lp
(
RN
)

as ε → 0.

Proposition 1.8 ([7, Theorem 1.2]). — Assume (1.1)–(1.3). Let u ∈ ˙BV .
Then

Vε ⇀ Du ∗-weakly in M
(
RN
)

as ε → 0
and

lim
ε→ 0

∥Vε∥L1(RN ) = ∥Du∥M (RN ).

Proof of Propositions 1.7 and 1.8. — By Lemma 1.9 below, (Fε) is an approxi-
mation to the identity. We conclude by combining this fact with Lemma 1.5. □

Lemma 1.9. — Under the assumptions (1.1)–(1.3), (Fε) is an approximation to
the identity.

Proof. — If δ > 0 is fixed, then (1.7) and (1.3) yield
ˆ

|h|>δ

Fε(h) dh = N
∣∣SN−1∣∣ ∞̂

δ

rN−1
∞̂

r

fε(t)
t

dtdr

= N
∣∣SN−1∣∣ ∞̂

δ

tˆ

δ

rN−1 dr
fε(t)
t

dt

⩽
∣∣SN−1∣∣ ∞̂

δ

tN−1 fε(t) dt

=
ˆ

|h|>δ

ρε(h) dh → 0 as ε → 0.

(1.20)

The conclusion of the lemma follows from (1.8) and (1.20). □

We next present two a.e. versions of the above results.

Proposition 1.10. — Assume (1.1)–(1.3). Let u ∈ Ẇ 1,p. Then, for a.e. x ∈
RN , we have Vε(x) → ∇u(x) as ε → 0.

Proposition 1.11. — Assume (1.1)–(1.3). Let u ∈ ˙BV . Then, for a.e. x ∈
RN , we have Vε(x) → ∇acu(x) as ε → 0.

These results clearly follow from Lemmas 1.5 and 1.9 and the following well-
known measure-theoretical result (see, e.g., [12, Chapter III, Section 2.2, Theorem 2]
for the first item, and the discussion in [12, Chapter III, Section 4.1] for the second
one).

Lemma 1.12. — Let (Fε) be a an approximation to the identity, with Fε radial
and non-increasing. Then

(1) For every 1 ⩽ p < ∞ and G ∈ Lp(RN ), we have G ∗ Fε(x) → G(x) at each
Lebesgue point of G.
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(2) For every finite Borel measure ν singular with respect to the Lebesgue
measure in RN , we have ν ∗ Fε → 0 a.e.

Proof of Lemma 1.12. — The assumptions on Fε imply that there exist (unique)
non-negative Borel measures µε on (0,∞) such that

Fε(x) = µε((|x|,∞)), for a.e. x ∈ RN , (1.21)∣∣SN−1
∣∣

N

∞̂

0

tN dµε(t) = 1, ∀ ε, (1.22)

lim
ε→ 0

∣∣SN−1
∣∣

N

∞̂

δ

tN dµε(t) = 1, ∀ δ > 0. (1.23)

Proof of item (1). — We have

∣∣G ∗ Fε(x) −G(x)
∣∣

=

∣∣∣∣∣∣
∞̂

0

rN−1
ˆ

SN−1

[G(x− rω) −G(x)] ds(ω)µε((r,∞)) dr

∣∣∣∣∣∣
⩽

∞̂

0

rN−1
ˆ

SN−1

|G(x− rω) −G(x)| ds(ω)µε((r,∞)) dr

=
∞̂

0

rN−1
ˆ

SN−1

|G(x− rω) −G(x)| ds(ω)
∞̂

r

dµε(t) dr

=
∞̂

0

tˆ

0

rN−1
ˆ

SN−1

|G(x− rω) −G(x)| ds(ω) dr dµε(t)

=
∞̂

0

ˆ
B(x,t)

|G(y) −G(x)| dy dµε(t)

=
∞̂

0

|B(x, t)|
 
B(x,t)

|G(y) −G(x)| dy dµε(t)

= |SN−1|
N

∞̂

0

tN
 
B(x,t)

|G(y) −G(x)| dy dµε(t).

(1.24)

We complete the proof by combining (1.22)–(1.24) with the fact that

lim
t→ 0

 
B(x,t)

|G(y) −G(x)| dy = 0 at each Lebesgue point x of G
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and the straightforward inequality

 
B(x,t)

|G(y) −G(x)| dy ⩽
1

|B(x, t)|1/p
∥G∥Lp(RN ) + |G(x)|

⩽
1

|B(x, δ)|1/p
∥G∥Lp(RN ) + |G(x)|, ∀ t ⩾ δ.

Proof of item (2). — We have

ν ∗ Fε(x)

=
ˆ

RN

µε((|x− y|,∞)) dν(y) =
ˆ

RN

∞̂

|x−y|

dµε(t) dν(y)

=
∞̂

0

ˆ

|x−y|<t

dν(y) dµε(t) =
∣∣SN−1

∣∣
N

∞̂

0

tN
ν(B(x, t))
|B(x, t)| dµε(t).

(1.25)

We complete the proof combining (1.22), (1.23), and (1.25) with the fact that
(by the Lebesgue–Besicovitch differentiation theorem) we have

lim
t→ 0

ν(B(x, t))
|B(x, t)| = 0 for a.e. x ∈ RN ,

and the upper bound

ν(B(x, t))
|B(x, t)| ⩽

ν(RN )
|B(x, δ)| , ∀ t ⩾ δ. □

For other results in the spirit of Propositions 1.10 and 1.11, see Spector [11,
Theorem 1.2] and Brezis and Nguyen [2, Theorems 1 and 2].

Remark 1.13. — Here are two additional quick consequences of the fact that,
under the assumptions (1.1)–(1.3), (Fε) is an approximation to the identity. It is
straightforward that the pointwise equality Vε(x) = (∇u) ∗Fε(x), ∀ x ∈ RN , holds
if u ∈ C1

c (RN ), and therefore for such u we have Vε → ∇u uniformly in RN as
ε → 0. Similarly, this equality holds when u ∈ (C1 ∩L∞)(RN ), and in this case we
have Vε(x) → ∇u(x), as ε → 0, ∀ x ∈ RN .

2. An integration by parts formula and applications

The representation formula (1.10) naturally leads to the following formal calcu-
lation, with ζ ∈ C∞

c (RN ;RN ), qf(x) := f(−x), ∀ x ∈ RN , and {ej}1 ⩽ j⩽N the
canonical basis of RN :
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ˆ
RN

Vε,u · ζ =
∑
j

ˆ
RN

[Vε,u · ej ] ζj =
∑
j

[Vε,u · ej ] ∗ qζj(0)

=
∑
j

[(∂ju) ∗ Fε] ∗ qζj(0)

=
∑
j

u ∗
[
Fε ∗ ∂j qζj

]
(0) =

∑
j

u ∗ V
ε,|ζj

· ej(0)

=
ˆ
RN

u(x)
∑
j

[
V
ε,|ζj

· ej
]

(−x).

(2.1)

Combining (2.1) with the (formal) identity Vε, qf (−x) = −Vε,f (x), we obtain the
formal identity

ˆ
RN

Vε,u · ζ = −
N∑
j=1

ˆ
RN

u(x)
[
Vε,ζj

(x) · ej
]
dx, (2.2)

and its more symmetric avatar

ˆ
RN

[Vε,u · ej ]ψ

= −
ˆ
RN

u(x) [Vε,ψ(x) · ej ] dx,∀ j, ∀ ψ ∈ C∞
c

(
RN ;R

)
. (2.3)

Similar “non-local integration by parts” identities were known in the literature
(see, e.g., [5], [7, Theorem 1.4], and, in a slightly different setting, Šilhavý [10,
Section 6]). As we will see below, (2.2) holds under mild assumptions on u (this is to
be compared with the more restrictive assumptions in Lemma 1.5). The importance
of such identities is that they provide a first direction for generalizing the results in
Section 1, consisting of weakening the assumption u ∈ Ẇ 1,p (respectively u ∈ ˙BV ),
widely used in Section 1, to a reasonable one allowing Vε to be well-defined a.e.
and to obtain the property u ∈ Ẇ 1,p (respectively u ∈ ˙BV ) as a conclusion.

We first formalize the validity of (2.2).

Lemma 2.1. — Let ε > 0 be fixed. Assume (1.1). Let u ∈ L1
loc(RN ) be such

that Wε ∈ L1
loc(RN ).

(1) If u ∈ (L1 + L∞)(RN ), then

ˆ
RN

Vε,u ·ζ = −
N∑
j=1

ˆ
RN

u(x)
[
Vε,ζj

(x) · ej
]
dx, ∀ ζ ∈ C∞

c

(
RN ;RN

)
. (2.4)

(2) If ρε is compactly supported, then (2.4) holds.
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Proof. — We first note the following equalities, valid (thanks to the Fubini the-
orem applied to the first line) for every ζ ∈ C∞

c (RN ;RN ):

ˆ

RN

Vε · ζ = N

ˆ

RN

 ˆ

RN

u(x+ h) − u(x)
|h|

h · ζ(x)
|h|

ρε(h) dh

 dx

= N

ˆ

RN

 ˆ

RN

u(x+ h) − u(x)
|h|

h · ζ(x)
|h|

ρε(h) dx

 dh

= N

ˆ

RN

 ˆ

RN

u(x)h · [ζ(x− h) − ζ(x)]
|h|2

ρε(h) dx

 dh

= −N
ˆ

RN

 ˆ

RN

u(x)h · [ζ(x+ h) − ζ(x)]
|h|2

ρε(h) dx

 dh.

(2.5)

We next claim that we may apply the Fubini theorem to the last integral in (2.5).
By linearity, in item (1) we may assume that either u ∈ L1(RN ) or u ∈ L∞(RN ).

Proof of the claim when u ∈ L1(RN ). — In this case, we have

ˆ

RN

 ˆ

RN

|u(x)|
∣∣h · [ζ(x+ h) − ζ(x)]

∣∣
|h|2

ρε(h) dx

 dh

⩽ ∥∇ζ∥L∞(RN )∥u∥L1(RN )∥ρε∥L1(RN ) < ∞.

Proof of the claim when u ∈ L∞(RN ). — By Lemma 1.4(1), we have

ˆ

RN

 ˆ

RN

|u(x)|
∣∣h · [ζ(x+ h) − ζ(x)]

∣∣
|h|2

ρε(h) dx

 dh

⩽ K(1, N)∥u∥L∞(RN )

N∑
j=1

∥∇ζj∥L1(RN )∥ρε∥L1(RN ) < ∞.

Proof of the claim when ρε is compactly supported. — Let r,R > 0 be such
that supp ζ ⊂ B(0, r) and supp ρε ⊂ B(0, R). Set v := uχB(0,r+R) ∈ L1(RN ). Then

u(x)h · [ζ(x+ h) − ζ(x)]
|h|2

ρε(h)

= v(x)h · [ζ(x+ h) − ζ(x)]
|h|2

ρε(h), ∀ x, h ∈ RN ,

and we then argue as in the case where u ∈ L1(RN ).
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Applying the Fubini theorem in (2.5), we find that
ˆ

RN

Vε · ζ = −N
ˆ

RN

u(x)

 ˆ

RN

h · [ζ(x+ h) − ζ(x)]
|h|2

ρε(h) dh

 dx

= −N
ˆ

RN

u(x)

 ˆ

RN

N∑
j=1

ζj(x+ h) − ζj(x)
|h|

hj
|h|
ρε(h) dh

 dx

= −
N∑
j=1

ˆ

RN

u(x) [Vε,ζj (x) · ej ] dx,

so that (2.4) holds. □

Here are two quick consequences of (2.4), in the spirit of [7, Theorems 1.5
and 1.6].

Proposition 2.2. — Assume (1.1)–(1.3). Let 1 < p < ∞. Let u ∈ L1
loc(RN )

be such that Wε ∈ L1
loc(RN ), ∀ ε.

(1) If u ∈ (L1 + L∞)(RN ), then

lim
ε→ 0

∥Vε∥Lp(RN ) = ∥∇u∥Lp(RN )(
with the convention ∥∇u∥Lp(RN ) = ∞ if u ̸∈ Ẇ 1,p

)
. (2.6)

(2) If there exists some R < ∞ such that

supp ρε ⊂ B(0, R), ∀ 0 < ε < ε0, (2.7)

then (2.6) holds.

Proposition 2.3. — Assume (1.1)–(1.3). Let u ∈ L1
loc(RN ) be such that Wε ∈

L1
loc(RN ), ∀ ε.

(1) If u ∈ (L1 + L∞)(RN ), then

lim
ε→ 0

∥Vε∥L1(RN ) = ∥Du∥M (RN )(
with the convention ∥Du∥M (RN ) = ∞ if u ̸∈ ˙BV

)
. (2.8)

(2) If (2.7) holds, then (2.8) holds.

Open Problem 2.4. — Let u ∈ L1
loc(RN ) be such that Wε ∈ L1

loc(RN ). Is
it true that (2.6), respectively (2.8), hold, without assuming the support assump-
tion (2.7)?

Proof of Propositions 2.2 and 2.3. — In view of Lemma 1.4(2) and Proposi-
tions 1.7 and 1.8, it suffices to prove the following. If ℓ := lim infε→ 0 ∥Vε∥Lp(RN ) <

∞, then u ∈ Ẇ 1,p if 1 < p < ∞, respectively u ∈ ˙BV if p = 1. Clearly, this holds
providedˆ

RN

u div ζ ⩽ ℓ ∥ζ∥Lq(RN ), ∀ ζ ∈ C∞
c

(
RN ;RN

)
, (2.9)
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where q is the conjugate exponent of p. In turn, (2.9) holds provided

−
ˆ

RN

u div ζ = lim
ε→ 0

ˆ

RN

Vε · ζ, ∀ ζ ∈ C∞
c

(
RN ;RN

)
. (2.10)

In order to complete the proof, it suffices to establish (2.10) under the as-
sumptions of Proposition 2.2, respectively 2.3 (with no boundedness assumption
on ∥Vε∥Lp(RN )).

In view of (2.4), in order to obtain (2.10) it suffices to prove that

lim
ε→ 0

ˆ

RN

uVε,ζj
· ej =

ˆ

RN

u ∂jζj , 1 ⩽ j ⩽ N. (2.11)

When u ∈ L∞(RN ), this follows from Proposition 1.7 applied to ζj with p = 1.
When u ∈ L1(RN ), we note the domination∣∣uVε,ζj

· ej
∣∣ ⩽ ∥∇ζj∥L∞(RN ) |u| ∈ L1 (RN) .

We conclude by dominated convergence, using the fact that Vε,ζj · ej converges
to ∂jζj pointwise as ε → 0 (see Remark 1.13).

The argument for u ∈ L1
loc(RN ) under the support condition (2.7) is similar.

The proof of Propositions 2.2 and 2.3 is complete. □

One may consider versions of Propositions 2.2 and 2.3 for families of functions
instead of a fixed function. Here are, for example, two versions of [7, Theorem 3.7].

Proposition 2.5. — Assume (1.1)–(1.3). Let 1 < p < ∞. Let, for every ε,
uε ∈ L1

loc(RN ) be such that Wε,uε ∈ L1
loc(RN ). Assume that

(Vε,uε) is bounded in Lp
(
RN
)
. (2.12)

(1) If (uε) is bounded in (L1 +L∞)(RN ), then there exists some u ∈ Ẇ 1,p such
that, up to a subsequence εk → 0,
uε ⇀ u ∗-weakly in Mloc

(
RN
)
, (2.13)

∥∇u∥Lp(Ω) ⩽ lim inf
ε→ 0

∥Vε,uε∥Lp(Ω), for every open set Ω ⊂ RN . (2.14)

(2) If (uε) is bounded in L1
loc(RN ) and the support condition (2.7) holds,

then (2.13)–(2.14) hold.
Proposition 2.6. — Assume (1.1)–(1.3). Let, for every ε, uε ∈ L1

loc(RN ) be
such that Wε,uε

∈ L1
loc(RN ). Assume that

(Vε,uε
) is bounded in L1 (RN) . (2.15)

(1) If (uε) is bounded in (L1 +L∞)(RN ), then there exists some u ∈ ˙BV such
that, up to a subsequence εk → 0,
uε ⇀ u ∗-weakly in Mloc

(
RN
)
, (2.16)

∥Du∥M (Ω) ⩽ lim inf
ε→ 0

∥Vε,uε
∥L1(Ω), for every open set Ω ⊂ RN . (2.17)

(2) If (uε) is bounded in L1
loc(RN ) and the support condition (2.7) holds,

then (2.16)–(2.17) hold.
Remark 2.7. — Note that, by Lemma 1.3, (2.12) (respectively, (2.15)) holds if

Iε,p,uε
⩽ C < ∞, ∀ 0 < ε < ε0 (respectively, Iε,1,uε

⩽ C < ∞, ∀ 0 < ε < ε0).
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Proofs of Propositions 2.5 and 2.6. — We present the argument for Proposi-
tion 2.6; the proof of Proposition 2.5 is similar. Consider a (signed) Radon measure
µ on RN such that, up to a subsequence, uεk

⇀ µ ∗-weakly in Mloc(RN ). Fix some
ζ ∈ C∞

c (RN ;RN ). We then have
ˆ
RN

div ζ dµ = lim
k

ˆ
RN

div ζ uεk

= lim
k

ˆ
RN

∑
j

[
Vεk,ζj · ej

]
uεk

+ lim
k

ˆ
RN

div ζ −
∑
j

[
Vεk,ζj

· ej
] uεk

:= lim
k
Ak + lim

k
Bk.

(2.18)

Step 1. We have Bk → 0. — We have to treat three cases: (i) (uεk
) is bounded

in L1(RN ); (ii) (uεk
) is bounded in L∞(RN ); (iii) (uεk

) is bounded in L1
loc(RN ) and

the support condition (2.7) holds.
Step 1.1. Proof in case (i). — We use the fact that, by Remark 1.13, div ζ −∑
j [Vεk,ζj

· ej ] → 0 uniformly in RN , together with the boundedness of (uεk
) in

L1(RN ).
Step 1.2. Proof in case (ii). — By Proposition 1.7, we have div ζ −

∑
j [Vεk,ζj

·
ej ] → 0 in L1(RN ). We combine this fact with the boundedness of (uεk

) in L∞(RN ).
Step 1.3. Proof in case (iii). — By Remark 1.13, we have div ζ −

∑
j [Vεk,ζj

· ej ]
→ 0 uniformly in RN . By the support condition (2.7), there exists some r > 0 such
that, for each ε, div ζ −

∑
j [Vεk,ζj

· ej ] = 0 in RN \B(0, r). We find that

|Bk| ⩽

∥∥∥∥∥∥div ζ −
∑
j

[
Vεk,ζj

· ej
]∥∥∥∥∥∥
L∞(RN )

∥uεk
∥L1(B(0,r)) → 0 as k → ∞.

Step 2. Conclusion. — By Lemma 2.1, we have

Ak = −
ˆ
RN

Vεk,uεk
· ζ. (2.19)

Let Ω ⊂ RN be an open set. Combining (2.18), Step 1, (2.19), and the assump-
tion (2.15), we find that, when ζ ∈ C∞

c (Ω;RN ),
ˆ

Ω
div ζ dµ ⩽ ∥ζ∥L∞(Ω) lim inf

ε
∥Vε,uε

∥L1(Ω).

It follows that µ ∈ ˙BV and that (2.17) holds. □

Remark 2.8. — In view of [1, Theorem 4] and Ponce [8, Theorem 1.2], it is likely,
but not known, that, in Propositions 2.5 and 2.6, the boundedness assumptions on
uε can be removed, and that the ∗-weak convergence in Mloc can be improved to
strong Lploc convergence. In this direction, we formulate below two open questions.
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Open Problem 2.9. — Let 1 ⩽ p < ∞. Let, for every ε, uε ∈ L1
loc(RN ) be

such that Wε,uε ∈ L1
loc(RN ). Assume that

(Vε,uε
) is bounded in Lp

(
RN
)
, (2.20)ˆ

B(0,1)
uε = 0, ∀ ε. (2.21)

(1) Is it true that (uε) is bounded in Lploc(RN ), or at least in L1
loc(RN )?

(2) Is it true that (uε) is relatively compact in Lploc(RN ), or at least in L1
loc(RN )?

Note the natural condition (2.21). Such a “normalization” condition is needed
since Vε “does not see constants”; therefore, in order to have a priori estimates, one
has to “kill the constants”.

3. A distributional approach

A natural generalization of the approach in the previous section (based on the
identity (2.4)), consistent with the spirit of the theory of distributions, was initiated
in [7]. It consists of taking the identity (2.4) as a definition of Vε. More precisely,
instead of assuming that Wε ∈ L1

loc(RN ), we assume that (2.4) holds for every
ζ ∈ C∞

c (RN ;RN ) and some function Vε ∈ L1
loc(RN ) that is not, a priori, given

by (1.4). This is a distributional version of Vε given by (1.4) and, by the proof
of (2.4), it coincides with Vε provided that Wε ∈ L1

loc(RN ). One could even go one
step beyond and define the distribution Vε through the formula Vε(ζ)=the right-
hand side of (2.4). (See also, for similar approaches in different but related settings,
Shieh and Spector [9], Comi and Stefani [4], Bruè, Calzi, Comi, and Stefani [3].)

Repeating the end of the proof of the Propositions 2.2 and 2.3, we obtain, e.g.,
the following

Proposition 3.1. — Assume (1.1)–(1.3). Let 1 < p < ∞. If u ∈ (L1 +
L∞)(RN ) and there exists some Vε ∈ L1

loc(RN ) such that (2.4) holds, ∀ ε, ∀ ζ ∈
C∞
c (RN ;RN ), then

lim
ε→ 0

∥Vε∥Lp(RN ) = ∥∇u∥Lp(RN )(
with the convention ∥∇u∥Lp(RN ) = ∞ if u ̸∈ Ẇ 1,p

)
. (3.1)

And the usual variants for p = 1 or u ∈ L1
loc(RN ), under the support condi-

tion (2.7).

4. Heavy tails kernels

The results in this section are in the spirit of [4].
Let ρε satisfy (1.1) and the following variants of (1.2)–(1.3):

lim
ε→ 0

ˆ

|h|< 1

ρε(h) dh = 1, (4.1)

lim
ε→ 0

ˆ

|h|>δ

ρε(h)
|h|

dh = 0, ∀ δ > 0. (4.2)
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Note that these assumptions are weaker than (1.2)–(1.3) and that they allow
heavy tails kernels, which are not integrable at infinity. Here is a special case,
considered, e.g., in [4], of kernels satisfying (4.1)–(4.2):

ρε(h) := 21−ε

N πN/2

Γ
(
N − ε

2 + 1
)

Γ
(ε

2

) 1
|h|N−ε , 0 < ε < N + 2. (4.3)

Indeed, the validity of (4.2) is straightforward, while (4.1) follows from the fact
that

21−ε

N πN/2

Γ
(
N − ε

2 + 1
)

Γ
(ε

2

) ∼ε→ 0
ε

N πN/2 Γ
(
N

2 + 1
)

= ε

|SN−1|
,

combined with the identity
ε

|SN−1|

ˆ

|h|< 1

1
|h|N−ε dh = 1.

The results in the previous sections can be easily adapted to kernels satisfy-
ing (4.1)–(4.2). The price to pay is that the natural function setting is W 1,p(RN ),
respectively BV (RN ), rather than Ẇ 1,p, respectively ˙BV . Here are some results
from the previous sections adapted to the assumptions (1.1) and (4.1)–(4.2).

Proposition 4.1. — Assume (1.1) and (4.1)–(4.2). Let 1 ⩽ p < ∞. Let
u ∈ W 1,p(RN ). Then

Vε → ∇u in Lp
(
RN
)

as ε → 0.

Proposition 4.2. — Assume (1.1) and (4.1)–(4.2). Let u ∈ BV (RN ). Then
Vε ⇀ Du ∗-weakly in M

(
RN
)

as ε → 0 (4.4)
and

lim
ε→ 0

∥Vε∥L1(RN ) = ∥Du∥M (RN ). (4.5)

In the next two results, we assume that, for some 1 < q ⩽ ∞, we have
lim
ε→ 0

∥ρε(h)/|h|∥Lq(|h|> 1) = 0. (4.6)

Proposition 4.3. — Assume (1.1) and (4.1)–(4.2). Let 1 ⩽ p < ∞. Assume
that (4.6) holds when q is the conjugate exponent of p. Let u ∈ W 1,p(RN ). Then,
for a.e. x ∈ RN , we have Vε(x) → ∇u(x) as ε → 0.

Proposition 4.4. — Assume (1.1) and (4.1)–(4.2). Assume that (4.6) holds
when q = ∞. Let u ∈ BV (RN ). Then, for a.e. x ∈ RN , we have Vε(x) → ∇acu(x)
as ε → 0.

Remark 4.5. — Given any q > 1, the kernel in (4.3) satisfies (4.6). Therefore,
Propositions 4.3 and 4.4 apply to these kernels.

Remark 4.6. — Propositions 4.3 and 4.4 have straightforward versions, in which
the assumption on u is u ∈ Lr(RN )∩Ẇ 1,p, respectively u ∈ Lr(RN )∩ ˙BV for some
r ∈ [1,∞) (and then, in (4.6), q is the conjugate exponent of r).



42 H. Brezis & P. Mironescu

Proposition 4.7. — Assume (1.1) and (4.1)–(4.2). Let 1 < p < ∞. If u ∈
Lp(RN ) and Wε ∈ L1

loc(RN ) for every ε, then

lim
ε→ 0

∥Vε∥Lp(RN ) = ∥∇u∥Lp(RN )(
with the convention ∥∇u∥Lp(RN ) = ∞ if u ̸∈ W 1,p (RN)) . (4.7)

Proposition 4.8. — Assume (1.1) and (4.1)–(4.2). If u ∈ L1(RN ) and Wε ∈
L1
loc(RN ) for every ε, then

lim
ε→ 0

∥Vε∥L1(RN ) = ∥Du∥M (RN )(
with the convention ∥Du∥M (RN ) = ∞ if u ̸∈ BV

(
RN
))
. (4.8)

Proposition 4.9. — Assume (1.1) and (4.1)–(4.2). Let 1 < p < ∞. If u ∈
Lp(RN ) and there exists some Vε ∈ L1

loc(RN ) such that (2.4) holds, ∀ ε, ∀ ζ ∈
C∞
c (RN ;RN ), then

lim
ε→ 0

∥Vε∥Lp(RN ) = ∥∇u∥Lp(RN )(
with the convention ∥∇u∥Lp(RN ) = ∞ if u ̸∈ W 1,p (RN)) . (4.9)

Proposition 4.10. — Assume (1.1) and (4.1)–(4.2). If u ∈ L1(RN ) and there
exists some Vε ∈ L1

loc(RN ) such that (2.4) holds, ∀ ε, ∀ ζ ∈ C∞
c (RN ;RN ), then

lim
ε→ 0

∥Vε∥L1(RN ) = ∥Du∥M (RN )(
with the convention ∥Du∥M (RN ) = ∞ if u ̸∈ BV (RN )

)
. (4.10)

We prove only Propositions 4.1 and 4.3; the other results are obtained from the
corresponding ones in the previous sections using similar arguments.

Proof of Proposition 4.1. — Set

ρ1
ε := ρε χB(0,1), ρ

2
ε := ρε−ρ1

ε, V
1
ε := Vε,u,ρ1

ε
, V 2

ε := Vε,u,ρ2
ε
, κε(h) := ρ2

ε(h)
|h|

.

By Proposition 1.7 and the assumptions (1.1) and (4.1)–(4.2), we have V 1
ε → ∇u

in Lp(RN ) as ε → 0. On the other hand, we have the straightforward inequality∣∣V 2
ε (x)

∣∣ ⩽ |u| ∗ κε(x) + |u(x)| ∥κε∥L1(RN ), ∀ x ∈ RN . (4.11)

Combining (4.2), (4.11) with δ = 1, and the Young inequality, we find that
V 2
ε → 0 in Lp(RN ) as ε → 0. □

Proof of Proposition 4.3. — It suffices to note that (by (4.11) and (4.6)) we
have V 2

ε → 0 pointwise as ε → 0. □

Remark 4.11. — The fact that ρ is radial when |h| > 1 is not relevant for the
above results.
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5. Γ-convergence

One can associate Γ-convergence results with the above convergence statements.
We present one result of this type, in the spirit of [7, Theorem 1.7].

Let 1 ⩽ p < ∞. Set, for 0 < ε < ε0 and u ∈ L1
loc(RN ),

Jε,p(u):=
{

∥Vε,u∥Lp(RN ), if Wε,u ∈ L1
loc

(
RN
)

∞, otherwise
,

J0,p(u):=
{

∥∇u∥Lp(RN ), if u ∈ Ẇ 1,p

∞, otherwise
, ∀ 1 < p < ∞,

J0,1(u):=
{

∥Du∥M (RN ), if u ∈ ˙BV
∞, otherwise

.

Proposition 5.1. — Assume (1.1)–(1.3). Let 1 ⩽ p < ∞.
(1) For 1 ⩽ q < ∞, Jε,p Γ-converges to J0,p in Lq(RN ).
(2) Under the support assumption (2.7), Jε,p Γ-converges to J0,p in L1

loc(RN ).

Proof of item (2). — Let (uε)0<ε<ε0 ⊂ L1
loc(RN ) be a family such that uε →

u in L1
loc(RN ) and lim inf

ε→ 0
Jε,p(uε) < ∞. By Proposition 2.5 and the proof of

Propositions 2.2 and 2.3 (see, more specifically, (2.9) and (2.10)), we find that
u ∈ Ẇ 1,p if 1 < p < ∞ (respectively u ∈ ˙BV if p = 1) and J0,p(u) ⩽ lim inf

ε→ 0
Jε,p(uε).

In the opposite direction, we do not need the support assumption (2.7). Let
u ∈ Ẇ 1,p if 1 < p < ∞, respectively u ∈ ˙BV if p = 1. Let η be a normalized bump
function. By Proposition 1.7 applied to u ∗ η1/j , where j ⩾ 1 is an integer, there
exists a sequence (εj)j⩾ 1 such that

Jε,p
(
u ∗ η1/j

)
⩽ J0,p

(
u ∗ η1/j

)
+ 1
j
, ∀ j ⩾ 1, ∀ 0 < ε < εj .

With no loss of generality, we may assume that εj → 0 and εj+1 < εj . If we set
uε := u ∗ η1/j , ∀ εj+1 ⩽ ε < εj ,

then uε → u in L1
loc(RN ) when ε → 0 and

lim sup
ε→ 0

Jε,p(uε) ⩽ lim sup
j→ ∞

J0,p(u ∗ η1/j) = J0,p(u).

Proof of item (1). — The proof is similar to the one of item (2). It suffices to
note that Propositions 2.2, 2.3, and 2.5 still hold if we replace (L1 +L∞)(RN ) with
Lq(RN ). □
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