
CONFLUENTES
MATHEMATICI

Sonia L’INNOCENTE, Françoise POINT, and Carlo TOFFALORI
Exponentiations over the quantum algebra Uq(sl2(C))
Tome 5, no 2 (2013), p. 49-77.

<http://cml.cedram.org/item?id=CML_2013__5_2_49_0>

© Les auteurs et Confluentes Mathematici, 2013.
Tous droits réservés.

L’accès aux articles de la revue « Confluentes Mathematici »
(http://cml.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://cml.cedram.org/legal/).
Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation á fin
strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://cml.cedram.org/item?id=CML_2013__5_2_49_0
http://cml.cedram.org/
http://cml.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Confluentes Math.
5, 2 (2013) 49-77

EXPONENTIATIONS OVER THE QUANTUM ALGEBRA
Uq(sl2(C))

SONIA L’INNOCENTE, FRANÇOISE POINT, AND CARLO TOFFALORI

Abstract. We define and compare, by model-theoretical methods, some exponentiations
over the quantum algebra Uq(sl2(C)). We discuss two cases, according to whether the
parameter q is a root of unity. We show that the universal enveloping algebra of sl2(C)
embeds in a non-principal ultraproduct of Uq(sl2(C)), where q varies over the primitive
roots of unity.

1. Introduction

Exponentiation is a lively topic in modern model theory. It has been considered
not only in the classical frameworks of real closed fields and the field of com-
plex numbers, but also over larger settings such as Lie algebras. For instance,
Macintyre’s paper [10] develops a general picture of exponentiations over finite-
dimensional Lie algebras over both the real and the complex fields. This led in
[9] to the idea of defining exponential maps over an infinite-dimensional algebra,
namely the universal enveloping algebra U(sl2(C)) of the Lie algebra sl2(C) of 2×2
traceless matrices with complex entries, using its irreducible finite-dimensional rep-
resentations.

This suggests to develop a similar analysis on the quantum algebra Uq(sl2(C)).
We will introduce this algebra in more detail in the next Section 2. Quantum
algebras are now beginning to be intensively investigated even under the model
theoretic point of view. See for instance [3] where their simple representations are
approached under this perspective. Moreover quantum algebras occur in the work of
Boris Zilber [13] where they are associated to certain Zariski geometries. Recall that
there are one dimensional Zariski geometries which are finite coverings of algebraic
curves but not algebraic curves [4]. In [13] Zilber calls them non classical Zariski
geometries and, as said, connects them with some typical quantum algebras (when
the parameter of deformation q is a root of unity). He just begins with the simplest
case of Uq(sl2(C)) and builds a corresponding many-sorted structure Ṽ (Uq(sl2(C)))
consisting of the complex field C, a variety V and a bundle of Uq(sl2(C))-modules
of fixed finite dimension (equal to the order of the root of unity) parametrized by V .
He shows that the theory of finite-dimensional Uq(sl2(C))-modules is ℵ1-categorical
and model-complete. Moreover, he shows that Ṽ (Uq(sl2(C))) is a Zariski geometry
that is not definable in any algebraically closed field.

In this paper we will still consider the algebras Uq(sl2(C)) where q is arbitrary
(with only slight restrictions such as q2 6= 1) but we will deal with exponentia-
tion. In fact, we will use the finite-dimensional representations of Uq(sl2(C)) and
construct suitable exponential maps on it, following the approach of [9] for the
universal enveloping algebra U(sl2(C)).

Math. classification: 03C60, 16W35, 20G42, 81R50.
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Here is the plan of the paper.
Sections 2, 3 and 4 are devoted to preliminaries on quantum algebras, exponential

rings and exponentiation for matrices. However, in order to illustrate in more detail
the remainder of the paper and our main results, let us fix right now some notation
on these topics. For every positive integer λ let Mλ(C) be the Lie algebra of λ× λ
matrices with entries in the complex field. Then a matrix exponential map, taking
its values in the linear group GLλ(C), can be introduced in Mλ(C) in terms of
infinite power series, putting for every matrix A

expλ(A) =
+∞∑
n=0

An

n! .

Coming back to Uq(sl2(C)), we will distinguish whether the parameter q is a
root of unity, or not.

The latter case is treated in Sections 5 and 6 (regarding the finite-dimensional
representations of Uq(sl2(C)) and exponentiations on Uq(sl2(C)) respectively). It
is known that, under this assumption on q, all finite-dimensional representations
of Uq(sl2(C)) are semisimple, moreover the simple ones are classified in terms of
highest weight and so are very similar to those of the classical case. Consequently
various exponentiations over Uq(sl2(C)) can be defined by strategies very simi-
lar to the ones used in [9]. In fact, after recalling how simple finite-dimensional
Uq(sl2(C))-modules are classified, we will use that and the expλ to define our expo-
nential maps from Uq(sl2(C)) to GLλ(C) for every λ and we will explore the basic
properties of these maps. After that, we will show how to embed Uq(sl2(C)) into an
arbitrary non-principal ultraproduct of the Mλ(C) with λ varying (see Proposition
6.3). This will lead us to introduce another exponential map from Uq(sl2(C)) to
the corresponding non-principal ultraproduct of the groups GLλ(C). Again, we will
investigate the basic properties of this function (see Proposition 6.1 and Corollary
6.4).

Sections 7, 8 and 9 treat the case when q is a root of unity. Again, they are
devoted first to finite-dimensional representations and then to exponentiations. We
define an exponential map from Uq(sl2(C)) to certain ultrapowers of the linear group
GL`(C), where ` is the order of the root q if this order is odd or half of the order oth-
erwise (and in any case is fixed). Indeed we have to carefully choose appropriate ul-
trafilters in order first to embed Uq in an ultrapower ofM`(C) (see Proposition 8.2).
As before we use the characterization of the simple finite-dimensional Uq(sl2(C))-
modules. But this time the finite-dimensional representations of Uq(sl2(C)) are
not necessarily semisimple [6, Remark after Proposition 2.12] and there are further
finite-dimensional representations in addition to the highest weight ones.

Finally in the last section, again using a suitable choice of the parameters,
we approximate the universal enveloping algebra U(sl2(C)) by the quantum ones
Uq(sl2(C)), where q ranges over a family of primitive roots of unity of strictly in-
creasing order. Namely we show that U(sl2(C)) embeds in a certain non-principal
ultraproduct of the Uq(sl2(C))’s.

We refer to [1] for basic model theory, including ultraproducts, to [11] for model
theory of modules and to [6], [7] and [8] for quantum algebras.
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2. Preliminaries on quantum algebras.

In this section, we will recall well known facts on quantum algebras over an
arbitrary field k (not necessarily the complex field) and on skew polynomial rings.
They can be found, for instance, in [6], [7] or [8].

Recall that the universal enveloping algebra U := U(sl2(k)) of the 2×2 traceless
matrices over k can be presented as the associative algebra with three generators

X =
(

0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
,

subject to the relations
[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

Here [., .] denotes the usual commutator.
The algebra U can also be built as an iterated skew polynomial ring. Start with

the algebra A0 = k[H] and consider
• the automorphism σ0 of A0 acting identically on k and sending H to H+2,
• the derivation δ0 = 0 on A0.

Using them one forms the skew polynomial ring A1 := A0[Y ; σ0, δ0] (indeed Y ·H =
(H + 2) · Y ). Now repeat the same construction with respect to A1 and

• the automorphism σ1 of A1 fixing k pointwise and sending Y to Y and H
to H − 2,

• the σ1-derivation δ1 of A1 sending H to 0 and Y to H.
Then U is isomorphic to A2 := A1[X; σ1, δ1]. In fact X · Y = Y · X + H and
X ·H = (H − 2) ·X.

Now let us introduce Uq(sl2(k)). Recall that k is any field. Let q be an element
of k such that q 6= 0 and q2 6= 1. Then, the quantum algebra Uq := Uq(sl2(k)) is
the associative k-algebra with generators K, K−1, E, F and relations:

K ·K−1 = K−1 ·K = 1, K ·E ·K−1 = q2E, K ·F ·K−1 = q−2F, [E,F ] = K −K−1

q − q−1 .

(2.1)
Note that these relations (2.1) imply by induction that, for every choice of integers
s, t > 2,

[E,F t] = [t]F t−1 · Kq
1−t −K−1qt−1

q − q−1 , (2.2)

[Es, F ] = [s]Es−1 · Kq
s−1 −K−1q1−s

q − q−1 . (2.3)

Here, for every integer z the q-number of z, denoted [z], is defined as

[z] := qz − q−z

q − q−1 .

Alternatively the algebra Uq can be represented, just as U , as an iterated skew
polynomial ring [7, Proposition VI.1.4]. Namely, let A0 := k[K,K−1] with

• the automorphism α0 fixing k pointwise and sending K to q2K,
• a zero derivation δ0

and form the corresponding Ore extension A1 := A0[F ;α0, δ0] (observe F · K =
q2K · F ). Then
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• extend α0 to an automorphism α1 of A1 by putting
α1(F j ·Kl) = q−2l F j ·Kl,

• [7, Lemma VI.1.5] define an α1-derivation δ1 on A1 by

δ1(F ) := K −K−1

q − q−1 and δ1(K) = 0.

Finally, let A2 := A1[E;α1, δ] be the corresponding Ore extension. This is Uq up
to isomorphism. In fact with the above notations we have:

Lemma 2.1. — [7, chapter VI.1] Uq is a right (and left) Noetherian domain and
the set {Ei ·Kl · F j : i, j ∈ N, l ∈ Z} is a basis of Uq over k.

Proof. — One way to prove the first part of the statement is to show that Uq
is isomorphic to A2 and to use properties of iterated skew polynomial rings (see
[2] and [7, proof of Proposition VI.1.4]). See also [6, Theorem 1.5 and Proposition
1.8]. �

Moreover, one can put on the algebra Uq the following grading: deg(E) = 1,
deg(F ) = −1 and deg(K) = deg(K−1) = 0.

For every integer m, let Uq,m be the k-vector subspace of Uq generated by
{Ei ·Kl · F j : i− j = m, i, j ∈ N, l ∈ Z}.

It comes out that, as a vector space over k, Uq decomposes as
⊕

m∈Z Uq,m (see [6,
1.9]). For u ∈ Uq,m, m ∈ Z, we have (see again [6, 1.9]):

K · u ·K−1 = q2m u, (2.4)
whence the subring Uq,0 is equal to the centralizer of K, if q is not a root of unity.

In the general case, for q arbitrary, put

Cq := q−1K + qK−1

(q − q−1)2 + E · F = F · E + qK + q−1K−1

(q − q−1)2 . (2.5)

Then Cq is the so called quantized Casimir element of Uq. One easily checks that
Cq commutes with K; further, using relations (1), one shows that Cq belongs to
the center of Uq [7, Proposition VI.4.1].

The following lemma is certainly well-known, but we could not find a precise
reference (and we use it as stated in the next sections).

Lemma 2.2. — For any q, Uq,0 is equal to the polynomial ring k[Cq,K,K−1]
and any element of Uq,m can be written, for some suitable u ∈ Uq,0 as Em · u when
m > 0, and as u · F−m when m < 0.

Proof. — ClearlyK, K−1 and E ·F , hence Cq, are in Uq,0. Thus k[Cq,K,K−1] ⊆
Uq,0. For the opposite inclusion, first observe that, by definition of Cq,

E · F ∈ k[Cq,K,K−1].
This is trivially true also of K and K−1. Therefore, in order to conclude our proof,
it suffices to show that, if u is any element in k[Cq,K,K−1], then E ·u ·F is also in
k[Cq,K,K−1]. Note that u can be represented as K−d · p[Cq,K] for some suitable
p[x1, x2] ∈ k[x1, x2] and d ∈ N. As Cq is in the center of Uq, we can assume u = Kn

or u = K−n for some n ∈ N. By relation (2.4),
E ·Kn · F = E ·Kn · F ·K−n ·Kn = q−2nE · F ·Kn
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and similarly
E ·K−n · F = K−n ·Kn · E ·K−n · F = q2nK−n · E · F.

Thus in both cases E · u · F ∈ k[Cq,K,K−1].
Moreover for every u ∈ Uq,0, there exist u′, u′′ ∈ Uq,0 such that E · u = u′ · E

and F · u = u′′ · F . �

To conclude this section let us state some facts about the center of Uq, just to
say that, if q is not a root of unity, then it has dimension 1 over k and is generated
by Cq (see [6, Proposition 2.18] or [7, Theorem VI.4.8]) while, if q is a primitive `th
root of unity for some positive integer `, then it is generated by E`, F `, K`, K−`
and Cq [6, Proposition 2.20].

3. Exponential rings and algebras.

We recall here the notions of exponential ring and exponential algebra [9, Defi-
nition 4.1]. Let us set up the various languages we will need.

• First, L := {+,−, ·, 0, 1} = the language of (associative) rings (with 1).
• Secondly the language Lg of groups.
• For the language of algebras over a field k, or more generally over a com-
mutative ring, we choose the expansion LAlg of L, which is a two-sorted
language with a sort for a ring k, a sort for an (associative) algebra A and
a scalar multiplication map from A× k to A (both A and k are viewed as
structures of L).

Now let us consider a two-sorted structure (R,G,EXP ) where R is an L-
structure, G is a Lg-structure and EXP a map from R to G. The corresponding
language, extending L ∪ Lg by a function symbol from the ring sort to the group
sort for EXP , will be denoted by LEXP .

Definition 3.1. — We will say that (R,G,EXP ) is an exponential ring if R is
an associative ring with 1, G is a (multiplicative) group and EXP : R→ G satisfies
the following axioms:

(1) EXP (0) = 1G (the identity element in the group G),
(2) ∀x ∈ R, EXP (x) · EXP (−x) = 1G,
(3) ∀x, y ∈ R with x · y = y · x, EXP (x+ y) = EXP (x) · EXP (y)

(let us denote here in the same way, by the symbol ·, the multiplication operations
of R and G).

When dealing with (exponential) k-algebras, we will use a language LAlg,EXP
extending LAlg ∪ Lg just as LEXP did before with respect to L and Lg.

Definition 3.2. — An Lalg,EXP -structure (R, k,G,EXP ) is an exponential
k-algebra if

(1) the reduct (R,G,EXP ) is an exponential ring,
(2) the reduct (R, k) is a k-algebra,
(3) ∀c1, c2 ∈ k, ∀x ∈ R, EXP (c1x) · EXP (c2x) = EXP ((c1 + c2)x)

(where again · denotes at the same time all the various multiplications involved).

Finally, for every ring R, let us denote by LR the language of right R-modules,
as described, for instance, in [11, page 3]. As said we refer to this book even for the
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basic model theory of modules, in particular for the definition of pp-formula (see
[11, 2.1]).

Note that for the language of k-algebras, we could have chosen the one-sorted
language Lk of k-modules instead of the two-sorted language LAlg; this could make
a difference for instance when dealing with decidability issues.

4. Exponentiations and matrices.

For λ a positive integer, letMλ(C) be the ring of λ×λ-matrices with coefficients
in the complex field C. It can be endowed with the Hermitian sesquilinear form
(·, ·), defined by

(A,B) := tr(B∗ ·A) =
∑

16i,j6λ
A(i, j) · B̄(i, j)

for all A, B ∈Mλ(C) (where tr(·) denotes the trace, (·)∗ the conjugate of transpose
and A(i, j), B(i, j) the (i, j)-th entries of A, B respectively).

Let ‖ · ‖ be the norm induced by this form (usually called the Frobenius norm),
hence for every A, we have ‖A‖2 := (A,A).

For every λ, let expλ be the matrix exponential map from the algebra of matrices
Mλ(C) to the group of invertible matrices GLλ(C), which sends any A ∈Mλ(C) to
the matrix exponential expλ(A), defined as the power series

expλ(A) =
∞∑
n=0

An

n! . (4.1)

Thus, if λ = 1, that is, A is a scalar a of C, then exp1(A) = ea is the ordinary
exponential of the element a.

Using the terminology introduced in the previous section,
(Mλ(C),C, GLλ(C), expλ)

is an exponential C-algebra (see for instance [12]). As noted in [10], it is bi-
interpretable with (C, x→ ex).

It may be worth adding that a q-variant of the exponential map expλ can be
also defined as an element of the formal power series ring C[[X]] [7, page 76]. The
q-exponential is defined as the formal series

eq(X) =
∞∑
n=0

Xn

(n)!
q

,

where (0)!
q = 1 and (n)!

q = (q−1).··· .(qn−1)
(q−1)n . Observe that the series is well-defined

(provided that q is not a root of unity). The q-exponential is an invertible series,
but in contrast with the ordinary exponential (that is, for q = 1), the equality
eq(X)−1 = eq(−X) fails. However, for any choice of variables X and Y such
that X · Y = qY ·X, the fundamental property of the exponentials eq(X + Y ) =
eq(X) · eq(Y ) is satisfied.

Anyway, we will work with the matrix exponential defined by (4.1) in order to
introduce, in the next sections, exponential maps over Uq by using its representation
theory.

Observe that in [9] an exponential map was defined on the universal enveloping
algebra U(sl2(C)) through its finite-dimensional representations. This was done
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by proving that there is an associative ring monomorphism from U(sl2(C)) to∏
VMλ+1(C) where V is any non-principal ultrafilter over N [9, Corollary 8.2 ].
Let us now indicate how a similar result can be obtained for the quantum algebra

Uq(sl2(C)) working in the general context of Drinfeld-Jimbo algebras.
Let C[[h]] be the (topological) ring of all formal power series in the nonzero

indeterminate h and complex coefficients and let C((h)) denote its field of fractions.
Let Uh(sl2(C)) be the Drinfeld-Jimbo algebra (see [7, XVII.4], or [8, Section 3.1.5]),
namely the C[[h]]-algebra generated by X,Y,H with

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = ehH/2 − e−hH/2

eh/2 − e−h/2
.

Notice that the first two relations are just the same as in U(sl2(C)).
Furthermore, there exists an isomorphism α of topological algebras, congruent

to the identity modulo h, between Uh(sl2(C)) and the h-adic topological algebra
U(sl2(C))[[h]] [7, XVII.2, Theorem XVIII.4.1]. Now we use the one-to-one corre-
spondence between finite dimensional representations of sl2(C) and representations
of Uh(sl2(C)) on C[[h]]-vector spaces of the form V [[h]], where V is a finite dimen-
sional C-vector space [8, Proposition 7.10] together with the embedding of U(sl2(C))
in
∏
VMλ+1(C) [9], which we extend by linearity, working now over C[[h]].

Finally we use, as shown in [7, Proposition XVII.4.1], the embedding i of the
quantum algebra Uq(sl2(C((h)))) in Uh(sl2(C)) as a Hopf algebra, with

i(E) = X · ehH/2, i(F ) = e−hH/2 · Y, i(K) = ehH/2, i(K−1) = e−hH/2.

In particular, we get an embedding of Uq(sl2(C)), regardless of whether q is a root
of unity, into

∏
VMλ+1(C[[h]]).

In the next sections, according to whether q is a root of unity, we will embed
Uq in an ultraproduct of matrix rings over C, the sizes of the matrix rings going to
infinity when q is not a root of unity, and otherwise with fixed size depending on
the order of the root of unity.

5. Finite-dimensional representations of Uq, for q not a root of
unity.

This section deals with the finite-dimensional representations of the Uq. As
explained at the beginning of Chapter 2 in [6], it is advisable to divide the analysis
according to whether q is or not a root of unity. In the current section we assume
that it is not a root of unity and k is an algebraically closed field of characteristic
different from 2.

Every finite-dimensional representation of Uq decomposes as a direct sum of sim-
ple Uq-modules [6, Theorem 2.9 and Proposition 2.3]. Moreover, for every positive
integer λ, there exist (up to isomorphism) exactly two simple modules of dimension
λ+ 1 as k-vector spaces. They will be denoted by Vε,λ, with ε ∈ {−1, 1} (warning:
recall that their dimension over k is λ+ 1).
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First, let us describe V1,λ; it has a basis {v0, v1, . . . , vλ} on which the generators
E, F , K act as follows [7, Theorem VI.3.5]:

Evi =
{

[λ− i+ 1]vi−1, if i = 1, . . . , λ
0, if i = 0,

Fvi =
{

[i+ 1]vi+1, if i = 0, . . . , λ− 1,
0, if i = λ,

(5.1)

K vi = qλ−2i vi for i = 0, . . . , λ. (5.2)
In particular, E annihilates v0 and F the vector vλ, and up to the scalar multi-

plication these are the only vectors with these properties. So, V1,λ is an irreducible
representation of Uq. Furthermore, on V1,λ, the quantized Casimir element Cq acts
as the scalar multiplication by qλ−1+q1−λ

(q−q−1)2 .

The other simple representation V−1, λ of dimension λ + 1 is obtained by com-
posing the action of Uq on V1, λ with the automorphism σ of Uq determined by

σ(E) = −E, σ(F ) = F, σ(K) = −K

(see [6, §5.2]); note that σ maps Cq to −Cq. For this reason we will denote the
module V−1, λ also by V σ1,λ.

For every ε = ±1 and i = 0, 1, . . . , λ let V iε,λ be the eigenspace of K with
eigenvalue εqλ−2i, namely {v ∈ Vε,λ : Kv = εqλ−2iv}. Thus Vε,λ =

⊕
06i6λ V

i
ε,λ.

Furthermore, given ε and λ, let Θε,λ denote the representation map of Uq into
Mλ+1(k) (viewed as End(Vε,λ+1)) with respect to the basis {v0, v1, . . . , vλ}. Then
it is easily seen that the actions of the generators E, F, K and the central element
Cq according to Θε,λ are described by the matrices denoted respectively as

Eε,λ := Θε,λ(E), Fε,λ := Θε,λ(F ), Kε,λ := Θε,λ(K) and Cq,ε,λ := Θε,λ(Cq)

where

Eε,λ = ε


0 [λ] 0 . . . 0
0 0 [λ− 1] . . . 0
...

... [1]
0 0 0 . . . 0

 , Fε,λ =


0 0 . . . 0
1 0 . . . 0
0 [2] 0
...
0

...
0 [λ] 0

 (5.3)

Kε,λ = ε diag(qλ, qλ−2, . . . , q−λ+2, q−λ),

Cq,ε,λ = ε diag
(qλ−1 + q1−λ

(q − q−1)2 , . . . ,
qλ−1 + q1−λ

(q − q−1)2

)
.

According to the definition at the beginning of page 82 in [3], a pp-formula ϕ(v) of
the language LUq of modules over Uq is called uniformly bounded if and only if there
is a positive integer n(ϕ), depending only on ϕ, such that every finite-dimensional
simple representation Vε,λ of Uq has a dimension 6 n(ϕ) as a vector space over k.
The next proposition shows that for any r ∈ Uq,0, the formula ϕ(v) := r · v = 0
defining the annihilator of r is uniformly bounded.

Proposition 5.1. — Let ε = ±1, λ be a positive integer, r ∈ Uq,0−{0}. Then
the dimension of the kernel of Θε,λ(r) in Vε,λ is bounded independently of λ.
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Proof. — Fix ε. Recall that, when λ ranges over positive integers, Vε,λ is the
direct sum of the (one dimensional) eigenspaces V iε,λ (0 6 i 6 λ) of K. We will
show that:

(*) for every λ, the number of i, 0 6 i 6 λ, such that r annihilates V iε,λ has an
upper bound b only depending on r.

Suppose that this is true. Then it is easily seen that b is the bound in the
statement of the proposition.

In order to show (*), we will first show that there are only finitely many λ such
that r annihilates the whole Vε,λ.

Let us first represent r as K−n · p(Cq,K) for some suitable non zero polynomial
p(x1, x2) ∈ k[x1, x2] and n ∈ N. Write p(x1, x2) =

∑d
j=0 pj(x1)xj2, where d is the

degree of p with respect to x2. For every j 6 d, let dj be the degree of pj .
Observe that, for 0 6 i 6 λ,

rvi = ε−n q−n(λ−2i) p(q
−1(εqλ) + q(εqλ)−1

(q − q−1)2 , εqλ−2i) vi,

whence rvi = 0 holds (equivalently, r annihilates V iε,λ) if and only if

p(q
−1(εqλ) + q(εqλ)−1

(q − q−1)2 , εqλ−2i) = 0.

For a given j we claim that pj( q
−1(εqλ)+q(εqλ)−1

(q−q−1)2 ) = 0 holds for at most dj values of
λ.

In fact pj has at most dj roots in k. So let us compute the number of (ε, λ) such
that

q−1(εqλ) + q(εqλ)−1

(q − q−1)2 = q−1ε

(q − q−1)2 (qλ + q2q−λ)

equals one of these roots. We claim that, for any given root, this number is at
most 1. We follow here the argument in [6, Lemma 2.8]. Suppose that, for some
λ1 6= λ2 ∈ N− {0},

q−1ε

(q − q−1)2 (qλ1 + q2q−λ1) = q−1ε

(q − q−1)2 (qλ2 + q2q−λ2).

Then qλ1 + q2q−λ1 = qλ2 + q2q−λ2 . Namely, qλ1+λ2(qλ1 − qλ2) = q2(qλ1 − qλ2). So,
qλ1+λ2−2 = 1. As q is not a root of unity, λ1 + λ2 = 2. Since these are strictly
positive numbers, we obtain λ1 = λ2 = 1, a contradiction.

This confirms the upper bound dj .
Now we can show our claim (∗). In fact, for a given λ, r annihilates Vε,λ (i.e.,

all the V iε,λ) if and only if pj( q
−1(εqλ)+q(εqλ)−1

(q−q−1)2 ) = 0 for all j 6 d. But only finitely
many λ can satisfy all these conditions – actually their number cannot exceed the
minimum of the dj (j 6 d). In other words, there are only finitely many λ such
that r annihilates the whole Vε,λ.

So let us restrict our attention to the remaining λ, those such that

p(q
−1(εqλ) + q(εqλ)−1

(q − q−1)2 , x2) 6= 0.

This polynomial (in x2) admits at most d roots in k. Fix one of them. As q is
not a root of unity, given λ, there is at most one i 6 λ such that εqλ−2i can equal
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it. Thus the number of these i is at most d. This shows (*) and concludes our
proof. �

Another uniform way to approach the simple finite-dimensional representations
of Uq is via the quantum plane k[x1, x2]q [3]. This is defined as the quotient of the
free k-algebra generated by x1 and x2 by the ideal spanned by x2x1−qx1x2 [7, IV.1].
So a basis over k is given by the products xi1x

j
2 (i, j ∈ N) with the commutation

rule xj2xi1 = qijxi1x
j
2. For every non negative integer λ let k[x1, x2]q,λ be the k-

vector subspace of the quantum plane generated by the homogeneous elements of
degree λ, then k[x1, x2]q =

⊕
λ∈N k[x1, x2]q,λ over k. The Uq-module structure on

the quantum plane is given by the following actions of K, E and F :

Kxi1x
j
2 = qi−jxi1x

j
2, Exi1x

j
2 = [i]xi−1

1 xj+1
2 , Fxi1x

j
2 = [j]xi+1

1 xj−1
2 .

But Uq could act on the quantum plane even through σ, that is, in the following
way: first send Uq to σ(Uq) and then let it act on k[x1, x2]q as described before.
Let k[x1, x2]q,σ denote the quantum plane with this Uq-module structure.

Observe that both these Uq-module actions preserve the degrees of monomials.
Then for every λ, let k[x1, x2]q,σ,λ denote the submodule generated by the mono-
mials of degree λ in k[x1, x2]q,σ. The simple finite-dimensional Uq-modules Vε,λ are
isomorphic to either

• k[x1, x2]q,λ (when ε = 1), or
• k[x1, x2]q,σ,λ (when ε = −1).

Now consider a non principal ultrafilter W on N. Fix ε = ±1. For every λ
we have defined a representation map Θε,λ from Uq into Mλ+1(k). Let [(Θε,λ)λ]W
denote the corresponding map from Uq to

∏
WMλ+1(k). It is an associative ring

morphism.

Proposition 5.2. — For every non-principal ultrafilter W on N,

[(Θε,λ)λ]W : Uq →
∏
W
Mλ+1(k)

is an injective map.

Proof. — We proceed as in [9], using Lemma 2.2 and the above discussion. Any
element r of Uq can be written as

∑−1
m=−M F−mrm +

∑M
z=0 rmE

m where M is a
suitable positive integer and the rm (−M 6 m 6 M) are in Uq,0. Assume r 6= 0,
then rm 6= 0 for some m. By Proposition 5.1, there is a bound b̃ such that for all
−M 6 m 6 M , if rm 6= 0, then Θε,λ(rm) 6= 0 for all λ > b̃. On the other hand,
for λ >M , it follows from the definition of Θε,λ that, if Θε,λ(rm) 6= 0 for some m,
then Θε,λ(r) 6= 0. Therefore [(Θε,λ)λ]W(r) is not zero in

∏
WMλ+1(k). �

Another way to proceed is to use a Peter-Weyl density theorem. Assume here
that q is a transcendental complex number. Let O(SL2) be the coordinate algebra
of the quantum group SLq(2) [8, Definition 4.2]. Let C(TR` ) be the linear span of
matrix elements t(`)ij , −` 6 i, j 6 ` [8, 4.2.5]. Then the Hopf algebra O(SLq(2))
is a direct sum of subcoalgebras C(TR` ), ` ∈ 1

2N − {0} (according to [8] and the
Peter-Weyl direct sum decomposition). There is a nondegenerate dual pairing 〈 . , . 〉
between O(SLq(2)) and Uq := Uq(sl2) [8, 4.4.2, 11.2.3]. Let f ∈ Uq−{0}, then there
exists a ∈ O(SLq(2)) such that 〈f, a〉 6= 0. So there exists t(`)ij such that t(`)ij (f) 6= 0
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[8, Corollary 11.23]. So we send f to the sequence whose (λ+1)-st element, 2` 6 λ,
is a (λ+ 1)× (λ+ 1) block diagonal matrix whose (2`+ 1)× (2`+ 1)-diagonal block
is t`ij(f), and which equals the identity matrix on the other diagonal blocks and is
0 elsewhere, and the remaining λ < 2` elements of the sequence are equal to the
identity matrix. Finally we send that sequence to its equivalence class modulo the
ultrafilter W.

6. The exponential maps on Uq, q not a root of unity.

In this section we set k = C (actually we just need a field endowed with a
norm and complete for the induced topology). For λ a non negative integer and
ε = ±1, define an exponential map EXPε,λ from Uq into GLλ+1(C) by composing
the (matrix) exponential map expλ+1 on Mλ+1(C) with Θε,λ, hence by putting
EXPε,λ(u) := expλ+1(Θε,λ(u)) for every u ∈ Uq.

For instance,
(1) EXPε,λ(E) = expλ+1(Θε,λ(E)) = expλ+1(Eε,λ),
(2) EXPε,λ(F ) = expλ+1(Θε,λ(F )) = expλ+1(Fε,λ),
(3) EXPε,λ(K) = expλ+1(Θε,λ(K)) = diag

(
eεq

λ

, eεq
λ−2

, . . . , eεq
−λ+2

, eεq
−λ
)
,

(4) EXPε,λ(Cq) = expλ+1(Θε,λ(Cq)) = e
q−1(εqλ)+q(εqλ)−1

(q−q−1)2 Iλ+1

where Iλ+1 denotes the identity matrix in GLλ+1(C).
We get a transfer of the properties of the classical matrix exponential to this

new map, as follows (0Uq denotes here the zero element in Uq).

Proposition 6.1. — Let u, v ∈ Uq and a, b ∈ C. Then for every λ ∈ N− {0}:
(i) EXPε,λ (0Uq ) = Iλ+1;
(ii) EXPε,λ (au) · EXPε,λ (bu) = EXPε,λ ((a+ b)u);
(iii) EXPε,λ (u) · EXPε,λ (−u) = Iλ+1;
(iv) for u and v commuting, EXPε,λ (u+ v) = EXPε,λ (u) · EXPε,λ (v);
(v) for an invertible element v in Uq,

EXPε,λ (v · u · v−1) = Θε,λ(v) · EXPε,λ (u) ·Θε,λ(v)−1
.

In particular (Uq,C, GLλ+1(C),EXPε,λ) is an exponential C-algebra.

As in [9, Proposition 7.2], one also obtains the following result.

Proposition 6.2. — For every non negative integer λ, the map EXPε,λ is sur-
jective.

Proof. — Since expλ+1 is surjective from Mλ+1(C) to GLλ+1(C), it suffices to
prove that Θε,λ : Uq → Mλ+1(C) is surjective. The latter is deduced directly by
Jacobson density theorem [5, Section 2.2]. �

Now let W be a non principal ultrafilter on N. Let expW denote the map
[(expλ+1)λ]W (where now λ is ranging over N). Then

(
∏
W
Mλ+1(C),

∏
W
GLλ+1(C), expW)

is an exponential ring [9, Proposition 5.1]. By Proposition 5.2, we may view Uq as
a C-subalgebra of

∏
WMλ+1(C). Now we endow it with an exponential function
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as follows. For ε = ±1, define EXPW from Uq to
∏
W GLλ+1(C) by putting, for

every u ∈ Uq,
EXPW(u) = [(EXPε,λ(u))λ]W .

Corollary 6.3. — The algebra (Uq,C,
∏
W GLλ+1(C), EXPW) is an exponen-

tial C-algebra.

Proof. — Apply Proposition 6.1 and Łoś’ Theorem [1, Theorem 4.1.9]. �

7. Finite-dimensional representations of Uq, for q a root of unity.

In this section, we will assume that q is a primitive `th root of unity for ` > 3 and
that k is algebraically closed. Incidentally, notice that, for k = C and 1 6 i 6 `,
the complex conjugate qi of qi equals q`−i, whence [i] = [i] = −[`− i].

As observed in [6, page 23] we can restrict our analysis to the case ` odd – in
fact, when ` = 2`′ is even one can replace ` by `′. Then all but finitely many simple
finite-dimensional representations of Uq are of dimension ` [7, Propositions VI.5.1
and VI.5.2]. Let us describe two classes of representations of dimension ` over k.
As ` is fixed we will omit any explicit reference to it in indexing them.

Case 1. Let a, b, c ∈ k, c 6= 0, c2 6= 1. Then Va,b,c will denote the representation
of dimension ` over k on which E, F and K act in the way we are going to illustrate.
To do that, first let us set for ease of notation:

• for 1 6 i < `, ei = ei(a, b, c) := ab+ [i] cq
−i+1−c−1qi−1

q−q−1 ,
• e` = e`(a, b, c, ) := a,
• e =

∏`
i=1 ei.

Then the actions of E, F and K on Va,b,c (viewed as a k-vector space of dimension
`) are given by the following `× ` matrices Ea,b,c, Fb, Kc:

Ea,b,c =


0 e1 0 . . . 0
0 0 e2 . . . 0
...

... e`−1
e` 0 0 . . . 0

 , (7.1)

Fb =


0 0 . . . b
1 0 . . . 0
0 1 0
...
0

...
0 1 0

 , (7.2)

Kc = c diag
(
1, q−2, . . . , q−2`+4, q−2`+2) .

It follows that the action of the Casimir element Cq is represented by the `×`matrix
Cq,a,b,c = diag

(
ab+ cq+c−1q−1

(q−q−1)2

)
.

Note that the actions of respectively E, F , K and Cq either are cyclic permuta-
tions of one-dimensional subspaces, or leave these subspaces invariant.

Let Θa,b,c be the map from Uq to M`(k) sending E to Ea,b,c, F to Fb and K to
Kc.

Case 2. Let d, f be non zero elements of k, with f2 6= 1. Then Ṽd,f is the
`-dimensional representation where E, F and K act in the following way. For ease
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of notation, let us set fi := [i] f
−1q−i+1−fqi−1

q−q−1 (1 6 i < `). Then the actions of E, F
and K on Ṽd,f are represented by the following `× ` matrices Ẽd, F̃f , K̃f :

Ẽd =


0 0 . . . d
1 0 . . . 0
0 1 0
...
0

...
0 1 0

 , (7.3)

F̃f =


0 f1 0 . . . 0
0 0 f2 . . . 0
...

... f`−1
0 0 0 . . . 0

 ,

K̃f = f diag
(
1, q2, . . . , q2`−4, q2`−2) .

Then the Casimir element Cq is represented by the `× ` matrix

C̃q,f = diag
(
fq−1 + f−1q

(q − q−1)2

)
.

Note that the action of Ẽd on an `-dimensional space is a cyclic permutation of
one-dimensional subspaces, whereas the action of F̃f is nilpotent.

We will denote by Θ̃d,f the map from Uq to M`(k) sending E to Ẽd, F to F̃f
and K to K̃f .

Fact 7.1. — [7, Theorem VI.5.5] or [8, 3.2] Any simple Uq-module of dimension
` is isomorphic to either

(1) Va,b,c with b 6= 0, or
(2) Va,0,c, with c 6= ±1,±q, · · · ,±q`−2, or
(3) Ṽd,±q1−j for 1 6 j < ` and d 6= 0.

In the following we will refer to k = C. We will use on one hand the family of
representations Θa,b,c with a, b, c all non-zero and c2 6= 1 and on the other hand the
family Θ̃d,f with d, f all non-zero and f2 6= 1.

8. The exponential maps on Uq, q a root of unity.

In this section we assume k = C, even though most of what we are going to
say can be carried out just assuming that k is algebraically closed. Let q denote a
primitive `th-root of unity, ` > 3, making the same adjustment as in the previous
section when ` is even (whence we can assume ` odd).

Let us put for simplicity from now on N+ = N− {0}.
For every triple (a, b, c) and pair (d, f) in C (as described in the previous section),

one can define exponential maps EXPa,b,c and ˜EXP d,f from Uq to GL`(C) by
composing

• the matrix exponential map exp` from M`(C) to GL`(C) and
• Θa,b,c (respectively Θ̃d,f ).
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Thus, for every u ∈ Uq,

EXPa,b,c(u) := exp`(Θa,b,c(u)) and ˜EXP d,f (u) := exp`(Θ̃d,f (u)).
Similarly to Proposition 6.1, we obtain that

(Uq,C, GL`(C), EXPa,b,c) and (Uq,C, GL`(C), ˜EXP d,f )
are exponential C-algebras. Moreover, if the parameters (a, b, c) (respectively (d, f))
are chosen such that the corresponding module Va,b,c (respectively Ṽd,f ) is simple,
then the map EXPa,b,c (respectively ˜EXP d,f ) is surjective (the argument is the
same as the one used in Proposition 6.2).

Now, we will vary the maps Θa,b,c along certain non principal ultrafilters W on
N3 in order to embed Uq into the corresponding non-principal ultrapower ofM`(C).
Notice once again that now ` is fixed, so it is the triple (a, b, c) to vary, ranging
over a suitable setting we are going to describe. Basically we want to find sufficient
conditions on a domain of variation for a, b, c in order to get, for every u 6= 0 in Uq,
that

Θa,b,c(u) 6= 0 for sufficiently many a, b, c (?)
(we will make this statement precise later).

The case of pairs (d, f) will be considered in the next section. However, for the
representations Θ̃d,f , we will only be able to show a statement similar to (?) for
certain elements of Uq,0 (see Lemma 9.1).

First let us consider the case of some u ∈ Uq,0 − {0}. Then u = K−n · p(Cq,K)
for some p(x1, x2) ∈ C[x1, x2]− {0} and n ∈ N. Let us write

p(x1, x2) =
N∑
j=0

sj(x2)xj1

with N ∈ N and the sj(x2) in C[x2]. We may assume that sN (x2) 6= 0. Recall that
the matrix Θa,b,c(u) is a diagonal matrix whose (i + 1)th entry on the diagonal,
with 0 6 i < `, is equal to c−nq2ni · p(ab+ cq+(cq)−1

(q−q−1)2 , cq
−2i)) where

p(ab+ cq + (cq)−1

(q − q−1)2 , cq
−2i) =

N∑
j=0

sj(cq−2i) (ab+ cq + (cq)−1

(q − q−1)2 )j .

This suggests the following change of variables

x′1 = x1 −
x′2 + x′2

−1

(q − q−1)2 , x′2 = x2q
2i+1,

that is,

x1 = x′1 + x′2 + x′2
−1

(q − q−1)2 , x2 = x′2q
−2i−1.

Thus, when (x1, x2) = (ab+ cq+(cq)−1

(q−q−1)2 , cq
−2i), one has (x′1, x′2) = (ab, cq). Observe

that, after this change of variables, the polynomial p(x1, x2) becomes a rational
function p′(x′1, x′2) of x′1 and x′2. However p′(x′1, x′2) can be written as a ratio-
nal function

∑N
j=0 tj(x′2)(x′1)j whose degree is still N and the coefficients tj(x′2)

are rational functions of x′2 with the only pole 0. Moreover tN (x′2) is a nonzero
polynomial in x′2, and indeed tN (x′2) = sN (x2q

2i+1).
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Therefore, whenever c ∈ C satisfies tN (cq−2i−1)) 6= 0, the polynomial p′(x′1, cq)
is non trivial and has at most N roots. So, for cofinitely many values of c this
polynomial p′(x′1, cq) is nonzero and for each of these values of c, for cofinitely
many values of r ∈ C,

p(r + cq + c−1q−1

(q − q−1)2 , c q−2i) 6= 0.

It follows that, if ab = r, then Θa,b,c(u) 6= 0 for cofinitely many values of c and,
given such an element c, for cofinitely many values of r.

Let Sc = {cn : n ∈ N}, Sr = {rn : n ∈ N} be countable subsets of pairwise
distinct elements of C. Assume also that, for every n, cn 6= 0, c2n 6= 1 and rn has
modulus bigger than 1. Next form a new set Sa consisting of complex number an
(n ∈ N) such that |an| > |rn| + n for all n. With any tuple n̄ = (n1, n2, n3) ∈ N3,
associate the tuple (cn1 , rn2 , an3) ∈ Sc × Sr × Sa ⊆ C3 and the representation
Θn̄ := Θan3 ,bn̄,cn1

with bn̄ := rn2
an3

.
Now let us define a family of subsets of N3:

SN,η,γ = {(n1, n2, n3) ∈ N3 : n1 > N, n2 > η(n1), n3 > γ(n2)},
where N ∈ N, η, γ : N→ N.

It is easily seen that this family of subsets has the finite intersection property.
In fact, given two such sets SNi,ηi,γi , 1 6 i 6 2, take

N = max{N1, N2}, η = max{η1, η2} and γ = max{γ1, γ2},

then SN,η,γ ⊆
⋂2
i=1 SNi,ηi,γi .

Let W be a non-principal ultrafilter on N3 containing these subsets SN,η,γ of N3

[1, Proposition 3.3.5].
From the above discussion, we deduce the following.

Lemma 8.1. — For every u ∈ Uq,0 − {0}, there exists Wu ∈ W such that
Θn̄(u) 6= 0 for all n̄ ∈Wu.

Proof. — Let u = K−n · p(Cq,K) with p(x1, x2) ∈ C[x1, x2]−{0}, n ∈ N. Given
n̄ = (n1, n2, n3), Θn̄(u) is a diagonal matrix whose (i+ 1)th entry on the diagonal
(0 6 i < `) is

c−nn1
q2ni p(rn2 +

cn1q + c−1
n1
q−1

(q − q−1)2 , cn1 q
−2i).

So for cofinitely many values of cn1 ∈ Sc, the rational function

p(x′1 +
cn1 q + c−1

n1
q−1

(q − q−1)2 , cn1 q
−2i)

is non trivial. Therefore for cofinitely many values of n2 ∈ Sr, we get that

c−nn1
q2ni p(rn2 +

cn1 q + c−1
n1
· q−1

(q − q−1)2 , cn1 q
−2i) 6= 0,

for any 0 6 i < `. �

Now we examine the general case.
Any element u of Uq can be written as a finite sum of the form

u0 +
∑
z∈N+

(F z · u−z + Ez · uz)
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with uz ∈ Uq,0 for all z ∈ N (so uz = 0 for almost all z ∈ Z).
Note that for n ∈ N and 0 6 j < `, we have Fn`+jb = bnF jb and En`+ja,b,c = enEja,b,c,

where e =
∏`
i=1 ei. Recall that E`−ja,b,c and F jb , for 1 6 j 6 `, induce the same

permutation on the weight subspaces.
So we will rewrite the element u as a finite sum of the form

(u0+
∑
t∈N+

F t`·u−t`+
∑
t∈N+

Et`·ut`)+
`−1∑
j=1

F j ·
∑
t∈N

F t`·u−`t−j+
`−1∑
j=1

E`−j ·
∑
t∈N

Et`·ut`+`−j

(8.1)
where uz ∈ Uq,0 for all z ∈ N. We get a Z/`Z-grading on Uq as follows:

Uq :=
`−1⊕
i=0

Ũq,i,

where
Ũq,0 := {w ∈ Uq : w = w0 +

∑
t∈N+

F t` · w−t` +
∑
t∈N+

Et` · wt`

for some wt`, w−t` ∈ Uq,0, t ∈ N+},
and for 0 < j < `,

Ũq,j := {w ∈ Uq : w = F j ·
∑
t∈N

F t` · w−t`−j + E`−j ·
∑
t∈N

Et` · wt`+`−j

for some w−t`−j , wt`+(`−j) ∈ Uq,0, t ∈ N+}.

Note that this grading has the property that Θn̄(Uq) :=
⊕`

i=0 Θn̄(Ũq,i). Given
our element u ∈ Uq, we write it as u =

∑`−1
i=0 ũi with ũi ∈ Ũq,i; so the various uz

occurring in the decomposition (8.1) place themselves correspondingly to the ũi,
according to the grading.

Let n̄ := (n1, n2, n3) ∈ N3, set

ei,n̄ := rn2 + [i]
cn1q

−i+1 − c−1
n1
qi−1

q − q−1 and en̄ :=
`−1∏
i=1

ei,n̄ · an3 .

Also, let us adopt the following notation: for M an `× ` matrix and 1 6 i, j 6 `,
M(i, j) is the coefficient on the i-th row and j-th column of M .

Then recall that Fbn̄(j + 1, j) = 1, for j = 1, · · · , ` − 1 and Fbn̄(1, `) = bn̄.
More generally, for 1 6 t < `, F tbn̄(j + t, j) = 1 whenever 1 6 j 6 ` − t and
F tbn̄(j, ` − t + j) = bn̄ for 1 6 j 6 t. Similarly, Ean3 ,bn̄,cn1

(i, i + 1) = ei,n̄ for
1 6 i 6 `− 1 and Ean3 ,bn̄,cn1

(`, 1) = an3 . Moreover

Etan3 ,bn̄,cn1
(`− t+ j, j) = e`−t+j,n̄ · e`−t+j+1,n̄ · . . . · e`+j−1,n̄, 1 6 j 6 t < `,

with the convention that the indices are calculated modulo ` (namely if `−t+j > `,
then it is equal to j − t) and for 1 6 t < `,

Etan3 ,bn̄,cn1
(j, j + t) = ej,n̄ · . . . · ej+t−1,n̄, 1 6 j 6 `− t.

Proposition 8.2. — Let n̄ ∈ N3, Θn̄ and W be defined as above. For any
u ∈ Uq−{0}, there existsWu ∈ W such that for all n̄ ∈Wu we have Θn̄(u) 6= 0. So,
the map [Θn̄]W : Uq →

∏
WM`(C) is a monomorphism of associative C-algebras.
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Proof. — Decompose u ∈ Uq as in (8.1), so u =
∑`−1

0 ũi with ũi ∈ Ũq,i. We are
going to calculate Θn̄(u). Let z0 be the highest positive integer such that either
u−z0 6= 0 or uz0 6= 0, provided that such an index exists. Otherwise put z0 = 0.
Write −z0 = −t0` − j0 with 0 6 j0 < ` in the former case, and z0 = t0` + ` − j0
with 1 6 j0 6 ` in the latter. When z0 = 0, put t0 = 0. For t ∈ N and 0 6 j < `,

Θn̄(Ej+`t) = etn̄E
j
an3 ,bn̄,cn1

, Θn̄(F j+`t) = F j+`tbn̄
= btn̄ F

j
bn̄
.

For z ∈ Z, denote by Vz,n̄ the diagonal matrix Θn̄(uz) (so equal to

K−szcn1
pz(Cq,an3 ,bn̄,cn1

,Kcn1
)

for some sz ∈ Z and a possibly zero polynomial pz(x1, x2) ∈ C[x1, x2]).
Then, for 0 < j < `, we have

Θn̄(ũj) = [Θn̄(F `−j)·(V−(`−j),n̄ + V−(`−j+`),n̄bn̄ + . . .+ V−(`−j+t0`),n̄b
t0
n̄ )+

+ Θn̄(Ej) · (Vj,n̄ + Vj+`,n̄en̄ + . . .+ Vj+t0`,n̄e
t0
n̄ )]

(8.2)

and for j = 0, we have

Θn̄(ũ0) = (V0,n̄ + V−`,n̄bn̄ + . . .+ V−`t0,n̄b
t0
n̄ + V`,n̄en̄ + · · ·+ V`t0,n̄e

t0
n̄ ).

Case 1. Suppose that ũ0 6= 0, namely that ut` 6= 0 for some t ∈ Z. Let t1 ∈ N+ be
maximal such that ut1` 6= 0, if such a positive integer exists, and t1 = 0 otherwise.
Similarly let t2 ∈ N be maximal such that u−t2` 6= 0, if there are such. (Note that
either there is a t1 > 0, or t2 > 0.) So there are cofinitely many cn1 such that for
all but finitely many rn2 , Θn̄(ut1`) 6= 0 and Θn̄(u−t2`) 6= 0. So by Lemma 8.1, we
are done if t1 = t2 = 0. Then assume that one of them is non zero.

First assume that t1 > 0. Fix a pair (cn1 , rn2) such that Θn̄(ut1`) 6= 0 and
Θn̄(u−t2`) 6= 0. Since |bn̄| < 1, we can bound the norm of the matrix V−`,n̄bn̄ +
. . .+ V−t2`,n̄b

t2
n̄ . Therefore for each fixed pair (cn1 , rn2), the sum

V0,n̄ + (V`,n̄en̄ + . . .+ Vt1`,n̄e
t1
n̄ ) + (V−`,n̄bn̄ + . . .+ V−t2`,n̄b

t2
n̄ ) (8.3)

is non zero for all but finitely an3 . Indeed, the modulus of the elements of Sa is
unbounded and if the sum (8.3) were equal to zero, then

|en̄| < max{1,
t1−1∑
j=1

‖V`j,n̄‖
‖V`t1,n̄‖

+
t2−1∑
t=0

‖V−`t,n̄‖
‖V`t1,n̄‖

}.

If t1 = 0, then by assumption t2 > 0. We proceed in a similar way with the sum

V0,n̄ + V−`,n̄bn̄ + . . .+ V−t2`,n̄b
t2
n̄ .

By assumption V0,n̄ and V−t2`,n̄ are non zero matrices and so for all but finitely bn̄
(equivalently for all but finitely many an3), this sum is non zero

Case 2. Assume that ũ0 = 0, that ũj0 6= 0 for some 0 < j0 < `, and uz = 0
either for all z > 0 or for all z < 0. Let z0 := `t0 + j0 in the former case and
z0 := `t0 + `− j0 in the latter, with t0 ∈ N.

Then Θn̄(u) is either of the form:

Θn̄(F j0) · (V−j0,n̄ + V−(j0+`),n̄bn̄ + . . .+ V−(j0+t0`),n̄b
t0
n̄ ) + . . .+

+ Θn̄(F ) · (V−1 + V−(1+`)bn̄ + . . .+ V−(1+t0`),n̄b
t0
n̄ )

(8.4)
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or of the form:

Θn̄(E) · (V1,n̄ + V1+`,n̄en̄ + . . .+ V1+t0`,n̄e
t0
n̄ ) + . . .+

+ Θn̄(E`−j0) · (V`−j0,n̄ + V`−j−0+`,n̄en̄ + . . .+ V`−j0+t0`,n̄e
t0
n̄ ).

(8.5)

It suffices to show that, with 0 < j0 < `,

• in the former case, when z0 = `t0 + j0,

V−j0,n̄ + V−(j0+`),n̄bn̄ + . . .+ V−(j0+t0`),n̄b
t0
n̄ 6= 0,

• in the latter case, when z0 = `t0 + `− j0,

V`−j0,n̄ + V`−j0+`,n̄en̄ + . . .+ V`−j0+t0`,n̄e
t0
n̄ 6= 0.

Let us deal here with the former case, as the other one is similar. Recall that the
(i+ 1)th entry on the diagonal (0 6 i < `) of the matrix V−(j0+t0`),n̄ is of the form

c−zn1
q2zi p(rn2 +

cn1q + c−1
n1
q−1

(q − q−1)2 , cn1 q
−2i),

for some z ∈ Z depending on −(j0 + t0`) and some rational function pz(x1, x2). So
for cofinitely many values of cn1 ∈ Sc, the rational function

pz(x′1 +
cn1 q + c−1

n1
q−1

(q − q−1)2 , cn1 q
−2i)

is non trivial. Therefore for cofinitely many values of n2 ∈ Sr, we get that

c−zn1
q2zi pz(rn2 +

cn1 q + c−1
n1
q−1

(q − q−1)2 , cn1 q
−2i) 6= 0.

So for such fixed value of (cn1 , rn2), the coefficient of bt0n̄ is non zero. Then we can
find cofinitely many bn̄, which correspond to cofinitely many values of an3 , such
that

∑t0
t=0 V−(t`+j0),n̄b

t
n̄ 6= 0.

So on an element of the ultrafilter W, Θn̄(ũj0) 6= 0 and this is enough because
of the direct sum decomposition of Θn̄(Uq).

Case 3. Assume that ũ0 = 0 and there exists z1 ∈ Z such that uz1 6= 0 and for
all z2 ∈ Z with z1z2 < 0 such that uz2 6= 0 we have z1 − z2 /∈ `Z. Then it suffices
to show that an expression of the above form (8.4) or (8.5) is non zero, which can
be done as in Case 2.

Case 4. Finally suppose that ũ0 = 0, and for all z1 with uz1 6= 0, there exists z2
with z1z2 < 0 such that uz2 6= 0 and z1− z2 ∈ `Z. So, in order to show that (8.2) is
non zero, we have to show that an expression of the following form, for some fixed
j with 1 6 j < `, is non zero:

Θn̄(F j) ·
t2∑
s=0

V−s`−j,n̄b
s
n̄ + Θn̄(E`−j) ·

t1∑
s=0

Vs`+`−j,n̄e
s
n̄



EXPONENTIATIONS OVER THE QUANTUM ALGEBRA Uq(sl2(C)) 67

where t1 is maximal such that ut1`+`−j 6= 0 and t2 is maximal such that u−t2`−j 6= 0.
The (j + t, t) coefficient of that matrix, with 1 6 t 6 `− j, is equal to

t2∑
s=0

p−j−s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(t−1)) bsn̄+

+ej+t,n̄ · ej+t+1,n̄ · . . . · e`+t−1,n̄ ·
t1∑
s=0

p`−j+s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(t−1))esn̄

(8.6)
with the convention that the indices are calculated modulo `.

As previously, with the values of cn1 and rn2 fixed, we can bound the norm of

t2∑
s=0

p−j−s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(t−1)) bsn̄.

When |an3 |, with an3 ∈ Sa increases, this norm remains bounded. Note that
an3 = e` always occurs exactly once as a factor of the product ej+t,n̄ · ej+t+1,n̄ ·
. . . ·e`+t−1,n̄ and the other factors remain constant, again whenever cn1 and rn2 are
fixed. Rewrite that product as an3 · e′n̄. Recall that the value of en̄

an3
only depends

on cn1 and rn2 .
We claim that if a coefficient of the form (8.6) is equal to zero, then the norm of

an3 is bounded, provided that we fix the value of cn1 , rn2 and choose it such that

p`−j+t1`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(t−1)) 6= 0 (?)

(which holds for cofinitely many values of cn1 and then of rn2). This will imply
that the expression (8.6) is different from zero on an element of W.

Assume that (?) holds. Then

an3 · e′n̄ · (
en̄
an3

)
t1
· p`−j+t1`(rn2 +

cn1q + c−1
n1
q−1

(q − q−1)2 , cn1q
−2(t−1)) =

− e′n̄ ·
t1−1∑
s=0

p`−j+s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(t−1)) · e

s
n̄

at1n3

−

−
t2∑
s=0

p−j−s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(t−1)) ·

rsn2

at1+s
n3

,

and we can bound in that case the norm of an3 as follows:

|an3 | 6 |e′n̄ · (
en̄
an3

)
t1
· p`−j+t1`(rn2 +

cn1q + c−1
n1
q−1

(q − q−1)2 , cn1q
−2(t−1))|−1·

· (|e′n̄| ·
t1−1∑
s=0
|p`−j+s`(rn2 +

cn1q + c−1
n1
q−1

(q − q−1)2 , cn1q
−2(t−1))| · | e

s
n̄

at1n3

|+

+
t2∑
s=0
|p−j−s`(rn2 +

cn1q + c−1
n1
q−1

(q − q−1)2 , cn1q
−2(t−1))| · |rsn2

|).
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We may apply a similar reasoning to the (t, `− j + t) coefficient of that matrix,
for 1 6 t 6 j; it is equal to

bn̄ ·
t2∑
s=0

p−j−s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(`−j+t−1)) · bsn̄+

+et,n̄ · . . . · et+`−j−1,n̄·
t1∑
s=0

p`−j+s`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(`−j+t−1)) · esn̄.

(8.7)
Again we choose a value of cn1 , rn2 such that

p`−j+t1`(rn2 +
cn1q + c−1

n1
q−1

(q − q−1)2 , cn1q
−2(`−j+t−1)) 6= 0

and we show that if the expression (8.7) is equal to zero, then one can bound the
value of an3 and so it only occurs finitely many times for a fixed value of cn1 , rn2 .
Note that in this case the value of et,n̄ ·. . .·et+`−j−1,n̄ remains constant for 1 6 t 6 j
whenever cn1 and rn2 are fixed. �

Given an ultrafilter W on N3 as in Definition 8.1, we denote by C∗ (respectively
R∗) the ultrapower of C (respectively R) modulo W.

First, we define a map ExpW from
∏
WM`(C) to

∏
W GL`(C), simply by

ExpW([An̄]W) := [exp`(An̄)]W ,

for An̄ ∈ M`(C) and n̄ ∈ N3. Note that
∏
WM`(C) ∼= M`(C∗) (respectively∏

W GL`(C) ∼= GL`(C∗)), so ExpW also defines a map from M`(C∗) to GL`(C∗).
Let us say that an element of M`(C∗) is infinitesimal if its norm is bounded by

any positive rational number, where the norm on M`(C) has been extended in a
natural way on M`(C∗) taking now its values in R∗.

Let us denote from now on, for ease of notation, an element [An̄]W of
∏
WM`(C)

simply as [An̄], omitting the subscript W.
We claim that if the norm ‖.‖ of (An̄)n̄∈N3 is bounded on an element of W, then

ExpW([An̄]) = [exp`(An̄)] = [
∞∑
j=0

Ajn̄
j! ]

can be viewed as the limit up to an infinitesimal element ofM`(C∗) of the sequence
(
∑m
j=0

[An̄]j
j! )m∈N. Indeed, let us check that the sequence in M`(C∗) of matrices

([
∑m
j=0

Ajn̄
j! ])m∈N is a Cauchy sequence (and so bounded).

In fact, for every n̄ ∈ N3 and m ∈ N,

‖
m∑
j=0

Ajn̄
j! ‖ 6

m∑
j=0

‖An̄‖j

j! 6 e‖An̄‖.

So

‖
m∑
j=0

[An̄]j

j! ‖ 6
m∑
j=0

‖[An̄]‖j

j! = [
m∑
j=0

‖An̄‖j

j! ] 6 [e‖An̄‖].
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For any ε > 0 in R, there exists a positive integerN such that for anym1 > m2 > N ,

‖
m1∑
j=0

[An̄]j

j! −
m2∑
j=0

[An̄]j

j! ‖ 6
‖[An̄]‖m2+1

(m2 + 1)! · ‖
m1∑

j=m2+1

(m2 + 1)! [An̄]j−m2−1

j! ‖

6
‖[An̄]‖m2+1

(m2 + 1)! ·
m1−m2−1∑

j=0
‖ [An̄]j

j! ‖

6
‖An̄‖m2+1

(m2 + 1)! · [e
‖An̄‖] 6 ‖[An̄]‖N+1

(N + 1)! · [e
‖An̄‖] 6 ε.

Finally

‖[
N∑
j=0

Ajn̄
j! ]− [exp(An̄)]‖ = [‖

N∑
j=0

Ajn̄
j! − exp(An̄)‖]

= [‖
∞∑

j=N+1

Ajn̄
j! ‖] 6 [‖An̄‖

N+1

(N + 1)! · e
‖An̄‖].

Let An̄ ∈ M`(C). Following the discussion of [10, Theorem 3.1], we calculate
exp`(An̄) (for the reader’s convenience, we reproduce it below). Using the Jordan
form of An̄, one writes An̄ (uniquely) as a sum Bn̄ +Cn̄, where Bn̄ commutes with
Cn̄, Bn̄ is diagonalizable and Cn̄ is nilpotent of class 6 `− 1. So, we can explicitly
calculate

exp`(An̄) = exp`(Bn̄) · exp`(Cn̄) = exp`(Bn̄) · (I + Cn̄ + . . .+ C`−1
n̄

(`− 1)! ).

Since Bn̄ is diagonalizable, there exists an invertible matrix Dn̄ such that

D−1
n̄ ·Bn̄ ·Dn̄ = diag(bn̄1, . . . , bn̄`),

where bn̄j ∈ C, 1 6 j 6 `, are the eigenvalues of Bn̄. So

exp`(Bn̄) = Dn̄ · diag(ebn̄1 , . . . , ebn̄`) ·D−1
n̄ .

Now,

[exp`(An̄)] = [Dn̄] · diag(e[bn̄1], . . . , e[bn̄`]) · [Dn̄]−1 · (I + [Cn̄] + . . .+ [Cn̄]`−1

(`− 1)! ).

In particular, (M`(C∗), ExpW , GL`(C∗)) is interpretable in the structure (C∗, x→
ex). Moreover, calculating the norm, we get

‖exp`([An])‖ 6 ‖diag(e[bn̄1], · · · , e[bn̄`])‖ · (
`−1∑
i=0

‖[Cn̄]‖i

i! ).

As previously, we define EXPW from Uq to
∏
W GL`(C)) ' GL`(C∗) by

EXPW(u) = [exp` ◦Θa,b,c(u)]W
and we deduce the following corollary.

Corollary 8.3. — (Uq,C, GL`(C∗), EXPW) is an exponential C-algebra and
as such embeds in (M`(C∗),C, GL`(C∗), ExpW).
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Proof. — As for Corollary 6.3, we use Łoś Theorem, Proposition 8.2 and the
properties of the exponential map in M`(C) (see for instance Proposition 3.1 in
[9]). �

On the image of Uq in GL`(C∗), we can say the following. Note that the trace
of Kc is equal to

c · (1 + q−2 + . . .+ q−2`+2) = c · 1− q−2`

1− q−2 = 0

and so the image of K by exp` ◦Θa,b,c will belong to SL`(C), as well as the images
of Ei, F j , for i, j ∈ Z− `.Z.

9. An analytic approach

In this section, we still work in C and assume that q is primitive root of unity
of degree ` > 2 (making the same adjustment as in the previous sections when ` is
even). We will use the theory of meromorphic functions with two complex variables
and get a partial but in some respects stronger result on the fact that the image of
certain non-zero elements of Uq,0 have a non-trivial image by Θ̃d,f for ”most” of the
choices of the complex coefficients (d, f). We thank Andrea Spiro for suggesting
this approach.

We will denote the closure of a subset A of C2 by Acl. Also, given a polynomial
f(x1, x2) ∈ C[x1, x2], we will denote its zeroset on C2 by

Z(f(x1, x2)) := {(a1, a2) ∈ C2 : f(a1, a2) = 0}.

So let u ∈ Uq,0 − {0}; it is of the form K−np(Cq,K) with

p(x1, x2) ∈ C[x1, x2]− {0},

and n ∈ Z. Let n ∈ Z to be the least n such that

(?) p(x1, x2) =
N∑
j=0

sj(x1)xj2, with s0(x1) 6= 0.

We will say that u ∈ Uq,0−{0} is prime if the polynomial p(x1, x2) is irreducible,
assuming it is in the form (?). In fact, since there is no extra work involved, we
will consider both representations Θa,b,c and Θ̃d,f simultaneously.

Recall that, if u ∈ Uq,0, then both matrices Θa,b,c(u) and Θ̃d,f (u) are diagonal
matrices where, for 0 6 i < `, the (i + 1)-th entry on the diagonal is equal to
respectively

• c−nq2nip(ab+ cq + (cq)−1

(q − q−1)2 , cq
−2i),

• f−nq−2nip(fq
−1 + f−1q

(q − q−1)2 , fq2i).

Lemma 9.1. — Let u ∈ Uq,0−{0} and assume that u is prime. Then for all but
finitely many f ∈ C, there is at most one non negative integer i < ` such that the
(i + 1)-th entry on the diagonal of the matrix Θ̃d,f (u) is equal to zero. Similarly,
given any a, b ∈ C, for all but finitely many c ∈ C, there is at most one i < ` such
that the (i+ 1)-th entry on the diagonal of the matrix Θa,b,c(u) is equal to zero.
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Note that if u ∈ Ud,f − {0} is not prime, then Θ̃d,f (u) may be equal to 0 for
infinitely many tuples (d, f) (actually for infinitely many f).

Proof. — Let G(x) := xq−1+x−1q
(q−q−1)2 and rewrite ab + cq+(cq)−1

(q−q−1)2 as ab + G(cq2).
Consider the two families of rational functions G1,i, G2,i : C→ C2 given by

G1,i(x) = (G(x), xq2i) and G2,i(x) = (ab+G(xq2), xq−2i)

for all x 6= 0 (where i < `). Then p ◦ G1,i : C → C and p ◦ G2,i : C → C are
rational functions with the only pole 0. This implies that each of them either has
only finitely many zeroes or is identically zero, and in the latter case the images of
G1,i, G2,i (and so the closure of these images) are included in Z(p(x1, x2)).

We claim that there is at most one i such that p ◦ G1,i is identically zero, and
similarly for p ◦G2,i. This is clearly enough for our purposes.

Assume towards a contradiction that this is false. Put for simplicity C? = C\{0}.
For i, j < `, i 6= j, we have both

G1,i(C?) ⊆ Z(p(x1, x2)) and G1,j(C?) ⊆ Z(p(x1, x2))

(similarly for G2,i and G2,j).
Observe that since q 6= 0, the Jacobian matrix

J(G1,i) =
(
dG(x)/dx

q2i

)
is nowhere zero and G1,i is a regular parametrization of the smooth complex
curve G1,i(C?) ⊂ C2. Since p(x1, x2) is irreducible, it follows that G1,i(C?)cl =
Z(p(x1, x2)). The same argument works for G1,j , G2,i and G2,j and shows that the
restrictions of G1,i, G1,j and of G2,i, G2,j , respectively, to suitable open sets can be
considered as pairs of (local) parametrizations of the same smooth complex curve
and there exist holomorphic changes of parameters H1,j,i(x) = G−1

1,j(G1,i(x)) and
H2,j,i(x) = G−1

2,j(G2,i(x)) (with x 6= 0).
Therefore G1,j(H1,j,i(x)) = G1,i(x) (respectively G2,j(H2,j,i(x)) = G2,i(x)). In

particular,
• G(H1,j,i(x)) = G(x) and H1,j,i(x)q2j = xq2i,
• ab+G(H2,j,i(x)q2) = ab+G(xq2) (consequently G(H2,j,i(x)q2) = G(xq2))
and H2,j,i(x) q−2j = xq−2i.

In the former case H1,j,i(x) = xq2i−2j and replacing it in the first equality we
get

xq2i−2jq−1 + x−1q−2i+2jq

(q − q−1)2 = xq−1 + x−1q

(q − q−1)2 .

Similarly, in the latter case, H2,j,i(x) = xq−2i+2j implies

xq−2i+2jq + x−1q2i−2jq−1

(q − q−1)2 = xq + x−1q−1

(q − q−1)2 .

Comparing the terms of the Laurent series development of the two rational func-
tions arising in these equalities, we get in both cases q2i−2j = 1 and hence a
contradiction, since either ` is odd and |(i− j)| < `, or ` > 2 is even but then ` is
half the order of q. �
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10. Approximation

In this section, using ultraproducts and the representations of Uq, we will relate
U and the quantum algebras Uq, for q a root of unity.

One known way to view U as a limit of the Uq’s (see [8, page 58] and [7, VI.2.2])
is to use another presentation of Uq involving one more generator, which allows to
set also the case q = 1. If Ũq denotes this new isomorphic presentation of Uq, one
gets U as a quotient of Ũ1/〈K − 1〉.

As recalled at the end of section 5, the Drinfeld-Jimbo algebra Uh(sl2(C)) [7,
XVII.2.3] is the C[[h]]-algebra generated by X,Y,H with

[H,X] = 2X, [H,Y ] = −2Y and [X,Y ] = ehH/2 − e−hH/2

eh/2 − e−h/2

[7, Proposition XVII.4.1]; it is topologically isomorphic to U(sl2(C))[[h]] [7, Theo-
rem XVIII.4.1].

For k = C, a heuristic way to see U as the limit of Uq for q → 1, is to proceed
as follows [8, pages 6, 57]. Recall that U as an associative C-algebra is generated
by X,Y,H and defining relations [H,X] = 2X, [H,Y ] = −2Y , [X,Y ] = H.

Now consider Uq with its generators E, F , K and K−1 and the corresponding
relations (2.1).

Following the presentation of the Drinfeld-Jimbo algebra, formally write q = eh/2

and make the change of variables K := ehH/2 where H is viewed as a new variable.
Let h go to 0. First, by differentiating with respect to h the relation

[K,E] = K ·E −E ·K = (K ·E ·K−1 −E) ·K = (q2 − 1) ·E ·K = (eh − 1) ·E ·K

one gets eh ·E ·ehH/2+(eh−1)·E ·H/2·ehH/2. Taking the value at h = 0, one obtains
on one hand E and on the other hand 1/2[H,E] when looking at [K,E], sinceH/2 is
equal to the derivative of K with respect to h, evaluated at h = 0. This establishes
the relation [H,E] = 2E. A similar calculation gives [H,F ] = −2F . Finally, if one
takes the value at h = 0 of the two members of the relation [E,F ] = K−K−1

q−q−1 , then
using L’Hôpital’s rule one gets [E,F ] = H. These are the relations of U (provided
we set X = E and Y = F ).

As said, here we point out a further relationship between U and the Uq, via
ultraproducts. We will assume that, for every ` > 2, a primitive `th root of unity
q` is chosen such that 1 < −i(q` − q−1

` ) < 2. More precisely, let q` = ei
2πl
` with

1 6 l < ` and l minimal such that the previous condition is fulfilled.
We take a non-principal ultraproduct of Uq` , ` ∈ N, over a non principal ultra-

filter W over N+. Denote the generators of Uq` by E`, F` and K`. Consider the
C-algebra homomorphism τ` from U to Uq` sending X to E`, Y to F` (and so H to
K`−K−1

`

q`−q−1
`

). Define the map τ := [τ`]W from U to
∏
W Uq` . Note that by composing

the map τ with the exponential maps that we have defined on Uq` , we get new
exponential maps on U .

Proposition 10.1. — The map τ : U →
∏
W Uq` is a monomorphism of

(associative) C-algebras.

Proof. — The fact that τ is a morphism of C-algebras is straightforward from the
definition. To prove injectivity, we proceed as follows. Recall that U , as a Z-graded
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algebra, can be written as an infinite sum of m-homogenous components, m ∈ Z,
namely U =

∑
m∈Z Um; furthermore note that, if m is positive, then Um = Xm ·U0

and, if m is negative, then Um = Y m · U0. Furthermore the 0-component U0
coincides with the ring of polynomials C[C,H] where C is the (classical) Casimir
element C = 2XY + 2Y X +H2 (so the generator of the center of U).

In Section 7, we defined, for each root of unity q`, representation maps Θa,b,c from
Uq` to M`(C). We will compose the map τ with the representation maps [Θa,b,c]W
from

∏
W Uq` to

∏
WM`(C). We will get in this way a map from U to

∏
WM`(C).

We will show that, for every u ∈ U − {0}, one can choose a, b, c ∈ C such that the
image of u under the composition [Θa,b,c]W ◦ τ is 6= 0 (whence τ(u) 6= 0). In other
words, now ` is allowed to vary while (a, b, c) is fixed, even if it may depend on the
element u we consider.

First, we will assume that u ∈ U0. Then u = p(C,H) where p(x1, x2) ∈
C[x1, x2]−{0}. Write p(x1, x2) =

∑D
h=0 sh(x1)xh2 , where sh ∈ C[x1], D is a natural

number and sD(x1) 6= 0. So the image

τ(p(C,H)) = p(τ(C), τ(H)) =
D∑
h=0

sh(τ(C)) · τ(H)h

in the ultraproduct is a polynomial in the image of H and its coefficients are
polynomials in the image of C.

As said, we claim that, under the hypothesis u = p(C,H) 6= 0, for a suitable
choice of a, b and c one has [Θa,b,c]W(p([τ`(C)]W , [τ`(H)]W)) 6= 0 and consequently

τ(p(C,H)) = p([τ`(C)]W , [τ`(H)]W) 6= 0.

To prove that, we evaluate the polynomials sh(x1) at

[2E`F` + 2F`E` + (
K` −K−1

`

q` − q−1
`

)
2

]W

on one hand and the polynomial

D∑
h=0

sh([2E`F` + 2F`E` +
K` −K−1

`

q` − q−1
`

2

]W)xh2

at [K`−K
−1
`

q`−q−1
`

]W on the other hand.
Observe that

[Θa,b,c]W(τ(p(C,H))) = [Θa,b,c(τ`(p(C,H)))]W

=
[
Θa,b,c

(
p

(
2E` · F` + 2F` · E` +

(K` −K−1
` )2

(q` − q−1
` )2 ,

K` −K−1
`

q` − q−1
`

))]
W

=
[
p
(

2Θa,b,c(E`) ·Θa,b,c(F`) + 2Θa,b,c(F`) ·Θa,b,c(E`)+

+
(Θa,b,c(K` −K−1

` ))2

(q` − q−1
` ))2 ,

Θa,b,c(K` −K−1
` )

q` − q−1
`

)]
W
.
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Now if we fix `, then for every j < ` the (j + 1, j + 1) entry of the diagonal matrix
Θa,b,c(τ`(p(C,H))) is of the form

p

2(ej + ej+1) +
(
cq−2j
` − c−1q2j

`

q` − q−1
`

)2

,
cq−2j
` − c−1q2j

`

q` − q−1
`

 =

=
D∑
h=0

sh

2(ej + ej+1) +
(
cq−2j
` − c−1q2j

`

q` − q−1
`

)2
 (

cq−2j
` − c−1q2j

`

q` − q−1
`

)m
,

with e0 = e`b = ab. Furthermore the (`, `) entry of the same matrix is

p

(
2(e`−1 + e`b) +

(
cq2
` − c−1q−2

`

q` − q−1
`

)2

,
cq2
` − c−1q−2

`

q` − q−1
`

)
.

We have to choose a, b and c ensuring that for cofinitely many values of `, some
entries of this matrix are non-zero.

First take c ∈ iR − {0} (and so c̄ = −c). Then the first diagonal entry of the
matrix (that corresponding to j = 0) is of the form

p(2(e1 + ab) + ( c− c
−1

q` − q−1
`

)2,
c− c−1

q` − q−1
`

)

where e1 = ab+ c−1−c
q`−q−1

`

since [1] = 1. Incidentally observe that

(?) 2(e1 + ab) + ( c− c
−1

q` − q−1
`

)2 = 4ab− 2 c− c−1

q` − q−1
`

+ ( c− c
−1

q` − q−1
`

)2.

It follows that, if a, b are chosen such that the product ab is in R, then

c− c−1

q` − q−1
`

∈ R and 2(e1 + ab) + ( c− c
−1

q` − q−1
`

)2 ∈ R.

So, whenever the (1, 1) entry of the matrix is 0, we find a common root of p(x1, x2)
and its complex conjugate p̄(x1, x2). Varying q` over a set of primitive roots of
unity with distinct imaginary parts and observing that c−c−1

q`1−q
−1
`1

6= c−c−1

q`2−q
−1
`2

when
`1 6= `2 we get infinitely many distinct common roots.

Case 1: p(x1, x2) and p̄(x1, x2) have no common irreducible factors. Our choice
of a, b and c takes care of that case. In fact, Bezout’s theorem, when applied to
the pair p(x1, x2) and p̄(x1, x2), ensures that the (1, 1) entry of the matrix has to
be non zero cofinitely many times.

Case 2: p(x1, x2) and its complex conjugate have an irreducible factor in com-
mon. So, they have a common factor with real coefficients. Let us write

p(x1, x2) := p0(x1, x2) · p1(x1, x2)

with p1(x1, x2) ∈ R[x1, x2] of degree > 0 and p0(x1, x2) ∈ C[x1, x2] − {0}. We
claim that for an appropriate choice of a, b and c, strengthening the previous one,
one gets that the value of p1(x1, x2) in the first entry of the matrix is non zero for
cofinitely many q` (which ultimately leads to Case 1 for p0(x1, x2)).

These further constraints on a, b and c are fixed as follows.
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For simplicity rename p1(x1, x2) as p(x1, x2) and write it as a polynomial in x1
with as coefficients polynomials in x2:

p(x1, x2) =
D′∑
n=0

tn(x2)xn1

where the various tn(x2) are polynomials with real coefficients and tD′(x2) 6= 0.
The previous parenthetical remark (?) suggests the following change of variables

x1 = 4x′1 − 2x′2 + (x′2)2, x2 = x′2.

In this way p(x1, x2) becomes a polynomial p′(x′1, x′2) that can be written as
D′∑
n

t̃n(x′2) 4n (x′1)n

for the same D′ as before (indeed t̃D′(x′2) = tD′(x2)).
Recall the way the q` have been chosen, as ei 2πl

` with 1 6 l < ` and l minimal
such that 1 < −i(q` − q−1

` ) < 2. We sometimes set for simplicity z` := 1
q`−q−1

`

.
Note that, just due to our assumptions on q`, 2−1 6 |z`| 6 1.

Now choose c such that for all `,
D′−1∧
n=0
|t̃n( c− c

−1

q` − q−1
`

)| < r2 and |t̃D′(
c− c−1

q` − q−1
`

)| > r1 > 0.

Let us explain why and how these values r1, r2 can be found.
Consider any polynomial g`(x) :=

∑k
n=0 αn z

n
` · xn, where αn ∈ R for every n

and αk 6= 0. First observe that, if we take |c− c−1| 6 r3 for some real r3 > 0, then
we can bound |

∑k
n=0 αn z

n
` (c − c−1)n| by

∑k
n=0 |αn| rn3 . Second, choose c − c−1

such that |c−c−1| > 2M , whereM := max{1,
∑k−1
n=0

|αn|
|αk| 2k−n|}. Let us distinguish

now two cases, according to whether αk is positive or not.
(i) αk > 0. For x a positive real, evaluate

αk x
k |z`|k − |

k−1∑
n=0

αn x
n zn` | = xk−1 |z`|n αk (x− |

k−1∑
n=0

αn
αk

zn−k` xn−k+1|).

If x > 2M , then

xk−1 |z`|k αk (x− |
k−1∑
n=0

αn
αk
· zn−k` · xn−k+1|) > αk 2−1Mk

and consequently |g`(c− c−1)| > αk 2−1Mk.
(ii) αk < 0. Then

|xk zk` αk +
k−1∑
n=0

αn x
n zn` | = |xk zk` (−αk) +

k−1∑
j=0

(−αn)xn zn` |,

and we are back to the previous case.
This explains r1 and r2.
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At this point it suffices to choose r = ab ∈ R such that

|r| > max{1, D′ · r2

r1
} > max{1,

D′−1∑
n=0

|t̃n( c−c
−1

q`−q−1
`

)|

|tD′( c−c
−1

q`−q−1
`

)|
}.

Suppose now that u /∈ U0. So there exists m 6= 0 such that um 6= 0. Let m be
maximal in absolute value such that um 6= 0. If m > 0, write um = Xm · pm(C,H)
and if m < 0, write um = Y m · pm(C,H), with pm(x1, x2) a non zero polynomial
with coefficients in C and pm(C,H) ∈ U0 − {0}. Set

Θa,b,c(F`) = Fb and Θa,b,c(E`) = Ea,b,c.

Then for ` > 2m, we have that Fmb and Ema,b,c have no entries in common.
If u has a non-zero component um with m > 0 (respectively m < 0), then

we consider the product of the two matrices Ema,b,c and pm(Θa,b,c(C),Θa,b,c(H))
(respectively Fmb and pm(Θa,b,c(C),Θa,b,c(H))). The nonzero entries of the corre-
sponding permutation matrix are of the form

ej · . . . · ej+m · p(2(ej+1 + ej) + (
cq−2j
` − c−1q2j

`

q` − q−1
`

)2,
cq−2j
` − c−1q2j

`

q` − q−1
`

)

and

b · p(2(ej+1 + ej) + (
cq−2j
` − c−1q2j

`

q` − q−1
`

)2,
cq−2j
` − c−1q2j

`

q` − q−1
`

),

respectively, with p(x1, x2) ∈ C[x1, x2] and 1 6 j 6 ` (with the convention that
j+m is calculated modulo `). So, it suffices to evaluate the coefficient corresponding
to the case when j = ` and we can apply the previous discussion. �
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