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LENGTH DERIVATIVE OF THE GENERATING FUNCTION OF
WALKS CONFINED IN THE QUARTER PLANE

THOMAS DREYFUS AND CHARLOTTE HARDOUIN

Abstract. In the present paper, we use difference Galois theory to study the nature of the
generating function counting walks with small steps in the quarter plane. These series are
trivariate formal power series Q(x, y, t) that count the number of walks confined in the first
quadrant of the plane with a fixed set of admissible steps, called the model of the walk.
While the variables x and y are associated to the ending point of the path, the variable t
encodes its length. In this paper, we prove that in the unweighted case, Q(x, y, t) satisfies an
algebraic differential relation with respect to t if and only if it satisfies an algebraic differential
relation with respect x (resp. y). Combined with [2, 3, 4, 9, 11], we are able to characterize
the t-differential transcendence of the 79 models of walks listed by Bousquet-Mélou and
Mishna.
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Introduction

Classifying lattice walks in restricted domains is an important problem in enu-
merative combinatorics. Recently much progress has been made in the study of
walks with small steps in the quarter plane. A small step model in the quar-
ter plane Z>0 × Z>0 is composed by a set of admissible cardinal directions D ⊂
{ , , , , , , , }. Given D, we consider the walks that start at (0, 0), with
directions in D, and that stay in the quarter plane, see for instance Figure 1.

For a given model, one defines qi,j,k to be the number of walks confined to
the first quadrant of the plane that begin at (0, 0) and end at (i, j) in k admis-
sible steps. The algebraic nature of the associated complete generating function
Q(x, y, t) =

∑∞
i,j,k=0 qi,j,kx

iyjtk captures many important combinatorial properties
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D =
{ }

Figure 1. An example of a lattice walk

of the model: symmetries, asymptotic information, and recursive relations of the
coefficients.

Among the 28 − 1 = 255 models in the first quadrant of the plane, Bousquet-
Mélou and Mishna proved in [4] that, after accounting for symmetries and elimi-
nating the trivial cases, walks in the half plane, and one dimensional cases, only 79
models remained. It is worth mentioning that the generating function is algebraic
in all the trivial cases, the half plane cases, and the one dimensional cases.

For any choice of a variable ? among x, y, t, one classifies the algebraic nature of
the generating series Q(x, y, t) with respect to ? as follows:

• Algebraic cases: The series Q(x, y, t) satisfies a nontrivial polynomial rela-
tion with coefficients in Q(x, y, t).

• Transcendental ?-holonomic cases: The series Q(x, y, t) is transcendental
and holonomic with respect to ?, i.e. there exists n ∈ Z>0, such that there
exist a0, . . . , an ∈ Q(x, y, t), not all zero, such that

0 =
n∑
`=0

a`
d

d?

`

Q(x, y, t).

• Nonholonomic d
d? -differentially algebraic cases: The series Q(x, y, t) is non-

holonomic and d
d? -differentially algebraic, i.e. there exists n ∈ Z>0 such that

there exists a nonzero multivariate polynomial P? ∈ Q(x, y, t)[X0, . . . , Xn]
with

0 = P?(Q(x, y, t), . . . , d
d?

n

Q(x, y, t)).
We stress out the fact that in the above definition, it is equivalent to require
that P? ∈ Q[X0, . . . , Xn], see Remark C.7.

• d
d? -differentially transcendental cases: The series is not d

d? -differentially
algebraic.

The authors of [2, 3, 4, 9, 11] proved that the algebraic nature of the generating
series was identical for the variables x and y. The classification of the models of
walks regarding the algebraic nature of their series with respect to the variables x
and y is the culmination of ten years of research and the works of many researchers
(see Figure 2 below).

Statement of the main result. In this paper, we address the question of the
classification with respect to the variable t and we prove that this classification
coincides with the classification with respect to x and y. There is a priori no
relation between the d

dx and d
dt differential algebraic properties of a function in
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Algebraic cases [4]

Transcendental d
dx -holonomic cases [3, 4, 15]

Nonholonomic d
dx -differentially algebraic cases ([2, 23, 26])

d
dx -differentially transcendental cases [9, 11]

Figure 2. Classification of the 79 models with respect to the x
and y-variables.

these two variables. For instance, the function tΓ(x) is holonomic with respect to
t but differentially transcendental with respect to x, thanks to Hölder’s result. In
that case, the fibration induced by t is “isotrivial”. The main difficulty in our case
is to show that such a situation does not happen and that the x- and t-algebraic
behavior are intrinsically connected.

Our main result is as follows:

Theorem 1 (Theorem 3.1 and Corollary 4.16 below). — For any of the 79
models of Figure 2, the complete generating function is d

dt -differentially algebraic
over Q if and only if it is d

dx -differentially algebraic over Q.

Theorem 1 is the corollary of the following proposition proved in the more general
setting of weighted walks that are walks whose directions are weighted (see § 2).
To any such a walk, one attaches an algebraic curve of genus zero or one called the
kernel curve and a group of automorphisms of that curve called the group of the
walk (see § 2). The following holds.

Theorem 2 (Theorems 3.1 and 4.14 below). — For a genus zero kernel curve
attached to the models (G0), the generating series is d

dt -differentially transcendental
overQ. For a genus one kernel curve with infinite group of the walk, if the generating
series is d

dt -differentially algebraic over Q, then it is d
dx -differentially algebraic over

Q.

In [11], the authors proved that for a genus zero kernel curve attached to the
models (G0), the generating series was d

dx -differentially transcendental over Q. The
authors of [2] proved that the nine nonholomic d

dx -differentially algebraic models of
Figure 2 were also d

dt -differentially algebraic over Q by giving an explicit description
of the series in terms of analytic invariants. In § 4.4, we will discuss how the
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construction of [2] and the results of [18] have been used in [8] to show that the
second statement of Theorem 2 is in fact an equivalence.

Strategy of the proof. The classification results of Figure 2 come from many
approaches: probabilistic methods, combinatorial classification, computer algebra
and “Guess and Prove”, analysis and boundary value problems, and more recently
difference Galois theory and algebraic geometry. The analytic approach consists
in studying the asymptotic growth of the coefficients of the generating function,
or else showing that it has an infinite number of singularities, in order to prove
its nonholonomicity. This approach also allows for the study of some important
specializations of the complete generating function as for instance Q(1, 1, t) the
generating function for the number of nearest-neighbor walks in the first quadrant
with steps from { , , , , } (see [26, 27]). Though very powerful, these analytic
techniques are unable to detect the differentially algebraic generating functions
among the nonholonomic ones. For instance, the generating function

∏∞
k=1

1
(1−xk)

counting the number of partitions has an infinite number of singularities, and yet
is d

dx -differentially algebraic.
In order to detect these more subtle kinds of functional dependencies it is nec-

essary to use new arguments that focus on the functional equation satisfied by the
complete generating function. Indeed, the combinatorial decomposition of a walk
into a shorter walk followed by an admissible step translates into a functional equa-
tion for the generating function. Following the ideas of Fayolle, Iasnogorodski and
Malyshev [14], the authors of [23] and [11] specialized this functional equation to
the so-called kernel curve to find a linear discrete equation: a linear q-difference
equation in the genus zero case and a shift difference equation in genus one. Dif-
ference Galois theory allowed then to characterize the differentially transcendental
complete generating function ([9, 11]) whereas the clever use of Tutte invariants
produces explicit differential algebraic relations for the 9 nonholomic but differen-
tially algebraic cases ([2]). Unfortunately, all the above methods for proving the
differential transcendence are only valid for a fixed value of the parameter t in the
field of complex numbers. This allowed the authors to consider the kernel curve
as a complex algebraic curve but prevented them to study the variations of the
parameter t.

Our work relies on a nonarchimedean uniformization of the kernel curve, which
we consider as an algebraic curve over Q(t). We use here the formalism of Tate
curves over Q(t) as in [30] to show that for both situations, genus one and zero, the
differential algebraic properties of the complete generating functions are encoded
by the differential algebraic properties of a solution of a rank one nonhomogeneous
linear q-difference equation which unifies the genus zero and the genus one cases.
Then, we generalize some Galoisian criterias for q-difference equations of [17] to
prove Theorem 3.1 and Theorem 4.14 below.

Organization of the paper. The paper is organized as follows. In Section 1, we
introduce the weighted walks in the quarter plane and their generating series. In
Section 2 we present some reminders and notations for walks in the quarter plane. In
Section 3 we consider walks with genus zero kernel curve while Section 4 deals with
the genus one case. Since this paper combines many different fields, nonarchimedian
uniformization, combinatorics, and Galois theory, we choose to postpone many
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technical intermediate results to the appendices. This should allow the reader to
understand the articulation of our proofs in Sections 3 and 4 in three steps without
being lost in too many technicalities. These three steps are the uniformization
of the kernel and the construction of a linear q-difference equation, the Galoisian
criteria, and finally, the resolution of telescoping problems. Appendix A is devoted
to the nonarchimedean estimates that we used in the uniformization procedure.
Appendix B contains some reminders on special functions on Tate curves and their
normal forms. Appendix C proves the Galoisian criteria mentioned above. Finally,
Appendix D studies the transcendence properties of special functions on Tate curves
which will be used for the descent of our telescoping equations.

1. The walks in the quadrant

Let us introduce the generating function Q(x, y, t) of a walk confined in the
quarter plane.

The cardinal directions of the plane { , , , , , , , } are identified with
pairs of integers (i, j) ∈ {0,±1}2\{(0, 0)}. A walk W in the quarter plane Z2

>0 is a
sequence of points (Mn)n∈Z>0 such that

• it starts at (0, 0), that is, M0 = (0, 0);
• for all n ∈ Z>0, the point Mn belongs to the quadrant Z>0 × Z>0;
• for all n ∈ Z>0, the vector Mn+1 −Mn belongs to a given subset D of the
set of cardinal directions.

Fixing a family of elements (di,j)(i,j)∈{0,±1}2 of Q ∩ [0, 1] such that
∑
i,j di,j = 1,

one can choose to weight the model of the walk in order to add a probabilistic flavor
to our study. For (i, j) ∈ {0,±1}2\{(0, 0)} (resp. (0, 0)), the element di,j can be
viewed as the probability for the walk to go in the direction (i, j) (resp. to stay at
the same position). In that case, the di,j are called the weights and the model is
called a weighted model.

Remark 1.1. — For simplicity, we assume that the weights di,j belong to Q.
However, we would like to mention that any of the arguments and statements
below will hold with arbitrary real weights in [0, 1]. One just needs to replace the
field Q with the field Q(di,j).

The set of steps D of the walk is the set of cardinal directions with nonzero
weight, that is,

D = {(i, j) ∈ {0,±1}2|di,j 6= 0}.
A model is unweighted if d0,0 = 0 and if the nonzero di,j ’s all have the same

value.

Remark 1.2. — In what follows we will represent model of walks with arrows.
For instance, the family of models represented by

or
{

, , ,

}
,

correspond to models with d1,1, d1,−1, d0,1, d−1,−1 6= 0, d1,0 = d0,−1 = d−1,1 =
d−1,0 = 0, and where nothing is assumed on the value of d0,0. In the following
results, the behavior of the kernel curve never depends on d0,0. This is the reason
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why, to reduce the amount of notations, we have decided not to mention d0,0 in the
graphical representation of the model.

The weight of the walk is defined to be the product of the weights of its component
steps. For any (i, j) ∈ Z2

>0 and any k ∈ Z>0, we let qi,j,k be the sum of the weights
of all walks reaching the position (i, j) from the initial position (0, 0) after k steps.
We introduce the corresponding trivariate generating function

Q(x, y, t) :=
∑

i,j,k>0
qi,j,kx

iyjtk.

Note that the generating function is not exactly the same as the one that we
defined in the introduction. To recover the latter, we should take di,j ∈ {0, 1} and
di,j = 1 if and only if the corresponding direction belongs to D. Fortunately, the
assumption

∑
i,j di,j = 1 can be relaxed by rescaling the t-variable, and the results

of the present paper stay valid for the generating function of the introduction since
both generating functions have the same nature.

The kernel polynomial of a weighted model (di,j)i,j∈{0,±1}2 is defined by
K(x, y, t) := xy(1− tS(x, y)) (1.1)

where
S(x, y) =

∑
(i,j)∈{0,±1}2 di,jx

iyj

= A−1(x) 1
y +A0(x) +A1(x)y

= B−1(y) 1
x +B0(y) +B1(y)x,

(1.2)

and Ai(x) ∈ x−1Q[x], Bi(y) ∈ y−1Q[y].
By [11, Lemma 1.1], see also [4, Lemma 4], the generating function Q(x, y, t)

satisfies the following functional equation:
K(x, y, t)Q(x, y, t) = xy + F 1(x, t) + F 2(y, t) + td−1,−1Q(0, 0, t), (1.3)

where
F 1(x, t) := K(x, 0, t)Q(x, 0, t), and F 2(y, t) := K(0, y, t)Q(0, y, t).

Remark 1.3. — We shall often use the following symmetry argument between
x and y. Exchanging x and y in the kernel polynomial amounts to consider the
kernel polynomial of a weighted model D′ := {(i, j) such that (j, i) ∈ D} with
weights d′i,j := dj,i.

We need to discard some degenerate cases. Following [14], we have the following
definition.

Definition 1.4. — A weighted model is called degenerate if one of the following
holds:

• K(x, y, t) is reducible as an element of the polynomial ring C[x, y],
• K(x, y, t) has x-degree less than or equal to 1,
• K(x, y, t) has y-degree less than or equal to 1.

The following proposition gives very simple conditions on D to decide whether
a weighted model is degenerate or not.

Proposition 1.5 (Lemma 2.3.2 in [14]). — A weighted model is degenerate if
and only if at least one of the following holds:
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(1) There exists i ∈ {−1, 1} such that di,−1 = di,0 = di,1 = 0. This corresponds
to walks with steps supported in one of the following configurations

(2) There exists j ∈ {−1, 1} such that d−1,j = d0,j = d1,j = 0. This corre-
sponds to walks with steps supported in one of the following configurations

(3) All the weights are zero, with the possible exception of {d1,1, d0,0, d−1,−1}
or {d−1,1, d0,0, d1,−1}. This corresponds to walks with steps supported in
one of the following configurations

Note that we only discard trivial cases, walks in the half plane, and one dimen-
sional problems as explained in [4]. For all the degenerate cases, the generating
function Q(x, y, t) is algebraic.

From now on, we shall always assume that the weighted model under consider-
ation is nondegenerate.

2. Notations and preliminaries

The goal of this section is to introduce some basic properties of walks in the
quarter plane. In § 2.1, we attach to any walk a kernel curve, which is an algebraic
curve defined over Q[t]. Associated to this curve, one introduces in § 2.2 a subgroup,
called the group of the walk, of its group of automorphisms. This curve has been
intensively studied as an algebraic curve over C by fixing a morphism from Q[t]
to C. For instance, [14] is concerned with t = 1 whereas the papers [9] and [12]
focus respectively on t ∈ C transcendental over Q and t ∈]0, 1[. Unfortunately,
specializing t even generically does not allow to study the t-dependencies of the
generating function. In this paper, we do not work with a specialization of t. This
forces us to move away from the archimedean framework of the field of complex
numbers and to consider the kernel curve over a suitable valued field extension of
Q(t) endowed with the valuation at 0.

2.1. The kernel curve. The kernel polynomial may be seen as a bivariate polyno-
mial in x, y with coefficients in Q(t). The latter is a valued field endowed with the
valuation at zero. It is neither algebraically closed nor complete. In order to use the
theory of Tate curves, one needs to consider a complete algebraically closed field
extension of Q(t). The field of Puiseux series with coefficients in Q is algebraically
closed but not complete.

Therefore, we consider here the field C of Hahn series or Malcev-Neumann series
with coefficients in Q, and monomials from Q. We recall that a Hahn series f is a
formal power series

∑
γ∈Q cγt

γ with coefficients cγ in Q and such that the subset
{γ|cγ 6= 0} is a well ordered subset of Q. The valuation v0(f) of the Hahn series
f =

∑
γ∈Q cγt

γ ∈ C is the smallest element of the subset {γ|cγ 6= 0}. The field
C is algebraically closed by [25, Theorem 1] and spherically complete with respect
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to the valuation at zero and thereby complete (see [1, Corollaries 2.2.7 and 3.2.9]).
Let us fix once for all α ∈ R such that 0 < α < 1. For any f ∈ C, we define the
norm of f as |f | = αv0(f).

To any weighted model, we attach a curve E, called the kernel curve, that is
defined as the zero set in P1(C)×P1(C) of the following homogeneous polynomial

K̃(x0, x1, y0, y1, t) = x0x1y0y1 − t
2∑

i,j=0
di−1,j−1x

i
0x

2−i
1 yj0y

2−j
1 = x2

1y
2
1K
(x0

x1
,
y0

y1
, t
)
.

Remark 2.1. — In [11], the authors specialize the variable t as a transcendental
complex number. Then, they study the kernel curve as a complex algebraic curve
in P1(C) × P1(C). In this work, we shall use any algebraic geometric result of
[11] by appealing to Lefschetz Principle: every true statement about an algebraic
variety defined over C remains true when C is replaced by an algebraically closed
field of characteristic zero.

Put K̃(x0, x1, y0, y1, t) =
∑2
i,j=0Ai,jx

i
0x

2−i
1 yj0y

2−j
1 , where Ai,j = −tdi−1,j−1 if

(i, j) 6= (1, 1) and A1,1 = 1− td0,0. The partial discriminants of K̃(x0, x1, y0, y1, t)
are defined as the discriminants of the second degree homogeneous polynomials
y 7→ K̃(x0, x1, y, 1, t) and x 7→ K̃(x, 1, y0, y1, t), respectively, i.e.

∆x(x0, x1) =
( 2∑
i=0

xi0x
2−i
1 Ai,1

)2
− 4
( 2∑
i=0

xi0x
2−i
1 Ai,0

)
×
( 2∑
i=0

xi0x
2−i
1 Ai,2

)

∆y(y0, y1) =
( 2∑
j=0

yj0y
2−j
1 A1,j

)2
− 4
( 2∑
j=0

yj0y
2−j
1 A0,j

)
×
( 2∑
j=0

yj0y
2−j
1 A2,j

)
.

Introduce

D(x) := ∆x(x, 1) =
4∑
j=0

αjx
j and E(y) := ∆y(y, 1) =

4∑
j=0

βjy
j , (2.1)

where
α4 =

(
d2

1,0 − 4d1,1d1,−1
)
t2

α3 = 2t2d1,0d0,0 − 2td1,0 − 4t2(d0,1d1,−1 + d1,1d0,−1)
α2 = 1 + t2d2

0,0 + 2t2d−1,0d1,0 − 4t2(d−1,1d1,−1 + d0,1d0,−1 + d1,1d−1,−1)− 2td0,0

α1 = 2t2d−1,0d0,0 − 2td−1,0 − 4t2(d−1,1d0,−1 + d0,1d−1,−1)
α0 =

(
d2
−1,0 − 4d−1,1d−1,−1

)
t2

β4 =
(
d2

0,1 − 4d1,1d−1,1
)
t2

β3 = 2t2d0,1d0,0 − 2td0,1 − 4t2(d1,0d−1,1 + d1,1d−1,0)
β2 = 1 + t2d2

0,0 + 2t2d0,−1d0,1 − 4t2(d1,−1d−1,1 + d1,0d−1,0 + d1,1d−1,−1)− 2td0,0

β1 = 2t2d0,−1d0,0 − 2td0,−1 − 4t2(d1,−1d−1,0 + d1,0d−1,−1)
β0 =

(
d2

0,−1 − 4d1,−1d−1,−1
)
t2.

(2.2)
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The discriminants ∆x(x0, x1),∆y(y0, y1) are homogeneous polynomials of degree 4.
Their Eisenstein invariants can be defined as follows:

Definition 2.2 (§2.3.5 in [13]). — For any homogeneous polynomial of the
form

f(x0, x1) = a0x
4
1 + 4a1x0x

3
1 + 6a2x

2
0x

2
1 + 4a3x

3
0x1 + a4x

4
0 ∈ C[x0, x1],

we define the Eisenstein invariants of f(x0, x1) as
• D(f) = a0a4 + 3a2

2 − 4a1a3
• E(f) = a0a

2
3 + a2

1a4 − a0a2a4 − 2a1a2a3 + a3
2

• F (f) = 27E(f)2 −D(f)3.

Since C is algebraically closed of characteristic zero, we can apply [13, §2.4] to
the kernel curve. The following proposition characterizes the smoothness of the
kernel curve in terms of the invariants F (∆x), F (∆y).

Proposition 2.3 (Proposition 2.4.3 in [13] and Proposition 2.1 in [10]). — The
following statements are equivalent:

• The kernel curve E is smooth, i.e. it has no singular point;
• F (∆x) 6= 0;
• F (∆y) 6= 0.

Furthermore, if E is smooth then it is an elliptic curve with J-invariant given by
the element J(E) ∈ C such that

J(E) = D(∆y)3

−F (∆y) .

Otherwise, if E is nondegenerate and singular, E has a unique singular point and
is a genus zero curve.

We define the genus of a weighted model as the genus of the associated kernel
curve E. We recall the results obtained in [14, Theorem 6.1.1] and [10, Corol-
lary 2.6], that classify all the weighted models attached to a genus zero kernel.

Theorem 2.4. — Any nondegenerate weighted model of genus zero has steps
included in one of the following 4 sets of steps:

Otherwise, for any other nondegenerate weighted model, the kernel curve E is an
elliptic curve.

Remark 2.5. — The walks corresponding to the fourth configuration never enter
the quarter-plane. As described in [4, §2.1], if we consider walks corresponding to
the second and third configurations we are in the situation where one of the quarter
plane constraints implies the other. In the last three configurations, the generating
function is algebraic. So the only interesting nondegenerate genus zero weighted
models have steps included in

Note that due to Proposition 1.5, the anti-diagonal steps have nonzero attached
weights.
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Moreover, by Theorem 2.4, combined with Proposition 1.5, the nondegenerate
weighted models of genus one are the walks where there are no three consecutive
cardinal directions with weight zero. Or equivalently, this corresponds to the situ-
ation where the set of steps is not included in any half plane.

Thanks to Theorem 2.4, one can reduce our study to two cases depending on
the genus of the kernel curve attached to a nondegenerate weighted model. The
following lemma proves that when the kernel curve is of genus one, its J-invariant
has modulus strictly greater than 1. This property allows us to use the theory of
Tate curves in order to analytically uniformize the kernel curve.

Lemma 2.6. — When E is smooth, the invariant J(E) belongs to Q(t) and is
such that |J(E)| > 1, where | | denotes the norm of (C, | |).

Proof. — At t = 0, ∆y(y0, y1) reduces to y2
0y

2
1 . This proves that the reduction of

D(∆y) (resp. E(∆y)) at t = 0 is 1
12 (resp. 1

63 ). One concludes that F (∆y) vanishes
for t = 0. By Proposition 2.3, J(E) ∈ Q(t) has a strictly negative valuation at
t = 0. Thus, |J(E)| > 1. �

2.2. The automorphism of the walk. Following [4, §3] or [20, §3], we introduce
the involutive birational transformations of P1(C)×P1(C) given by

i1(x, y) =
(
x,
A−1(x)
A1(x)y

)
and i2(x, y) =

(B−1(y)
B1(y)x , y

)
,

(see § 1 for the significance of the Ai, Bi’s).
They induce two involutive automorphisms ι1, ι2 : E 99K E given by

ι1([x0 : x1], [y0 : y1]) =
(

[x0 : x1],
[
A−1(x0

x1
)

A1(x0
x1

)y0
y1

: 1
])
,

and ι2([x0 : x1], [y0 : y1]) =
([

B−1(y0
y1

)
B1(y0

y1
)x0
x1

: 1
]
, [y0 : y1]

)
.

Note that ι1 and ι2 are nothing but the vertical and horizontal switches of E, see
Figure 3. That is, for any P = (x, y) ∈ E, we have

{P, ι1(P )} = E ∩ ({x} ×P1(C)) and {P, ι2(P )} = E ∩ (P1(C)× {y}).

The automorphism of the walk σ is defined by

σ = ι2 ◦ ι1.

The following holds.

Lemma 2.7 (Lemma 3.3 in [10]). — Let P ∈ E. The following statements are
equivalent:

• P is fixed by σ;
• P is fixed by ι1 and ι2;
• P is the only singular point of E, and E is of genus zero.
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•

•

•

•

•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
E

Figure 3. The maps ι1, ι2 restricted to the kernel curve E

3. Generating functions for walks, genus zero case

In this section, we fix a nondegenerate weighted model of genus zero. Following
Remark 2.5, after eliminating duplications of trivial cases and the interchange of x
and y, we should focus on walks W arising from the following 5 sets of steps:

(G0)

A function f(x, y, t) ∈ Q[[x, y, t]] is ( d
dx ,

d
dt )-differentially algebraic over Q if there

exists a nonzero polynomial P with coefficients in Q such that

P (f(x, y, t), d
dx
f(x, y, t), d

dt
f(x, y, t), . . . ) = 0.

The function f(x, y, t) is ( d
dx ,

d
dt )-differentially transcendental over Q otherwise.

Note that if f is d
dt -differentially algebraic over Q then it is ( d

dx ,
d
dt )-differentially

algebraic over Q. We define similarly the notion of ( ddy ,
d
dt )-differential algebraicity.

In this section, we prove the following theorem:

Theorem 3.1. — For any weighted model listed in (G0), the generating func-
tion Q(x, 0, t) is ( d

dx ,
d
dt )-differentially transcendental over Q.

For any weighted model listed in (G0), the generating function Q(0, y, t) is
( ddy ,

d
dt )-differentially transcendental over Q.

Theorem 3.1 implies the d
dt -differential transcendence of the complete generating

function.

Corollary 3.2. — For any weighted model listed in (G0), the generating func-
tion Q(x, y, t) is ( d

dx ,
d
dt ) and ( ddy ,

d
dt )-differentially transcendental over Q. There-

fore, Q(x, y, t) is d
dt -differentially transcendental over Q.

Proof of Corollary 3.2. — Suppose to the contrary that Q(x, y, t) is ( d
dx ,

d
dt )-

algebraic over Q. Let P be a nonzero polynomial with coefficients in Q such that
P (Q(x, y, t), ddxQ(x, y, t), ddtQ(x, y, t), . . . ) = 0. Specializing at y = 0 this relation
and noting that di

dxi
dj

dtj (Q(x, 0, t)) is the specialization of di

dxi
dj

dtj (Q(x, y, t)), one finds
a nontrivial differential algebraic relation for Q(x, 0, t) in the derivatives d

dx and d
dt .
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This contradicts Theorem 3.1. The proof for the ( ddy ,
d
dt )-differential transcendence

is similar. �

As detailed in the introduction, our proof of Theorem 3.1 has three major steps:
Step 1: we attach to the incomplete generating functions Q(x, 0, t) and Q(0, y, t)

some auxiliary functions which share the same differential behavior than
the generating series but satisfy simple q-difference equations. This is done
via the uniformization of the kernel curve (see § 3.1 and § 3.2).

Step 2: we apply difference Galois theory to the q-difference equations satisfied by
the auxiliary functions in order to relate the differential algebraicity of the
incomplete generating functions to the existence of telescoping relations.
These telescoping relations are of the form (3.7) below.

Step 3: we prove that there is no such telescoping relation. This allows us to con-
clude that the generating series is d

dt -differentially transcendental over Q
(see § 3.3).

3.1. Uniformization of the kernel curve. With the notation of §2, especially
(2.2), any weighted model listed in (G0) satisfies α0 = α1 = β0 = β1 = 0. Moreover,
since the weighted model is nondegenerate, one finds that the product d1,−1d−1,1
is nonzero. Furthermore,

−1 + d0,0t±
√

(1− d0,0t)2 − 4d1,−1d−1,1t2 6= 0.

The uniformization of the kernel curve of a weighted model listed in (G0) is given
by the following proposition.

Proposition 3.3 (Propositions 1.5 in [11]). — Let us consider a weighted
model listed in (G0) and let E be its kernel curve. There exist λ ∈ C∗ and a
parametrization φ : P1(C)→ E with

φ(s) = (x(s), y(s)) =
(

4α2√
α2

3 − 4α2α4(s+ 1
s )− 2α3

,
4β2√

β2
3 − 4β2β4( sλ + λ

s )− 2β3

)
,

such that
• φ : P1(C) \ {0,∞} → E \ {(0, 0)} is a bijection and φ−1((0, 0)) = {0,∞};
• The automorphisms ι1, ι2, σ of E induce automorphisms ι̃1, ι̃2, σq of P1(C)

via φ that satisfy ι̃1(s) = 1
s , ι̃2(s) = q

s , σq(s) = qs, with λ2 = q ∈ {q̃, q̃−1}
and

q̃ =
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
∈ C∗.

Thus, we have the commutative diagrams

E
ιk // E

P1(C)

φ

OO

ι̃k
// P1(C)

φ

OO and E
σ // E

P1(C)

φ

OO

σq
// P1(C)

φ

OO

The following estimate on the norm of q̃ holds:

Lemma 3.4. — We have |q̃| > 1.
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Proof. — We consider the expansion as a Puiseux series of q̃. Since the numer-
ator of q̃ goes to −2 when t goes to 0 and the denominator tends to 0 when t
tends to 0, we find that the valuation of q̃ at t equal zero is negative, which gives
|q̃| > 1. �

Example 3.5. — When d0,0 = 0, the Puiseux expansion of q̃ at 0 is particularly
simple. For instance we find, with d := d1,−1d−1,1, the following expansion:

q̃ = 1 +
√

1− 4dt2

1−
√

1− 4dt2
= 1

dt2
− 2− dt2 − 2d2t4 − 5d3t6 − 14d4t8 +O(t10).

3.2. Meromorphic continuation of the generating functions. In this para-
graph, we combine the functional equation (1.3) with the uniformization of the
kernel curve obtained above to meromorphically continue the generating function.

We define the norm of an element b = [b0 : b1] ∈ P1(C) as follows: if b1 6= 0, we
set |b| = | b0

b1
| and |[1 : 0]| =∞ by convention. Since |t| < 1, the generating function

Q(x, y, t) as well as F 1(x, t), F 2(y, t) converge for any (x, y) ∈ P1(C)×P1(C) such
that |x| and |y| are smaller than or equal to 1. On that domain, they satisfy

K(x, y, t)Q(x, y, t) = xy + F 1(x, t) + F 2(y, t) + td−1,−1Q(0, 0, t). (3.1)
We claim that there exist two positive real numbers c0, c∞ such that φ maps

the disks U0 = {s ∈ P1(C)||s| < c0} and U∞ = {s ∈ P1(C)||s| > c∞} into the
domain U defined by {(x, y) ∈ E such that |x| 6 1 and |y| 6 1}. Indeed, the αi
and βi are of norm smaller than or equal to 1 and |α2| = 1 (see (2.2)). Thus, if
|s| < min(1, |

√
α2

3 − 4α2α4|), then

|x(s)| =
∣∣∣∣ 4α2s√

α2
3 − 4α2α4(s2 + 1)− 2α3s

∣∣∣∣ = |4α2s|
|
√
α2

3 − 4α2α4|
< 1.

An analogous reasoning for y(s) shows that when |s| is sufficiently small, we find
|x(s)|, |y(s)| 6 1. Similarly, one can prove that, when |s| is sufficiently big, one has
|x(s)|, |y(s)| 6 1. This proves our claim.

We set F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t). Based on the above, these
functions are well defined on U0 ∪ U∞. Evaluating (3.1) for (x, y) = (x(s), y(s)),
one finds

0 = x(s)y(s) + F̆ 1(s) + F̆ 2(s) + td−1,−1Q(0, 0, t). (3.2)
The following lemma shows that one can use the above equation to meromor-

phically continue the functions F̆ i(s) so that they satisfy a q-difference equation.

Lemma 3.6. — For i = 1, 2, the restriction of the function F̆ i(s) to U0 can be
continued to a meromorphic function F̃ i(s) on C such that

F̃ 1(qs)− F̃ 1(s) = b1 = (x(qs)− x(s))y(qs)
and

F̃ 2(qs)− F̃ 2(s) = b2 = (y(qs)− y(s))x(s).
Proof. — We just give a sketch of a proof since the arguments are the exact

analogue in our ultrametric context of those employed in [11, §2.1]. Since ι̃1(s) = 1
s

and ι̃2(s) = q
s , we can assume without loss of generality that ι̃1(U0) ⊂ U∞ and

ι̃2(U∞) ⊂ U0. Then one can evaluate (3.2) at any s ∈ U0. We obtain
0 = x(s)y(s) + F̆ 1(s) + F̆ 2(s) + td−1,−1Q(0, 0, t).
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Evaluating (3.2) at ι̃1(s) ∈ U∞, we find

0 = x(ι̃1(s))y(ι̃1(s)) + F̆ 1(ι̃1(s)) + F̆ 2(ι̃1(s)) + td−1,−1Q(0, 0, t).
Using the invariance of x(s) (resp. y(s)) with respect to ι̃1 (resp. ι̃2), the second
equation is

0 = x(s)y(qs) + F̆ 1(s) + F̆ 2(qs) + td−1,−1Q(0, 0, t).
Subtracting this last equation to the first, we find that, for any s ∈ U0, we have

F̆ 2(qs)− F̆ 2(s) = (y(qs)− y(s))x(s). (3.3)
By Lemma 3.4, the norm of q̃ is strictly greater than one and therefore the norm
of |q| is distinct from 1. This allows us to use (3.3) to meromorphically continue
F̆ 2 to C so that it satisfies (3.3) everywhere. The proof for F̆ 1 is similar. �

Note that, for i = 1, 2, the function F̃ i(s) does not coincide a priori with F̆ i(s)
in the neighborhood of infinity.

3.3. Differential transcendence in the genus zero case. We recall that any
holomorphic function f on C∗ can be represented as an everywhere convergent
Laurent series with coefficients in C, see [24, Theorem 2.1, Chapter 5]. Moreover
any nonzero meromorphic function on C∗ can be written as the quotient of two
holomorphic functions on C∗ with no common zeros. We denote byMer(C∗) the
field of meromorphic functions over C∗ and by σq the q-difference operator that
maps a meromorphic function g(s) onto g(qs). Finally, let Cq be the field formed
by the meromorphic functions over C∗ fixed by σq.

One can endow C with a derivation ∂t as follows

∂t

(∑
γ∈Q

cγt
γ
)

=
∑
γ∈Q

cγγt
γ .

Then, ∂t extends the derivation t ddt of Q(t), see [1, Example (2), §4.4]. For any
Hahn series f such that |f | < 1, we have |∂t(f)| < 1. This is not true when ∂t is
replaced by d

dt . In order to use the machinery of the parametrized Galois theory of
linear difference equations developed in [17], we need to consider derivations that
commute with the automorphism σq. Unfortunately, the derivation ∂t of C does
not commute with σq since ∂t ◦σq = σq ◦ (∂t(q)

q ∂s+∂t) where ∂s := s dds . Following
[6, §2], one looks for aMer(C∗)-linear combination ∆ = α∂t+β∂s of ∂s and ∂t that
will commute with σq. Using the commutation rules for ∂t and ∂s ◦ σq = σq ◦ ∂s,
we obtain

∆ ◦ σq = (α∂t + β∂s)σq = ασq(∂t(q)
q ∂s + ∂t) + βσq∂s

σq ◦∆ = σq(α∂t + β∂s) = σq(α)σq∂t + σq(β)σq∂s.

Then α and β must satisfy the q-difference equations σq(α) = α and σq(β) =
β+α∂t(q)

q . Fixing α equal to 1, one remarks that β must be equal to ∂t(q)
q z, where

z is a solution of σqy = y + 1. The latter can be constructed with the help of the
Jacobi Theta function that we introduce now. If |q| > 1, the Jacobi Theta function
is the meromorphic function defined by θq(s) =

∑
n∈Z q−n(n+1)/2sn ∈Mer(C∗).

It satisfies the q-difference equation
θq(qs) = sθq(s).
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The Jacobi Theta function is the building block of the construction of meromorphic
functions on the Tate curve C∗/qZ. Its logarithmic derivative `q(s) = ∂s(θq)

θq
∈

Mer(C∗) satisfies `q(qs) = `q(s) + 1. If |q| < 1 then the meromorphic function
−`1/q is solution of σq(−`1/q) = −`1/q + 1. Abusing the notation, we still denote
by `q the function −`1/q when |q| < 1.

Since we want to use the q-difference equations of Lemma 3.6 as a constraint
for the form of the differential algebraic relations satisfied by the functions F̃ i(s),
we need to consider derivations that are compatible with σq in the sense that they
commute with σq. This is not the case for the derivation ∂t = t ddt . From the above
discussion, we conclude that the derivations ∂s = s dds and ∆t,q = ∂t(q)

q `q(s)∂s +
∂t commute with σq. The following lemma relates the differential transcendence
of the incomplete generating functions Q(x, 0, t) and Q(0, y, t) to the differential
transcendence of the auxiliary functions F̃ i(s). We refer to Definition C.5 for the
notion of (∂s,∆t,q)-differential algebraicity over a field.

Lemma 3.7. — If the generating functionQ(x, 0, t) is ( d
dx ,

d
dt )-differentially alge-

braic over Q, then F̃ 1(s) is (∂s,∆t,q)-differentially algebraic over K̃ = Cq(s, `q(s)).
If the generating function Q(0, y, t) is ( ddy ,

d
dt )-differentially algebraic over Q,

then F̃ 2(s) is (∂s,∆t,q)-differentially algebraic over K̃ = Cq(s, `q(s)).

Proof. — The statement being symmetrical in x and y, we prove it only for
Q(x, 0, t). Assume that the generating function Q(x, 0, t) is

(
d
dx ,

d
dt

)
-differentially

algebraic over Q. Since F 1(x, t) is the product of Q(x, 0, t) by the polynomial
K(x, 0, t) ∈ Q[x, t], the function F 1(x, t) is

(
d
dx ,

d
dt

)
-differentially algebraic over

Q. It is therefore
(
d
dx , ∂t

)
-differentially algebraic over Q(t), and finally

(
d
dx , ∂t

)
-

differentially algebraic over Q, since t is ∂t-differentially algebraic over Q. Remem-
ber that F̃ 1(s) coincides with F 1(x(s), t) for s ∈ U0 where x(s) is defined thanks
to Proposition 3.3. Therefore, we need to understand the relations between the x-
and t derivatives of F 1(x, t) and the derivatives of F 1(x(s), t) with respect to ∂s
and ∆t,q.

Let us study these relations for an arbitrary bivariate function G(x, t) which
converges on |x|, |t| 6 1. Denote by δx the derivation d

dx and by G̃(s) = G(x(s), t)
for s ∈ U0. From the equality ∂sG̃(s) = ∂s(x(s))(δxG)(x(s), t), we conclude that

∂t(G̃(s)) = (∂tG)(x(s), t) + ∂t(x(s))(δxG)(x(s), t) = ∂tG(x(s), t) + c∂s(G̃(s)),

where c = ∂t(x(s))
∂s(x(s)) . The element c belongs to K̃ because x(s) ∈ K̃ and K̃ is stable

by ∂s,∆t,q see Lemma D.5, and thereby by ∂t = ∆t,q − ∂t(q)
q `q(s)∂s. An easy

induction shows that,

(∂nt G)(x(s), t) = ∂nt (G̃(s)) +
∑

i6n,j<n

bi,j∂
j
t ∂

i
s(G̃(s)), (3.4)

where the bi,j ’s belong to K̃. By Lemma D.2, we have ∂s∆t,q − ∆t,q∂s = f∂s,
where f = ∂t(q)

q ∂s(`q) ∈ K̃. Combining (3.4) with ∂t = ∆t,q − ∂t(q)
q `q(s)∂s, we

find that
(∂nt G)(x(s), t) = ∆n

t,q(G̃(s)) +
∑

i62n,j<n
di,j∆j

t,q∂
i
s(G̃(s)), (3.5)
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for some di,j ’s in K̃. Moreover, an easy induction shows that, for any m ∈ N∗, we
have

(δmx G)(x(s), t) = 1
∂s(x(s))m ∂

m
s (G̃(s)) +

m−1∑
i=1

ai∂
i
s(G̃(s)), (3.6)

where ai ∈ K̃. Applying (3.5) with G replaced by δmx G, we find that for every
m,n ∈ N,

(∂nt δmx G)(x(s), t) = ∆n
t,q((δmx G)(x(s), t)) +

∑
i62n,j<n

di,j∆j
t,q∂

i
s((δmx G)(x(s), t)).

Combining this equation with (3.6), we conclude that

(∂nt δmx G)(x(s), t) = 1
∂s(x(s))m∆n

t,q∂
m
s (G̃(s)) +

∑
i62n+m,j<n

ri,j∆j
t,q∂

i
s(G̃(s)),

where the ri,j ’s are elements of K̃.
Applying the computations above to G = F 1(x, t), we find that any nontrivial

polynomial equation in the derivatives δmx ∂nt F 1(x, t) over Q yields a nontrivial
polynomial equation over K̃ between the derivatives ∆j

t,q∂
i
s(F̃ 1(s)). �

Thus, we have reduced the proof of Theorem 3.1 to the following proposition:
Proposition 3.8. — The functions F̃ 1(s) and F̃ 2(s) are (∂s,∆t,q)-differentially

transcendental over K̃.
Proof. — Suppose to the contrary that F̃ 1(s) is

(
∂s,∆t,q

)
-differentially algebraic

over K̃. By Lemma 3.6, the meromorphic function F̃ 1(s) satisfies F̃ 1(qs)−F̃ 1(s) =
b1 = (x(qs) − x(s))y(qs) with b1 ∈ C(s) ⊂ Cq(s). We now apply difference
Galois theory to this q-difference equation. More precisely, by Proposition D.6 and
Corollary D.13 with K = Cq(s), there exist m ∈ N, d0, . . . , dm ∈ Cq not all zero
and h ∈ Cq(s) such that

d0b1 + d1∂s(b1) + · · ·+ dm∂
m
s (b1) = σq(h)− h. (3.7)

We need now to use a descent argument to show that if (3.7) holds with the di’s
in Cq and h ∈ Cq(s) then it holds for some di’s in C not all zero and h ∈ C(s).
Such reasoning is classical and can be found for instance in [17, Corollary 3.2]. Let
us write ∂ks (b1) = Pk/Qk, where Pk, Qk ∈ C[s] and h = A/B, where A,B ∈ Cq[s].
After clearing the denominators, we find that (3.7) is equivalent to

Bσq(B)
( m∑
k=0

dkPk

)
=
(
σq(A)B −Aσq(B)

) m∏
k=0

Qk. (3.8)

Let ak be the sk-coefficients of A. Since q ∈ C, and ak is σq-invariant, we find that
the sk-coefficients of σq(A) is qkak. A similar statement holds for B. Equating like
powers of s on both sides of (3.8) allows to find that the dk, and the s-coefficients
of A and B are solutions of a collection of polynomial equations with coefficients in
C. Since this collection of polynomial equations has a nonzero solution in Cq, we
can conclude that it has a nonzero solution in C because C is algebraically closed.
Therefore, there exist ck ∈ C not all zero and g ∈ C(s) such that

m∑
k=0

ck∂
k
s (b1) = σq(g)− g.
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By [17, Lemma 6.4] there exist f ∈ C(s) and c ∈ C, such that

F̃ 1(qs)− F̃ 1(s) = b1 = σq(f)− f + c.

Since F̃ 1 is meromorphic at s = 0, the function f0 := F̃ 1 − f is also meromorphic
at s = 0. Since it satisfies σq(f0) = f0 + c, we conclude that c must be equal to
zero. Finally, we have shown that there exists f ∈ C(s) such that

b1 = σq(f)− f. (3.9)

By duality, the morphism φ : P1 → E gives rise to a field isomorphism φ∗ from
the field C(E) = C(x, y)1 of rational functions on E and the field C(s) of rational
functions on P1. Moreover, one has σqφ

∗ = φ∗σ∗, where σ∗ is the action induced
by the automorphism of the walk on C(E). Then, it is easily seen that the equation
(3.9) is equivalent to

(σ(x)− x)σ(y) = σ(f̃)− f̃ , (3.10)
where f̃ ∈ C(x, y) is the rational function corresponding to f via φ∗. The coeffi-
cients of f̃ as a rational function over E belong to a finitely generated extension F
of Q(t).

There exists a Q-embedding ψ of F into C that maps t onto a transcendental
complex number. Since σ and E are defined over Q(t), we apply ψ to (3.10) and
we find

(σ(x)− x)σ(y) = σ(f)− f,
where f belongs to C(E) the field of rational functions on the complex algebraic
curve E defined by the kernel polynomial K(x, y, ψ(t)) and where σ is the automor-
phism of C(E) induced by the automorphism of the walk corresponding to E. In
[11, §3.2], the authors proved that such equation has no solutions. This concludes
the proof by contradiction. �

4. Generating functions of walks, genus one case

In this section we consider the situation where the kernel curve E is an elliptic
curve. By Remark 2.5, this corresponds to the case where the set of steps is not
included in a half plane. Unlike the genus zero cases of (G0), the group of the walk
might be finite for genus one walks. For unweighted walks of genus one with finite
group, it was proved in [3, 4] that the series was holonomic with respect to the
three variables. More recently, the authors of [12] studied weighted walks of genus
one with finite group. They proved that the lifting of the generating series was a
product of zeta functions and elliptic functions over a curve isogenous to the kernel
curve. This allowed them to conclude that the generating series was holonomic
with respect to the variables x and y.

We shall focus on the weighted walks of genus one with infinite group and we
will prove analogously to the genus zero case that the ( d

dx ,
d
dt )-differential alge-

braicity of the series implies its d
dx -differential algebraicity. This result combined

to [2] shows that, for unweighted walks of genus one with infinite group, the se-
ries is d

dx -differentiallly algebraic if and only if it is d
dt -differentially algebraic (see

Corollary 4.16 below).

1Here x and y denote the coordinate functions on the curve E.
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Our strategy follows the basic lines of the ones employed in the genus zero
situation. However, the uniformization procedure in the genus one case is more
delicate and differs from previous works such as [12, 14, 23] which relied on the
uniformization of elliptic curves over C by a fundamental parallelogram of periods.
Over a nonarchimedean field C, there might be a lack of nontrivial lattices. For
instance, if C = Qp the field of p-adic numbers and Λ is any nonzero subgroup of
Qp, we easily see that, for any nonzero element λ in Λ and any integer n > 0, the
element pnλ belongs to the lattice Λ. Then, 0 is an accumulation point of Λ. If C
is the completion of an algebraic closure of Fp(( 1

t )), the Lattice Fp[t] is an infinite
discrete subgroup of C but the quotient C/Fp[t] is not an abelian variety (see
[34, p.147]). Therefore, in the nonarchimedean framework, one prefers to consider
multiplicative subgroups rather than lattices. When an element q in C is such that
0 < |q| < 1, the set qZ is a discrete subgroup of C∗. Rigid analytic geometry gives a
geometric meaning to the quotient C∗/qZ. This geometric quotient is called a Tate
curve (see [30] for more details). For simplicity of exposition, we will not give here
many details on this nonarchimedean geometry. The multiplicative uniformization
of the kernel curve allows us as in § 3.2 to attach to the incomplete generating
functions Q(x, 0, t) and Q(0, y, t) some meromorphic functions F̃ i(s) satisfying

F̃ i(qs)− F̃ i(s) = bi(s),

for some q ∈ C∗ and bi(s) ∈ Cq, the field of q-periodic meromorphic functions
over C∗. This equation is the multiplicative and nonarchimedean analogue of [23,
Theorem 4]. Here Cq is the function field of the elliptic curve C∗/qZ. The analogue
of the Tate curve C∗/qZ in the additive and archimedean setting of [23] is a quotient
C/(Zω1+Zω2) of C by a lattice Zω1+Zω2 of C. Via this analogy, the operator σq is
the multiplicative analogue of the translation by a point ω3 ([30, Corollary Vb]). In
the archimedean setting of [23] one needs two difference equations, corresponding
to two translations, in order to continue the generating series. Our multiplicative
version only requires one single difference equation. This is essentially due to the
fact that, in the multiplicative uniformization, only the loop around zero matters.

The multiplicative uniformization detailed in § 4.1, 4.2 and 4.3 has many advan-
tages. Though technical, it is simpler than the uniformization by a fundamental
parallelogram of periods since we only have to deal with one generator of the fun-
damental group of the elliptic curve, precisely the loop around the origin in C∗.
Moreover, it gives a unified framework to study the genus zero and one case, namely,
the Galois theory of q-difference equations. This is the content of § 4.4 where we
apply the Galoisian criteria of Appendix C to translate the differential algebraicity
of the generating function in terms of the existence of a telescoper.

4.1. Uniformization of the kernel curve. Let us fix a weighted model of genus
one. By Lemma 2.6, the norm of the J-invariant J(E) of the kernel curve is such
that |J(E)| > 1. By Proposition B.2, there exists one and only one q ∈ C such that
0 < |q| < 1 and J(E) = J(Eq), where Eq is the elliptic curve attached to the Tate
curve C∗/qZ. Moreover |J(E)| = 1

|q| (see Proposition 4.2, Lemmas B.5 and B.7).

Remark 4.1. — In the nonarchimedean framework, the element q is obtained
from J(E) by inverting the function J(Eq) = 1

q+R(q) where R(q) = 744+196884q+
. . . is a universal power series with integral coefficients (see [30, Lemma 1 p.30]). In
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the archimedean framework of [12, Proposition 2.1] where t is a fixed real number
in ]0, 1[, the authors gave an explicit Weierstrass normal form y2 = 4x3 − g2x− g3
for the kernel curve, viewed as an algebraic curve in P1(C)×P1(C). The invariants
g2, g3 are real and the discriminant of 4x3 − g2x − g3 is strictly positive (see [12,
p. 60]). Then by [36, §20.32], the polynomial 4x3 − g2x− g3 has three distinct real
roots e1 = ℘(ω1

2 ) > e2 = ℘(ω1+ω2
2 ) > e3 = ℘(ω2

2 ) where ω1, ω2 are two fundamental
periods for the kernel curve and ℘ is the corresponding Weierstrass function. An
element q such that J(Eq) = 123 g3

2
g3

2−27g2
3
is given by the following expression

q = exp(2iπω1

ω2
) = exp

(
− 2π × 2F1( 1

2 ,
1
2 , 1; 1− λ)

2F1( 1
2 ,

1
2 , 1;λ)

)
,

where 2F1 is the Gauss hypergeometric function, λ = e2−e1
e3−e1

is the value of the
Lambda modular function for the elliptic curve C/Zω1 +Zω2 ∼ C∗/qZ (see [19, §9,
Theorem 6.1]).

The curve Eq can be analytically uniformized by C∗ thanks to special functions,
which have their origins in the theory of Jacobi q-theta functions (see Proposi-
tion 4.2 below). Finally, since E and Eq have the same J-invariant, there exists
an algebraic isomorphism between these two elliptic curves. In order to describe
the uniformization of the kernel curve E, one needs to make explicit this algebraic
isomorphism. This is not completely obvious since Eq is given by its Tate normal
form in P2, i.e. by an equation of the form

Y 2 +XY = X3 +BX + C̃.

Therefore, many intermediate technical results are postponed to the appendix B.
The following proposition describes the multiplicative uniformization of an elliptic
curve given by a Tate normal form.

Following [30, Page 28], we set sk =
∑
n>0

nkqn

1−qn ∈ C for k > 1.

Proposition 4.2. — The series
• X(s) =

∑
n∈Z

qns
(1−qns)2 − 2s1;

• Y (s) =
∑
n∈Z

(qns)2

(1−qns)3 + s1;

are q-periodic meromorphic functions over C∗. Furthermore X(s) = X(1/s), and
X(s) has a pole of order 2 at any element of the form qZ. Moreover, the analytic
map

π : C∗ → P2(C),
s 7→ [X(s) : Y (s) : 1]

is onto and its image is Eq, the elliptic curve defined by the following Tate normal
form

Y 2 +XY = X3 +BX + C̃, (4.1)

where B = −5s3 and C̃ = − 1
12 (5s3 + 7s5). Moreover, π(s1) = π(s2) if and only if

s1 ∈ s2q
Z.

Proof. — This is [16, Theorem 5.1.4, Corollary 5.1.5, and Theorem 5.1.10]. �
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In the notation of Section 2.1, set D(x) := ∆x(x, 1). Let us write the kernel
polynomial

K(x, y, t) = Ã0(x) + Ã1(x)y + Ã2(x)y2 = B̃0(y) + B̃1(y)x+ B̃2(y)x2

with Ãi(x) ∈ C[x] and B̃i(y) ∈ C[y]. For i > 1, let D(i)(x) denotes the i-th
derivative with respect to x ofD(x). The analytic uniformization of the kernel curve
is given by the following theorem. As in [12, Proposition 2.1], the uniformization
procedure involves the choice of a “small branch point”, that is, a root of the
discriminant with a small modulus.

Theorem 4.3. — There exists a root a of D(x) in C such that

|a| < 1
|q|1/2 < |D(1)(a)| < 1

|D(2)(a)− 2| < 1
|D(3)(a)| < 1
|D(4)(a)| < 1.

For any such a, there exists u ∈ C∗ with |u| = 1 such that the map φ given by

φ : C∗ → E,
s 7→ (x(s), y(s)),

is surjective, where

x(s) = a+ D(1)(a)
u2X(s) + u2

12 −
D(2)(a)

6

(4.2)

y(s) =

D(1)(a)(2u3Y (s)+u3X(s))

2
(
u2X(s)+u2

12−
D(1)(a)

6

)2 − Ã1

(
a+ D(1)(a)

u2X(s)+u2
12−

D(2)(a)
6

)
2Ã2

(
a+ D(1)(a)

u2X(s)+u2
12−

D(2)(a)
6

) .

Proof. — Lemma A.1 and Lemma B.7 guaranty the existence of a. The element
a allows us to write down the isomorphism between the kernel curve E and one of its
Weierstrass normal forms E1. More precisely, by Proposition B.4, the application
wE

E1 → E ⊂ P1(C)×P1(C)
[x1 : y1 : 1] 7→ (x, y)

where

x = a+ D(1)(a)
x1 − D(2)(a)

6

and y =

D(1)(a)y1

2
(
x1−D(1)(a)

6

)2 − Ã1

(
a+ D(1)(a)

x1−D(2)(a)
6

)
2Ã2

(
a+ D(1)(a)

x1−D(2)(a)
6

) ,

is an isomorphism between the elliptic curve E1 ⊂ P2(C) given by the equation
y2

1 = 4x3
1 − g2x1 − g3 and the kernel curve E. Now, it remains to make explicit

the isomorphism between Eq and one of its Weierstrass normal form Ẽ1. By
Lemma B.5, the application

wT : Eq → Ẽ1,
[X : Y : 1] 7→ [X + 1

12 : 2Y +X : 1]
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induces an isomorphism between Eq and the curve Ẽ1 given by y2 = 4x3−h2x−h3.
Since E and Eq have the same J-invariants and are therefore isomorphic, the same
holds for their Weierstrass normal forms. Thus, there exists u ∈ C∗ such that

ψ : Ẽ1 → E1,
[x : y : 1] 7→ [u2x : u3y : 1]

induces an isomorphism of elliptic curves (see Lemma B.6). To conclude, we set
φ = wE◦ψ◦wT ◦π where π is the uniformization of Eq by C∗ given in Proposition 4.2.
The norm estimate on u is Lemma B.7. �

Remark 4.4. — • Note that by construction φ(s1) = φ(s2) if and only if
s1 ∈ s2q

Z (see Proposition 4.2).
• Via φ, the field of rational functions over E can be identified with the field

of q-periodic meromorphic functions over C∗.
• The conditions on a are crucial to guaranty the meromorphic continuation
of the generating function (see the proof of Lemma 4.8).

• The symmetry arguments between x and y of Remark 1.3 can be pushed
further and one can construct another uniformization of E as follows. De-
note by E(y) the polynomial ∆y(y, 1). One can prove that there exists a
root b ∈ C∗ of E such that |b|, |E(2)(b) − 2|, |E(i)(b)| < 1 for i = 3, 4 and
|q|1/2 < |E(1)(b)| < 1 and v ∈ C∗ with |v| = 1 such that the analytic map
φy given by

φy : C∗ → E,
s 7→ (x(s), y(s)),

is surjective with y(s) = b + E(1)(b)

v2X(s)+ v2
12−

E(2)(b)
6

(see [12, (2.16)] for similar

arguments).

4.2. The group of the walk. The following proposition gives an explicit form for
the automorphisms of C∗ induced via φ by the automorphisms σ, ι1, ι2 of E.

Proposition 4.5. — There exists q in C∗ such that the automorphism of C∗
defined by σq : s 7→ qs induces via φ the automorphism σ, that is σ ◦ φ = φ ◦ σq.
Similarly, the involutions ι̃1, ι̃2 of C∗, that are defined by ι̃1(s) = 1/s and ι̃2(s) =
q/s, induce via φ the automorphisms ι1, ι2.

Proof. — By [13, Proposition 2.5.2], the automorphism σ corresponds to the
addition by a prescribed point Ω of E. Let π : C∗ → Eq be the surjective map
defined in Proposition 4.2. By [16, Exercise 5.1.9], the map π is a group isomor-
phism between the multiplicative group (C∗, ∗) and the Mordell-Weil group of Eq2.
Moreover, since Eq and E are elliptic curves, any isomorphism between Eq and E
is a group morphism between their respective Mordell-Weil groups. This proves
that φ is a group morphism. Then, there exists q ∈ C∗ such that σ ◦ φ = φ ◦ σq.
Since φ is q-invariant, the element q is determined modulo qZ (see Remark 4.4).
This proves the first statement.

Let us denote by ι̃1, ι̃2 some automorphisms of C∗, obtained by pulling back to
C∗ via φ the automorphisms ι1, ι2 of E. The automorphisms ι̃1, ι̃2 are uniquely

2This is the group whose underlying set is the set of points of Eq and whose group law is given
by the addition on the elliptic curve E.
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determined up to multiplication by some power of q. The automorphisms of C∗
are of the form s 7→ ls±1 with l ∈ C∗. Note that x(qZ) = a, and (a, −B(a)

2A(a) ) ∈ E is
fixed by ι1. Indeed, by construction D(a) = 0. This proves that ι̃1(1) belongs to
qZ. Since ι1 is not the identity, we can modify ι̃1 by a suitable power of q to get
ι̃1(s) = 1/s. The expression of ι̃2 follows with σ = ι2 ◦ ι1. �

Remark 4.6. — • The choice of the element q is unique up to multiplica-
tion by qZ. Since |q| 6= 1, we can choose q such that |q|1/2 6 |q| < |q|−1/2.

• Pursuing the symmetry arguments of Remark 4.4, we easily note that
Proposition 4.5 has a straightforward analogue when one replaces φ by
φy and one exchanges ι̃1 and ι̃2.

The proof of the following lemma is straightforward.

Lemma 4.7. — The automorphism σ has infinite order if and only if q and q
are multiplicatively independent3, that is, there is no (r, l) ∈ Z2 \ (0, 0) such that
qr = ql.

4.3. Meromorphic continuation. In this section, we prove that the functions
F 1(x, t) := K(x, 0, t)Q(x, 0, t) and F 2(y, t) := K(0, y, t)Q(0, y, t)

can be meromorphically continued to C∗. We follow some of the ideas initiated
in [14]. We note that, since |t| < 1, the series F 1(x, t) and F 2(y, t) converge on
the affinoid subset U = {(x, y) ∈ E ⊂ P1(C)×P1(C)||x| 6 1, |y| 6 1} of E. With
Lemma A.3, U is not empty. For (x, y) ∈ U , we have

0 = xy + F 1(x, t) + F 2(y, t) + td−1,−1Q(0, 0, t).
Set Ux = {(x, y) ∈ E ⊂ P1(C)×P1(C)||x| 6 1}. Note that F 1(x, t) is analytic on
Ux. We continue F 2(y, t) on Ux by setting

F 2(y, t) = −xy − F 1(x, t)− td−1,−1Q(0, 0, t).
Composing F i(x, t) with the surjective map

φ : C∗ → E
s 7→ (x(s), y(s)),

we define the functions F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t) for any s in
the set

Ux := φ−1(Ux) ∩ {s ∈ C∗||s| ∈ [|q|1/2, |q|−1/2[}.
The goal of the following lemma is to prove that Ux is an annulus whose size

is large enough in order to continue the functions F̆ 1, F̆ 2, to the whole C∗ (see
Figure 4).

Lemma 4.8. — Let |s| ∈ [|q|1/2, |q|−1/2[. The following statements hold:
• if |s| ∈]|D(1)(a)|, |D(1)(a)|−1[, then |x(s)| < 1;
• if |s| = |D(1)(a)|±1, then |x(s)| = 1;
• otherwise |x(s)| > 1.

In conclusion, Ux = [|D(1)(a)|, |D(1)(a)|−1].

3Note that multiplicatively independent is sometimes replaced in the literature by noncom-
mensurable (see [30, §6]).
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|x(s)| > 1

|x(s)| > 1

|x(s)| < 1

Figure 4. The plain circles correspond to |s| = |q|±1/2. The
dashed circles correspond to |x(s)| = 1.

Proof. — From the definition of X(s), we have X(s) = X(1/s) so that x(s) =
x(1/s). Using this symmetry, we just have to prove Lemma 4.8 for |s| ∈ [|q|1/2, 1].
We have

|x(s)| =
∣∣∣∣a+ D(1)(a)

u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣ 6 max
(
|a|,
∣∣∣∣ D(1)(a)
u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣), (4.3)
with equality if |a| 6=

∣∣∣ D(1)(a)

u2X(s)+u2
12−

D(2)(a)
6

∣∣∣. Remember that |u| = 1, |a| < 1, and

|q|1/2 < |D(1)(a)| < 1, see Theorem 4.3. Let us first assume that |s| ∈ [|D(1)(a)|, 1[.
By Lemma B.3, |u2X(s)| = |s| and by Lemma B.8,

∣∣u2

12 −
D(2)(a)

6
∣∣ < |D(1)(a)|.

Therefore ∣∣∣∣ D(1)(a)
u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣ =
∣∣∣∣D(1)(a)

s

∣∣∣∣.
Combining this equality with (4.3) and |a| < 1 yields |x(s)| < 1 if |s| ∈]|D(1)(a)|, 1[,
and |x(s)| = 1 if |s| = |D(1)(a)|.

Assume now that |s| = 1. By construction, |x(1)| = |a| < 1. So let us assume
that s 6= 1. Since

∣∣u2

12 −
D(2)(a)

6
∣∣ < |D(1)(a)| < 1 and |u2X(s)| > 1 by Lemma B.3,

we find ∣∣∣∣ D(1)(a)
u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣ =
∣∣∣∣D(1)(a)
u2X(s)

∣∣∣∣ 6 |D(1)(a)| < 1.

This concludes the proof of the first two points.
Assume that |s| ∈]|q|1/2, |D(1)(a)|[. By Lemma B.3, |u2X(s)| = |X(s)| = |s|.

Since ∣∣∣∣u2

12 −
D(2)(a)

6

∣∣∣∣ < |D(1)(a)| < 1,
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we find that
∣∣u2X(s) + u2

12 −
D(2)

6
∣∣ < |D(1)(a)| and therefore, |x(s)| > 1. If we have

|s| = |q|1/2 < |D(1)(a)|, then Lemma B.3 implies that
|u2X(s)| = |X(s)| 6 |s| < |D(1)(a)|.

Since
∣∣u2

12 −
D(2)(a)

6
∣∣ < |D(1)(a)|, we deduce that

∣∣u2X(s) + u2

12 −
D(2)(a)

6
∣∣ < |D(1)(a)|

and therefore, |x(s)| > 1. This concludes the proof. �

Remark 4.9. — By symmetry between x and y, one could have defined Uy =
{(x, y) ∈ E ⊂ P1(C)×P1(C)||y| 6 1} and continue F 1(x, t) on Uy by setting

F 1(x, t) = −xy − F 2(y, t)− td−1,−1Q(0, 0, t).
Then, the composition of the F i with the surjective map φy defined in Remark 4.4
yields functions F̆ i that are defined on

Uy := φ−1
y (Uy) ∩ {s ∈ C∗||s| ∈ [|q|1/2, |q|−1/2[}.

The analogue of Lemma 4.8 is as follows. For |s| ∈ [|q|1/2, |q|−1/2[, the following
statements hold:

• if |s| ∈]|E(1)(b)|, |E(1)(b)|−1[, then |y(s)| < 1;
• if |s| = |E(1)(b)|±1 then |y(s)| = 1;
• otherwise |y(s)| > 1.

By Proposition 4.5, the automorphism of the walk corresponds to the q-dilatation
on C∗. The following lemma shows that one can cover C∗ either with the q-orbit
of the set Ux or with the q-orbit of Uy. This property is crucial in order to continue
the series as a meromorphic function over C∗.

Lemma 4.10. — The following statements hold:
• |q| 6= 1;
• moreover, up to replace q by some convenient qZ-multiple, the following
holds:
– if either d−1,1 = 0 or d1,−1 6= 0, then,⋃

`∈Z
σ`q(Ux) = C∗;

– if either d−1,1 6= 0 or d1,−1 = 0 then,⋃
`∈Z

σ`q(Uy) = C∗.

Remark 4.11. — For all the genus one walks, we find that⋃
`∈Z

σ`q(Ux ∪ Uy) = C∗.

A similar statement may be found in the archimedean context in [14, §3].

Proof. — Let us first prove that |q| 6= 1. By Remark 4.6, one can choose q so
that we have |q|1/2 6 |q| < |q|−1/2. By construction, x(1) = a. Let b ∈ P1(C) such
that (a, b) ∈ E. Since ι1(a, b) = (a, b) we have ι2(a, b) 6= (a, b) by Lemma 2.7. So
let a′ ∈ P1(C) distinct from a such that σ(a, b) = (a′, b). Then, x(q) = a′. By
Lemma 4.8, |x(s)| < 1 for |s| = 1. Thus, it suffices to prove that |x(q)| = |a′| > 1
to conclude that |q| 6= 1.
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Remember that K(x, y, t) = Ã−1(x) + Ã0(x)y + Ã1(x)y2 = B̃−1(y) + B̃0(y)x +
B̃1(y)x2 with Ãi(x) ∈ C[x] and B̃i(y) ∈ C[y]. With ι1(a, b) = (a, b) and the
formulas in § 2.2, one finds that

b2 = A−1(a)
A1(a) = Ã−1(a)

Ã1(a)
.

Let ν be the valuation atX = 0 of Ã−1(X)
Ã1(X)

. Lemma A.2 with |a| < 1 gives |b|2 = |a|ν .

Note that Ã1 and Ã−1 are polynomial of degree at most two in X, so the integer ν
belongs to {−2,−1, 0, 1, 2}. We have

a′ = B̃−1(b)
B̃1(b)a

. (4.4)

We will prove that |a′| > 1 with a case by case study of the values of ν.
Remember that

Ã−1 = d−1,−1 + d0,−1x+ d1,−1x
2

Ã1 = d−1,1 + d0,1x+ d1,1x
2

B̃−1 = d−1,−1 + d−1,0y + d−1,1y
2

B̃1 = d1,−1 + d1,0y + d1,1y
2.

(4.5)

Case ν > 1. Then, |b| = |a|ν/2 < 1. Combining (4.4) and Lemma A.2, we find
|a||a′| = |b|l where l is the valuation at X = 0 of B̃−1(X)

B̃1(X)
. This gives |a′| = |a|lν/2−1.

Since l belongs to {−2, . . . , 2} and ν is in {1, 2}, we get −3 6 lν/2−1 6 1. If lν/2−1
equals 1 then ν must be equal to 2 and by (4.5), we must have d−1,−1 = d0,−1 = 0
and d−1,1 6= 0. By Remark 2.5, we must have d−1,0d1,−1 6= 0 so that l = 1 and
lν/2− 1 = 0. A contradiction. Then, lν/2− 1 6 0 and |a′| > 1.

Case ν = 0. Then, |b| = 1. With Lemma A.3 and |a| < 1, we obtain |a′| > 1.
Case ν 6 −1. Then |b| = |a|ν/2 > 1. Combining (4.4) and Lemma A.2, we find

|a′| = |a|lν/2−1 where l ∈ {−2, . . . , 2} is the degree in X of B̃−1(X)
B̃1(X)

. Since l belongs
to {−2, . . . , 2} and ν is in {−1,−2}, we get 1 > lν/2 − 1 > −3. If lν/2 − 1 = 1
then ν = −2 and by (4.5), we must have d−1,1 = d0,1 = 0 and d−1,−1 6= 0. By
Remark 2.5, we must have d−1,0d1,1 6= 0 so that l = −1 and lν/2 − 1 = 0. A
contradiction. Then, lν/2− 1 6 0 and |a′| > 1.

Assume that either d−1,1 = 0 or d1,−1 6= 0 and let us prove that⋃
`∈Z

σ`q(Ux) = C∗.

By Lemma A.4, there exists (a0, b0) ∈ E such that |a0| = 1 and σ(a0, b0) = (a1, b1)
with |a1| 6 1. By Lemma 4.8, there exists s0 ∈ C∗ with |s0| = |D(1)(a)|±1 such
that x(s0) = a0. Since |q|1/2 6 |q| < |q|−1/2 and |q|1/2 < |D(1)(a)| < 1, we find
that |q| < |qs0| < |q|−1/2. Since |x(qs0)| = |a1| 6 1, we conclude using Lemma 4.8
that

• either |qs0| ∈ Ux. This proves that

Ux ∩ σq(Ux) = [|D(1)(a)|, |D(1)(a)|−1] ∩ σq([|D(1)(a)|, |D(1)(a)|−1]) 6= ∅.
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Since |q| 6= 1, we deduce that⋃
`∈Z

σ`q(Ux) = C∗.

• or |qs0| ∈ [|q||D(1)(a)|, |q||D(1)(a)|−1]. Replacing q by q/q allows to con-
clude.

• or |qs0| ∈ [|q|−1|D(1)(a)|, |q|−1|D(1)(a)|−1]. Replacing q by qq allows to
conclude.

The proof for Uy is obtained by a symmetry argument using Lemma A.4 and Re-
mark 4.9. �

According to Lemma 4.10, we define some auxiliary functions as follows:
• if d−1,1 = 0, we define, for i = 1, 2, the function F̃ i(s) on Ux as F i(φ(s), t);
• if d−1,1 6= 0, the function F̃ i(s) is defined on Uy as F i(φy(s), t).

A priori the auxiliary functions F̃ 1(s), F̃ 2(s) are defined on Ux if d−1,1 = 0 and on
Uy otherwise. Theorem 4.12 below shows that one can meromorphically continue
the functions F̃ i(s) on C∗ so that they satisfy some nonhomogeneous rank 1 linear
q-difference equations.

Theorem 4.12. — The auxiliary functions F̃ 1(s), F̃ 2(s) can be continued mero-
morphically on C∗ so that they satisfy

F̃ 1(qs)− F̃ 1(s) = b1

and
F̃ 2(qs)− F̃ 2(s) = b2,

where b1 = (x(qs) − x(s))y(qs) and b2 = (y(qs) − y(s))x(s) are two q-periodic
meromorphic functions over C∗.

Proof. — The proof is completely similar to the proof of Lemma 3.6 and relies
on the fact that either the q-orbit of Ux or the q-orbit of Uy covers C∗. �

Note that by Remark 4.4, the coefficients b1, b2 of the q-difference equation can
be identified with rational functions on the algebraic curve E. A direct corollary of
Theorem 4.12 is that the Cq-algebra Cq[F̃ 1(s), F̃ 2(s)], generated by the solutions
F̃ i(s), is contained in the field of meromorphic functions over C∗. In that field, the
elements fixed by σq are precisely the elements of Cq. These elliptic functions can
be easily handled by the differential Galois theory of the appendix D. If the q-orbit
of the neighborhoods Ux and Uy was only a proper open subset U of C∗, then one
would have to take into consideration “σq-constants ” whose algebraic complexity
could not be controlled a priori. These σq-constants are the meromorphic functions
over U fixed by σq. If, for instance, |q| = 3 and U =

⋃
l∈Z σ

l
q({s| 12 < |s| <

1}) then the ring of meromorphic functions over the disconnected set U which
are fixed by σq can be identified with the ring of meromorphic functions on the
fundamental annulus {s| 12 < |s| < 1}. The latter ring contains highly differentially
transcendental functions such as restricted Gamma functions. These differentially
transcendental σq-constants render impossible the use of difference Galois theory
to obtain applicable results.
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4.4. Differential transcendence. The strategy to study the differential transcen-
dence of generating functions of nondegenerate weighted models of genus one with
infinite group is similar to the one employed in § 3. One first relates the differ-
ential behavior of the incomplete generating functions to the differential algebraic
properties of their associated auxiliary functions. Then, one applies to these aux-
iliary functions the Galois theory of q-difference equations. However, since the
coefficients of the q-difference equations satisfied by the auxiliary functions are no
longer rational but elliptic, the Galoisian criteria as well as the descent method to
obtain some “simple telescopers” are quite technical and postponed to Appendix C.
Theorem 4.13 below gives a first criteria to guaranty the differential transcendence
of the incomplete generating function.

Theorem 4.13. — Assume that the weighted model is nondegenerate, of genus
one, and that the group of the walk is infinite. If Q(x, 0, t) is

(
d
dx ,

d
dt

)
-differentially

algebraic over Q then there exist c0, . . . , cn ∈ C not all zero and h ∈ Cq such that
c0b1 + c1∂s(b1) + · · ·+ cn∂

n
s (b1) = σq(h)− h. (4.6)

A symmetrical result holds for Q(0, y, t) replacing b1 by b2.
Proof. — Since the group of the walk is of infinite order, the automorphism

σ is of infinite order. Therefore by Lemma 4.7 the elements q and q defined in
Proposition 4.5 are multiplicatively independent. Assume that Q(x, 0, t) is

(
d
dx ,

d
dt

)
-

differentially algebraic over Q. Let F̃ 1(s) be the auxiliary function defined above.
We denote by Cq.Cq the compositum of the fields Cq and Cq inside the field

of meromorphic functions over C∗, that is, the smallest subfield ofMer(C∗) that
contains Cq and Cq. We claim that F̃ 1(s) is

(
∂s,∆t,q

)
-differentially algebraic over

Cq.Cq(`q, `q). Let us prove this claim when d−1,1 = 0, the proof when d−1,1 6= 0
being similar. Reasoning as in Lemma 3.7, one can show that, for n,m ∈ N and
s ∈ Ux, one has

(∂nt ∂mx F 1)(x(s), t) = 1
∂s(x(s))m∆n

t,q∂
m
s (F̃ 1(s)) +

∑
i62n+m,j<n

ri,j∆j
t,q∂

i
s(F̃ 1(s)),

where ri,j ∈ Cq(`q)(x(s), ∂ls∂kt (x(s)), . . . ). By construction, x(s) is in Cq so that
Lemma D.5 implies that ∂ls∂kt (x(s)) ∈ Cq(`q) for any positive integers k, l. Then,
the field Cq(`q)(x(s), ∂ls∂kt (x(s)), . . . ) generated by x and its derivatives with re-
spect to ∂s and ∂t is contained in Cq.Cq(`q, `q). Thus, any nontrivial polynomial
relation between the x and t-derivatives of Q(x, 0, t) yields a nontrivial polyno-
mial relation between the derivatives of F̃ 1(s) with respect to ∂s and ∆t,q over
Cq.Cq(`q, `q). This proves the claim.

By Theorem 4.12, the function F̃ 1(s) satisfies F̃ 1(qs) − F̃ 1(s) = b1(s) with
b1(s) ∈ Cq ⊂ Cq.Cq(`q, `q). Since F̃ 1(s) is

(
∂s,∆t,q

)
-differentially algebraic over

Cq.Cq(`q, `q), Proposition D.6 and Corollary D.13 imply that there exist m ∈ N
and d0, . . . , dm ∈ Cq not all zero and g ∈ Cq.Cq(`q) such that

d0b1 + d1∂s(b1) + · · ·+ dm∂
m
s (b1) = σq(g)− g.

Since b1 is in Cq, Lemma D.14 allows to perform a descent on the coefficients of the
telescoping relation above. Thus, there exist c0, . . . , cn ∈ C not all zero and h ∈ Cq
such that

c0b1 + c1∂s(b1) + · · ·+ cn∂
n
s (b1) = σq(h)− h.
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This concludes the proof. The symmetry argument between x and y gives the proof
for Q(0, y, t). �

Theorem 4.13 has an easy corollary concerning the differential transcendence of
the complete generating function for weighted models of genus one with infinite
group.

Theorem 4.14. — For any nondegenerate weighted model of genus one with
infinite group, the following statements are equivalent:

(1) the series Q(x, 0, t) is
(
d
dx ,

d
dt

)
-differentially algebraic over Q;

(2) the series Q(x, 0, t) is d
dx -differentially algebraic over Q.

Remark 4.15. — An analogous result holds for Q(0, y, t) replacing the derivation
d
dx by d

dy .

Proof. — Since the group is infinite, the automorphism σ is of infinite order.
Therefore by Lemma 4.7 the elements q and q defined in Proposition 4.5 are mul-
tiplicatively independent.

Assume that (1) holds. By Theorem 4.13, there exist c0, . . . , cn ∈ C not all zero
and h ∈ Cq such that

c0b1 + c1∂s(b1) + · · ·+ cn∂
n
s (b1) = σq(h)− h. (4.7)

Combining (4.7) with the functional equation satisfied by F̃ 1(s) and using the
commutativity of σq and ∂s, one finds that

σq
[
c0F̃

1(s) + · · ·+ cn∂
n
s (F̃ 1(s))− h

]
= c0F̃

1(s) + · · ·+ cn∂
n
s (F̃ 1(s))− h. (4.8)

Then, there exists g ∈ Cq such that

c0F̃
1(s) + · · ·+ cn∂

n
s (F̃ 1(s))− h = g.

Therefore, F̃ 1(s) is ∂s-differentially algebraic over Cq.Cq. We claim that any ele-
ment of Cq is ∂s-differentially algebraic over C. Since σq and ∂s commute, the field
Cq is stable under ∂s. Since Cq is of transcendence degree one over C, any element
f in Cq is algebraically dependent with its derivative ∂s(f) over C. Similarly, any
element of Cq is ∂s-differentially algebraic over C and by Remark C.7, we obtain
that F̃ 1(s) is ∂s-differentially algebraic over C. We assume that d−1,1 = 0 so that
F̃ 1(s) coincides with F 1(x(s), t) for any s ∈ Ux. The rest of the proof is entirely
similar in the case d−1,1 6= 0 if one replaces Ux with Uy and φ with φy. For δx the
derivation d

dx , one finds that (δxF 1)(x(s), t) = 1
∂s(x(s))∂s(F̃

1(s)) for any s ∈ Ux. An
easy induction shows that for any integer m and s ∈ Ux, one has

(δmx F 1)(x(s), t) =
m∑
i=1

ai,m∂
i
s(F̃ 1(s)),

where ai,m ∈ C(∂ksx(s))k∈N and am,m = 1
∂s(x(s))m . Since x(s) and F̃ 1(s) are ∂s-

differentially algebraic over C, we find that the transcendence degree of the field
C
(
ai,j , ∂

i
s(F̃ 1(s)), i, j ∈ N

)
over C is finite. Since

C
(
(δmx F 1)(x(s), t),m ∈ N

)
⊂ C

(
ai,j , ∂

i
s(F̃ 1(s)), i, j ∈ N

)
⊂Mer(Ux),

there is a nontrivial algebraic relation with coefficients in C between the elements
F 1(x(s), t), . . . , (δmx F 1)(x(s), t), . . . . By principle of isolated zeroes, we conclude



t-DERIVATIVE TRANSCENDENCE OF THE GENERATING FUNCTION OF WALKS 67

that F 1(x, t) = K(x, 0, t)Q(x, 0, t) is d
dx -differentially algebraic over C and therefore

over Q by Remark C.7. This proves that (1)⇒ (2). Statement (2) implies obviously
(1). �

A corollary of Theorem 4.13 is that the d
dt -differential algebraicity of the series

implies the d
dx -algebraicity of the series. One of the major breakthroughs of [2] is

to show that for unweighted walks, the series was d
dx -differentially algebraic over

Q if and only if the model was decoupled, that is, there exist f, g ∈ Q(t)(X) such
that

xy = f(x) + g(y) modulo K(x, y, t). (4.9)
The authors of [2] used boundary value problems and the notion of analytic invari-
ants to deduce from (4.9) a closed form of the generating series allowing them to
conclude that the series was also d

dt -algebraic (see [2, §6]). Combining our result to
[2], one finds the following corollary:

Corollary 4.16. — If the walk is unweighted of genus one with infinite group,
the following statements are equivalent:

• the generating series is d
dx -differentially algebraic over Q;

• the generating series is d
dt -differentially algebraic over Q.

In a recent publication [18], M.F. Singer and the second author generalized the
results of [2] and proved that a weighted model of genus one with infinite group
was decoupled if and only if the series was d

dx -differentially algebraic. If a model
is decoupled then there exists hi ∈ Cq such that bi(s) = σq(hi) − hi for i = 1, 2.
Thanks to this characterization, the first author was able to prove the converse
implication of Theorem 1: the x-differential algebraicity of the generating series
of a weighted model with genus one kernel curve and infinite group implies its t-
differential algebraicity (see [8]). The first author proved that the same holds for
the generating series associated to models with genus one kernel curve and finite
group of the walk by using the explicit description of the generating series obtained
in [12]. However, in that case the question of the holonomy with respect to the
variable t is still open.

Remark 4.17. — In this paper, we give a unified viewpoint for the genus zero
and genus one models and we proved that, in both cases, the behavior of the
generating series is controlled by a q-difference equation. One can view any genus
zero model as a limit of genus one models. In terms of the Lambda modular
function introduced in Remark 4.1, this limit process is equivalent to let λ tend
to 0, 1. In that setting, one could try to find a suitable path for λ and prove the
convergence along this path of the analytic continuation of the generating series for
the genus one models to the analytic continuation of the generating series of the
genus zero model. However, such a question is very delicate and technical. It is
close to the studies of confluence for q-difference equations where the convergence
of the solutions is investigated when q which goes to 1 (see for instance [7, 31]). In
our situation, note that it is not q which goes to 1 but q.

Appendix A. Nonarchimedean estimates

In this section, we give some nonarchimedean estimates, which will be crucial
to uniformize the kernel curve. Remember that C denotes the field of Hahn series
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in the variable t endowed with the nonarchimedean norm | | corresponding to the
valuation at t equal zero (see § 2.1).

A.1. Discriminants of the kernel equation. Lemma A.1 relates the genus of
the kernel curve to the simplicity of the roots of the discriminant of the kernel poly-
nomial. It also ensures the existence of a root with convenient norm estimates. Let
us remind, see (2.1), that we have defined D(x) := ∆x(x, 1), where ∆x(x0, x1) is the
discriminant of the second degree homogeneous polynomial y 7→ K̃(x0, x1, y, 1, t).

Lemma A.1. — For any nondegenerate weighted model of genus one, the fol-
lowing holds:

• all the roots of ∆x(x0, x1) in P1(C) are simple;
• the discriminant D(x) := ∆x(x, 1) has a root a ∈ C such that |a| < 1,
|D(2)(a)− 2| < 1, and |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1 where D(i) denotes
the i-th derivative with respect to x of D(x).

A symmetric statement holds for ∆y(y0, y1) by replacing D by E.

Proof. — The first assertion is [10, Proposition 2.1]. As in (2.1), let us denote
by αi the coefficients of D(x), that is, D(x) =

∑4
j=0 αjx

j . First, let us prove the
existence of a root a ∈ C of D(x) such that |a| < 1. Suppose to the contrary that
all the roots of D(x) have a norm greater than or equal to 1. If α0 is zero then zero
is a root: a contradiction. Thus, we can assume that α0 =

(
d2
−1,0−4d−1,1d−1,−1

)
t2

is nonzero.
Let us first assume that α4 6= 0. The product of the roots of D(x) equals

α0

α4
=
t2(d2

−1,0 − 4d−1,−1d−1,1)
t2(d2

1,0 − 4d1,−1d1,1) .

Then we conclude that |α0
α4
| = 1 so that each of the roots must have norm 1. Then,

considering the symmetric functions of the roots of D(x), we conclude that, for any
i = 0, . . . , 3, the element αi

α4
should have norm smaller than or equal to 1. Since

α2

α4
=
−4d-1,-1d1,1t

2 − 4d0,-1d0,1t
2 − 4d1,-1d-1,1t

2 + 2d-1,0d1,0t
2 + d2

0,0t
2 − 2td0,0 + 1

t2(d2
1,0 − 4d1,-1d1,1)

has norm strictly greater than 1, we find a contradiction.
Assume now that α4 = 0. Since the roots of ∆x(x0, x1) in P1(C) are simple, the

coefficient α3 is nonzero. The product of the roots of D(x) equals

−α0

α3
=

−t2(d2
-1,0 − 4d-1,-1d-1,1)

2t2d1,0d0,0 − 2td1,0 − 4t2(d0,1d1,-1 + d1,1d0,-1) .

Then, it is clear that |α0
α3
| 6 1 and that each of the roots has norm 1. Thus, the

symmetric function α2
α3

should also have norm smaller than or equal to 1. But

−α2

α3
=
−4d-1,-1d1,1t

2 − 4d0,-1d0,1t
2 − 4d1,-1d-1,1t

2 + 2d-1,0d1,0t
2 + d2

0,0t
2 − 2td0,0 + 1

2t2d1,0d0,0 − 2td1,0 − 4t2(d0,1d1,-1 + d1,1d0,-1)
has norm strictly bigger than 1. We find a contradiction again.

Let a be a root of D(x) in C with |a| < 1. Since a, α1, α3, α4 have norm smaller
than 1, |α2 − 1| < 1, and

• D(1)(a) = α1 + 2α2a+ 3α3a
2 + 4α4a

3;
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• D(2)(a) = 2α2 + 6α3a+ 12α4a
2;

• D(3)(a) = 6α3 + 24α4a;
• D(4)(a) = 24α4,

we have |D(2)(a)− 2| < 1, and |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1. The statement for
∆y(y0, y1) is symmetrical and we omit its proof. �

A.2. Automorphisms of the walk on the domain of convergence. In this
section, we study the action of the group of the walk on the product of the unit
disks in P1(C) × P1(C). This product is the fundamental domain of convergence
of the generating function.

We need a preliminary lemma that explains how one can compute the norm of
the values of a rational function.

Lemma A.2. — Let f ∈ C(X) be a nonzero rational function and let a ∈ P1(C).
Let ν (resp. d) be the valuation at X = 0 (resp. ∞) of f with the convention that
ν = +∞, d = −∞ if f = 0. The following statements hold:

• if |a| < 1, then |f(a)| = |a|ν ;
• if |a| > 1, then |f(a)| = |a|d.

Proof. — If f = 0 the result is clear. Assume that f is nonzero. Let us prove
the first case, the second being completely symmetrical. Let us write f(X) as∑r1

i=ν1
ciX

i∑r2
j=ν2

djXj
with cν1dν2 6= 0. If k > l, we note that |ak| < |al|. Then

|f(a)| =
|
∑r1
i=ν1

cia
i|

|
∑r2
j=ν2

djaj |
= |a|ν1−ν2 = |a|ν . �

The following lemma explains how the fundamental involutions permute the
interior and the exterior of the fundamental domain of convergence.

Lemma A.3. — For any nondegenerate weighted model, the following state-
ments hold:

(1) for any a ∈ C with |a| = 1, there exist b± ∈ P1(C) with |b−| < 1, and
|b+| > 1, such that K(a, b±, t) = 0;

(2) for any b ∈ C with |b| = 1, there exist a± ∈ P1(C) with |a−| < 1, and
|a+| > 1, such that K(a±, b, t) = 0.

Proof. — See [12, §1.3] for a similar result in the situation where C is replaced
by C.

The statements are symmetrical, so we only prove the first one. Since C is
algebraically closed and the model is nondegenerate, Proposition 1.5 implies that
K(x, y, t) is of degree 2 in y. Then, for any a ∈ C, there are two elements b± ∈
P1(C) such that K(a, b±, t) = 0. Let a ∈ C with |a| = 1. We write

K(a, y, t) = tα+ βy + tγy2 (A.1)

where
• α = −

∑1
i=−1 di,−1a

i+1;
• β = a− t

∑1
i=−1 di,0a

i+1;
• γ = −

∑1
i=−1 di,1a

i+1.
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Since |a| = 1, we find |β| = 1, |α|, |γ| 6 1. First let us prove that there is no
point (a0, b0) ∈ E such that |a0| = |b0| = 1. Indeed, suppose to the contrary that
|a0| = |b0| = 1 and K(a0, b0, t) = 0. Then, |β| = |a0| = 1 and |γ|, |α| 6 1 so that
the equality |βb0| = |t(α + γb20)| implies |b0| < 1. We find a contradiction. From
the equation K(a, b, t) = 0, we deduce that

if |b| < 1, then |tα| = |βb+ tγb2| = |βb| which gives |b| = |tα|; (A.2)

if |b| > 1, then |1
b
| < 1 and we find |tγ| =

∣∣∣ tα
b2

+ β

b

∣∣∣ =
∣∣∣β
b

∣∣∣ =
∣∣∣1
b

∣∣∣. (A.3)

Using K(a, b±, t) = 0, we find
b−b+ = α

γ
, (A.4)

with the convention that b+ is [1 : 0] if γ = 0. If γ = 0 then b− = −tα
β has norm

smaller than 1, which concludes the proof in that case. Assume now that γ 6= 0.
Since |b+| and |b−| cannot have norm 1, we just need to discard the cases “|b+| < 1
and |b−| < 1” or “|b+| > 1 and |b−| > 1”. If α = 0, then one of the roots is zero,
say b− = 0, and |b+| = |β|

|tγ| > 1, which concludes the proof in that case. If α 6= 0
then one can suppose to the contrary that |b+| < 1 and |b−| < 1. From (A.2), we
obtain |b+| = |b−| = |tα|, which gives

|b+b−| = |tα|2 = |α|
|γ|
.

Then, |t2α| = 1
|γ| > 1, which contradicts |t2α| < 1. Suppose to the contrary that

|b+| > 1 and |b−| > 1. By (A.3), |b+| = |b−| = 1
|tγ| which gives

|b+b−| =
1
|tγ|2

= |α|
|γ|
.

Thus, |t2α| = 1
|γ| > 1, and once again, we find a contradiction. �

Lemma A.4 explains how the intersection of the fundamental domain of conver-
gence of the generating function and its image by σ is nonempty. This result is
therefore crucial in order to continue the generating function to the whole C∗.

Lemma A.4. — For any nondegenerate weighted model, the following state-
ments hold:

• if d−1,1 = 0 or d1,−1 6= 0 there exists (a, b) ∈ E with |a| = 1 such that
σ(a, b) = (a′, b′) with |a′| 6 1;

• if d−1,1 6= 0 or d1,−1 = 0 there exists (a, b) ∈ E with |b| = 1 such that
σ(a, b) = (a′, b′) with |b′| 6 1.

Proof. — Using the symmetry between x and y mentioned in Remark 1.3, we
only prove the first statement of Lemma A.4.

Let a ∈ P1(C) such that |a| = 1. By Lemma A.3, there exist b+ ∈ P1(C) with
|b+| > 1 and b− ∈ C with |b−| < 1 such that (a, b±) ∈ E. Let Bi as in (1.2) and note
that by Proposition 1.5, B1 is not identically zero. Let ν (resp. d) be the valuation

at 0 (resp. ∞) of the rational fraction B−1(y)
B1(y) =

∑1
j=−1

d−1,jy
j∑1

j=−1
d1,jyj

∈ C(y). We claim

that either ν > 0 or d 6 0. If d1,−1 6= 0 then ν > 0. If d−1,1 = 0 then either d 6 0
or d = 1. In the latter situation, we must have d1,1 = d1,0 = 0 and d−1,0 6= 0. Since
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the model is nondegenerate, we must have d1,−1 6= 0 by Proposition 1.5. In that
case, ν > 0. This proves the claim.

Let a+, a− ∈ P1(C) such that ι2(a, b+) = (a+, b+) and ι2(a, b−) = (a−, b−).
This gives

a+ = B−1(b+)
B1(b+)a and a− = B−1(b−)

B1(b−)a . (A.5)

Since σ(a, b−) = (a+, b+) (resp. σ(a, b+) = (a−, b−)), it is enough to prove that
either a+ or a− has norm smaller or equal to 1. If d 6 0, we combine (A.5),
Lemma A.2 and |b + | > 1 to find |aa+| = |a+| = |b+|d 6 1. If ν > 0, we combine
(A.5), Lemma A.2 and |b−| < 1 to find |aa−| = |a−| = |b−|ν 6 1. This ends the
proof. �

Appendix B. Tate curves and their normal forms

Let (C, | |) be a complete nonarchimedean algebraically closed valued field of
zero characteristic and let q ∈ C such that 0 < |q| < 1. In this section, we
recall some of the basic properties of elliptic curves over nonarchimedean fields.
The period lattice is here replaced by a discrete multiplicative group of the form
qZ. Then, the quotient of C by a period lattice is replaced by the so called Tate
curve, which corresponds to the naive quotient of the multiplicative group C∗ by
qZ. However, in the nonarchimedean context, only elliptic curves with J-invariant
of norm greater than or equal to one can be analytically uniformized by Tate curves
(see Proposition B.2). The analytic geometry behind is the rigid analytic geometry
as developed in [16]. We will not introduce this theory here but we just recall briefly
the algebraic geometrical and special functions aspects of Tate curves.

B.1. Special functions on a Tate curve. We recall that any holomorphic func-
tion f on C∗ can be represented by an everywhere convergent Laurent series∑
n∈Z ans

n with an ∈ C. Moreover any nonzero meromorphic function on C∗

can be written as g
h such that the holomorphic functions g and h have no common

zeros. We shall denote byMer(C∗) the field of meromorphic functions over C∗.

Remark B.1. — If k is a complete nonarchimedian sub-valued field of C and q
belongs to k, every result quoted above still holds over k.

The analytification of the elliptic curve Eq is isomorphic to the Tate curve, which
is the rigid analytic space corresponding to the naive quotient of C∗/qZ. The curve
Eq is therefore a“canonical” elliptic curve. A natural question is "Given an elliptic
curve E defined over C, is there a q such that E is isomorphic to Eq?" The answer
is positive under certain assumption on the J-invariant J(E) of E.

Proposition B.2 (Theorem 5.1.18 in [16] and VII p. 31 in [30]). — Let E be
an elliptic curve over C such that |J(E)| > 1. Then, there exists one and only one
q ∈ C such that 0 < |q| < 1 and J(E) = J(Eq), that is, E is isomorphic to the
elliptic curve Eq.

Remind that we have defined sk =
∑
n>0

nkqn

1−qn ∈ C for k > 1, and

X(s) =
∑
n∈Z

qns

(1− qns)2 − 2s1, Y (s) =
∑
n∈Z

(qns)2

(1− qns)3 + s1.
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They are q-periodic meromorphic functions over C∗. By Proposition 4.2, the field
Cq of q-periodic meromorphic functions over C∗ coincides with the field generated
over C by X(s) and Y (s).

Since we need to understand what is the pullback of the fundamental domain of
convergence of the generating function via this uniformization, we prove some basic
properties on the norm of X(s). Remind that X(s) = X(1/s) and X(qs) = X(s).
Thus it suffices to study |X(s)| for |q|1/2 6 |s| 6 1. The following study follows the
arguments of [32, §V.4].

Lemma B.3. — Let s ∈ C∗. The following holds:
• If |q|1/2 < |s| < 1, then |X(s)| = |s|;
• If |s| = 1, then |X(s)| > 1;
• If |s| = |q|1/2, then |X(s)| 6 |s|.

Proof. — Since X(s) has a pole in s = 1 we may further assume that s 6= 1. Let
us rewrite X(s):

X(s) = s

(1− s)2 +
∑
n>0

qns

(1− qns)2 + qns−1

(1− qns−1)2 − 2 qn

1− qn .

This means that we have

|X(s)| 6 max
(∣∣∣ s

(1− s)2

∣∣∣, ∣∣∣∑
n>0

qns

(1− qns)2 + qns−1

(1− qns−1)2 − 2 qn

1− qn
∣∣∣), (B.1)

with equality when | s
(1−s)2 | 6= |

∑
n>0

qns
(1−qns)2 + qns−1

(1−qns−1)2−2 qn

1−qn |. Let us consider
s ∈ C∗ \ {1} with |q|1/2 6 |s| 6 1. Using |q| < 1 we find that |qns| 6 |qs| < 1 for
every n > 1. This shows that the norm of qns is strictly smaller than 1. Then,∣∣ qns

(1−qns)2

∣∣ = |qns| < |s|. On the other hand, |qn| 6 |q| < |s| and | q
n

1−qn | < |s|.
Finally, when |q|1/2 < |s|, we have |qns−1| 6 |qs−1| < |qq−1/2| < |s| and therefore∣∣ qns−1

(1−qns−1)2

∣∣ = |qns−1| < |s|. This proves that, for any s ∈ P1(C) such that
|q|1/2 < |s| 6 1, we have∣∣∣∑

n>0

qns

(1− qns)2 + qns−1

(1− qns−1)2 − 2 qn

1− qn
∣∣∣ < |s|. (B.2)

When |q|1/2 = |s| and n > 2, we have |qns−1| 6 |q2s−1| = |q2q−1/2| < |s|, whence∣∣ qns−1

(1−qns−1)2

∣∣ = |qns−1| < |s|. Moreover, if |q|1/2 = |s| then |qs−1| = |qq−1/2| = |s|.
Therefore

∣∣ qs−1

(1−qs−1)2

∣∣ = |qs−1| = |s|. We conclude that when |q|1/2 = |s|,∣∣∣∑
n>0

qns

(1− qns)2 + qns−1

(1− qns−1)2 − 2 qn

1− qn
∣∣∣ = |s|. (B.3)

It remains to consider the term s
(1−s)2 . If |s| < 1 then we have

∣∣ s
(1−s)2

∣∣ = |s|.
Combining with (B.1), (B.2) and (B.3) respectively, we obtain the result when
|q|1/2 < |s| < 1 and |q|1/2 = |s| < 1 respectively. If |s| = 1 and s 6= 1 then
|1 − s| 6 1. Thus,

∣∣ s
(1−s)2

∣∣ > |s| = 1, which, combined with (B.1) concludes the
proof. �
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B.2. Tate and Weierstrass normal forms. In [12], the authors generalize the
results of [23] and attach a Weierstrass normal form to the kernel curve. The follow-
ing proposition proves that, with some care, their result passes to a nonarchimedean
framework.

Let us consider a nondegenerate weighted model of genus one and let us write
its kernel polynomial as follows: K(x, y, t) = Ã0(x) + Ã1(x)y+ Ã2(x)y2 = B̃0(y) +
B̃1(y)x + B̃2(y)x2 with Ãi(x) ∈ C[x] and B̃i(y) ∈ C[y]. The following proposition
gives a Weierstrass normal form for the kernel curve.

Proposition B.4. — Let a ∈ C be as in Lemma A.1. Let E1 be the elliptic
curve defined by the Weierstrass equation

y2
1 = 4x3

1 − g2x1 − g3, (B.4)
with

g2 = D(2)(a)2

3 − 2D
(1)(a)D(3)(a)

3 (B.5)

g3 = −D(2)(a)3

27 + D(1)(a)D(2)(a)D(3)(a)
9 − D(1)(a)2D(4)(a)

6 .

Then, the rational map
E1 → E ⊂ P1(C)×P1(C)
[x1 : y1 : 1] 7→ (x, y)

where

x = a+ D(1)(a)
x1 − D(2)(a)

6

and y =

D(1)(a)y1

2(x1−D(1)(a)
6 )2

− Ã1

(
a+ D(1)(a)

x1−D(2)(a)
6

)
2Ã2

(
a+ D(1)(a)

x1−D(2)(a)
6

) ,

is an isomorphism of elliptic curves that sends the point O = [1 : 0 : 0] in E1 to the

point
(
a,
−Ã1(a)
2Ã2(a)

)
∈ E.

Proof. — This is the same proof as in [12, Proposition 2.1]. Note that there is
only one configuration here since we have chosen a root of the discriminant |a| < 1
which can not be infinity. �

We recall that the J-invariant J(E1) of the elliptic curve E1 given in aWeierstrass
form y2

1 = 4x3
1 − g2x1 − g3 equals J(E1) = 123 g3

2
g3

2−27g2
3
. For a weighted model of

genus one, the J-invariant J(E) of the kernel curve has modulus strictly greater
than 1 by Lemma 2.6. Since J(E) = J(E1), Proposition B.2 shows that there exists
q ∈ C∗ such that 0 < |q| < 1 and E1 is isomorphic to Eq. In order to make explicit
this isomorphism, we need to understand how one passes from a Tate normal form
to a Weierstrass normal form. This is the content of the following lemmas.

Lemma B.5. — [§6, p. 29 in [30]] In the notation of Proposition 4.2, the change
of variable X = x− 1

12 and Y = 1
2 (y − x+ 1

12 ) maps the Tate equation

Y 2 +XY = X3 +BX + C̃

onto the Weierstrass equation
y2 = 4x3 − h2x− h3,



74 T. Dreyfus & C. Hardouin

where h2 = 1
12 + 20s3 and h3 = −1

63 + 7
3s5.

As detailed above, the elliptic curves E1 and Eq are isomorphic. The following
lemma gives the form of an explicit isomorphism between theses two curves.

Lemma B.6. — Let y2 = 4x3− h2x− h3 be the Weierstrass normal form (resp.
Y 2 + XY = X3 + BX + C̃ its Tate normal form) of Eq as in Lemma B.5 and let
y2

1 = 4x3
1 − g2x1 − g3 be the Weierstrass normal form of E1 as in Proposition B.4.

There exists u ∈ C∗ such that the following map

Eq → E1,
(X,Y ) 7→ (u2(X + 1

12 ), u3(2Y +X))

is an isomorphism of elliptic curves. Moreover, the following holds

• h2 = g2
u4 and h3 = g3

u6 ;
• ∆q = ∆1

u12 where ∆1 and ∆q denote the discriminants of the Weierstrass
equations of E1 and Eq respectively.

Proof. — From [33, Proposition 3.1, Chapter III], we deduce that any isomor-
phism between the elliptic curves E1 and Eq is given by x1 = u2x + α and
y1 = u3y + βu2x + γ with u ∈ C∗, α, β, γ ∈ C. Since both equations are in
Weierstrass normal form, we necessarily have α = β = γ = 0. This proves the first
point. From y2

1 = 4x3
1 − g2x1 − g3, we substitute x1, y1 by x, y to find

u6y2 = 4u6x3 − g2u
2x− g3.

Dividing the both sides by u6 we find h2 = g2
u4 and h3 = g3

u6 . The assertion on the
discriminants follows from ∆q = h3

2 − 27h2
3 and ∆1 = g3

2 − 27g2
3 . �

The lemma below gives some precise estimate for the norms of ∆q = h3
2 − 27h2

3
and ∆1 = g3

2 − 27g2
3 , the discriminants of the elliptic curves Eq, E1, and the element

u defined in Lemma B.6.

Lemma B.7. — The following statements hold:

• |∆q| = |q|, with |h2 − 1
12 | = |q| and |h3 − (− 1

63 )| = |q|;
• |∆1| = |q| with |g2 − 4

3 | < 1, |g3 − (− 8
27 )| < 1;

• |u| = 1;
• |D(1)(a)| ∈] |q|1/2, 1[.

Proof. — Following [30, p. 29-30], we find |∆q| = |q|, |s3| = |q| = |s5|. Com-
bining the latter norm estimates with Lemma B.5, we find |h2 − 1

12 | = |q| and
|h3 − (− 1

63 )| = |q|.
Let us prove the second point. It follows from (2.2) that |1−α2| < 1 and |αi| < 1

for i = 0, 1, 3, 4. By Lemma A.1, |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1, |D(2)(a)−2| < 1.
Combining these norm estimates with (B.5), we find |g2− 4

3 | < 1, |g3− (− 8
27 )| < 1.

Since |J(E1)| = |J(Eq)| = | 123g3
2

∆1
| = | 123h3

2
∆q
| and |g2| = |h2| = 1, we find |∆q| =

|∆1| = |q|. By Lemma B.6, ∆q = ∆1
u12 , and then |u| = 1.
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Let us prove the last point. Let us expand ∆1 = g3
2 − 27g2

3 with the expression
of g2, g3 given in (B.5):

∆1 =
(
D(2)(a)2

3 − 2D
(1)(a)D(3)(a)

3

)3

− 27
(
−D(2)(a)3

27 + D(1)(a)D(2)(a)D(3)(a)
9 − D(1)(a)2D(4)(a)

6

)2

= D(2)(a)6

27 − 2D(1)(a)D(2)(a)4D(3)(a)
9 + 4D(1)(a)2D(2)(a)2D(3)(a)2

9

− 8D(1)(a)3D(3)(a)3

27 − D(2)(a)6

27 − D(1)(a)2D(2)(a)2D(3)(a)2

3

− 3D(1)(a)4D(4)(a)2

4 + 2D(1)(a)D(2)(a)4D(3)(a)
9 − D(1)(a)2D(2)(a)3D(4)(a)

3
+ D(1)(a)3D(2)(a)D(3)(a)D(4)(a)

= D(1)(a)2D(2)(a)2D(3)(a)2

9 − 8D(1)(a)3D(3)(a)3

27 − 3D(1)(a)4D(4)(a)2

4

− D(1)(a)2D(2)(a)3D(4)(a)
3 + D(1)(a)3D(2)(a)D(3)(a)D(4)(a).

Since |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1, |D(2) − 2| < 1, the previous expression is a
sum of terms that are all strictly smaller in norm than |D(1)(a)|2. This proves that
|∆1| = |q| < |D(1)(a)|2. �

The following estimate will be required to uniformize the generating function.

Lemma B.8. — In the notation of Theorem 4.3, we have |u
2

12 −
D(2)(a)

6 | <
|D(1)(a)|.

Proof. — Using (B.5) and the norm estimate on the D(i)(a)’s, we get

g2 = D(2)(a)2

3 + D(1)(a)ω, g3 = −D
(2)(a)3

27 + D(1)(a)ω′, (B.6)

where |ω|, |ω′| < 1. This proves that

g3

g2
= −D

(2)(a)
9 + D(1)(a)ω′′

with |ω′′| < 1. Then, we find

∣∣∣u2

12 −
D(2)(a)

6

∣∣∣ =
∣∣∣u2

12 + 3g3

2g2
− 3g3

2g2
− D(2)(a)

6

∣∣∣ 6 max
(∣∣∣u2

12 + 3g3

2g2

∣∣∣, ∣∣∣32D(1)(a)ω′′
∣∣∣).

Finally, with the norm estimate of Lemma B.7, it is sufficient to show that |u
2

12 +
3g3
2g2
| 6 |q| < D(1)(a). By Lemma B.6, we have u2

12 = g3h2
12g2h3

. By Lemma B.7,
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|h2 − 1
12 | = |q| and |h3 − (− 1

63 )| = |q|. Then, by Lemma B.7 again, we find∣∣∣u2

12 + 3g3

2g2

∣∣∣ =
∣∣∣ g3h2

12g2h3
+ 3g3

2g2

∣∣∣ =
∣∣∣g3

g2

∣∣∣∣∣∣ h2

12h3
+ 3

2

∣∣∣ =
∣∣∣h2 + 18h3

12h3

∣∣∣
= |h2 + 18h3| =

∣∣∣(h2 −
1
12

)
+ 18

(
h3 −

(
− 1

63

))∣∣∣
6 max

(∣∣∣h2 −
1
12

∣∣∣, ∣∣∣h3 −
(
− 1

63

)∣∣∣) 6 |q|. �
Appendix C. Difference Galois theory

In this section, we establish some criteria to guaranty the transcendence of func-
tions satisfying a difference equation of order 1. This criteria is based on the Galois
theory of difference fields as developed in [35] but generalizes some of the existing
results in the literature, for instance the assumption that the field of constants is
algebraically closed (see for instance Theorem C.9).

The algebraic framework of this section is difference algebra and more precisely
the notion of difference fields. A difference field is a pair (K,σ) where K is a field
and σ is an automorphism of K. The field σ-constants Kσ of (K,σ) is formed
by the elements f ∈ K such that σ(f) = f . An extension (K,σK) ⊂ (L, σL) of
difference fields is a field extension K ⊂ L such that σL coincides with σK on K.
If there is no confusion, we shall denote by σ the automorphisms σK and σL. For
a complete introduction on difference algebra, we shall refer to [5].

C.1. Rank one difference equations. In this section, we focus on rank one
difference equations.

Lemma C.1. — Let (K,σ) ⊂ (L, σ) be an extension of difference fields such
that Lσ = Kσ. Let x ∈ L. The following statements are equivalent

(1) x is algebraic over Kσ;
(2) there exists r ∈ N∗ such that σr(x) = x.

Proof. — Assume that x is algebraic over Kσ. Then, σ induces a permutation
on the set of roots of the minimal polynomial of x over Kσ. Thus, there exists
r ∈ N∗ such that σr(x) = x. Conversely, if there exists r ∈ N∗ such that σr(x) = x,
the polynomial P (X) =

∏r−1
i=0 (X−σi(x)) ∈ L[X] is fixed by σ and thereby P (X) ∈

Lσ[X] = Kσ[X]. Since P (x) = 0, we have proved that x is algebraic over Kσ. �

Lemma C.2. — Let (K,σ) ⊂ (L, σ) be an extension of difference fields such
that Lσ = Kσ. Let f ∈ L and 0 6= c ∈ K, such that σ(f) = f + c. The following
statements are equivalent

(1) f ∈ K;
(2) f is algebraic over K;
(3) There exists α ∈ K such that σ(α) = α+ c.

Moreover, let K be the algebraic closure of K endowed with a structure of σ-field
extension of K. For all α ∈ K, i ∈ Z we denote by αi the element of K such that
σi(f − α) = f − αi. If f is transcendental over K then for i, j ∈ Z such that i 6= j,
the elements αj and αi are distinct.
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Proof. — Let us prove the first part of the proposition. The first statement
implies trivially the second one. Assume that f is algebraic over K and let P (X) =
Xn + an−1X

n−1 + . . . a0 ∈ K[X] \K be its minimal polynomial over K. Note that
n 6= 0. Using σ(f) − f = c and P (f) = 0, we find that σ(P (f)) − P (f) = 0 =
(nc+ σ(an−1)− an−1)fn−1 + bn−2f

n−2 + · · ·+ b0 with bi ∈ K for i = 0, . . . , n− 2.
By minimality of P (X), we find that σ(an−1)−an−1 = −nc with an−1 ∈ K. Then,
σ(α) − α = c with α = an−1

−n ∈ K. We have shown that the second statement
implies the third. Finally, assume that there exists α ∈ K such that σ(α) = α+ c.
With σ(f)−f = c, we find that σ(α−f) = α−f . This gives that α−f ∈ Lσ = Kσ

and the element f belongs to K.
Now, let us assume that f is transcendental over K. Suppose to the contrary

that there exist α ∈ K and i > j ∈ Z such that
αi = (σi(α)− c− σ(c)− · · · − σi−1(c)) = αj = (σj(α)− c− σ(c)− · · · − σj−1(c)).
The latter equality gives σr(β) − β = γ where r = i − j > 0, β = σj(α) and
γ = σi−1(c) + · · · + σj(c). Since α is algebraic over K, the same holds for β. Let
P (X) = Xn + an−1X

n−1 + · · ·+ a0 ∈ K[X] \K be the minimal polynomial of β
over K. Using the fact that σr(β)− β = γ and the minimality of P , we conclude,
as above, that σr(an−1)−an−1 = −nγ, that is σr(β̃)− β̃ = γ where β̃ = an−1

−n ∈ K.
Combining this equality with σr(σj(f))− σj(f) = γ, we find that β̃ − σj(f) ∈ L is
fixed by σr. By Lemma C.1, this means that β̃−σj(f) is algebraic over Kσ, which
yields f algebraic over K. We find a contradiction. �

Lemma C.3. — Let (K,σ) ⊂ (L, σ) be an extension of difference fields such
that Lσ = Kσ. Let f ∈ L and 0 6= c ∈ K, such that σ(f) = f + c. Assume that f
is transcendental over K. If there exists g ∈ K(f) such that σ(g)− g ∈ K[f ], then
g ∈ K[f ].

Proof. — Let K be an algebraic closure of K, endowed with a structure of σ-field
extension of K. Since f is transcendental over K, we can write a partial fraction
decomposition of g ∈ K(f). Let R be the largest integer such that there exists
α ∈ K so that the element 1

(f−α)R appears in the partial fraction decomposition of
g. Suppose to the contrary that R > 0 and let α ∈ K such that 1

(f−α)R appears
in the partial fraction decomposition of g. We deduce from Lemma C.2 applied to
K and f , that the elements {αi, i ∈ Z} are all distinct. Then, there exists N , the
largest integer such that σN ( 1

(f−α)R ) appears in the partial fraction decomposition
of g. The element σN+1( 1

(f−α)R ) appears in the partial fraction decomposition of
σ(g). This proves that σN+1( 1

(f−α)R ) appears in the partial fraction decomposition
of σ(g)− g. A contradiction with σ(g)− g ∈ K[f ]. This proves that g ∈ K[f ]. �

C.2. Differential transcendence criteria. In this section, a (σ, ∂,∆)-field K is
a difference field (K,σ) endowed with two derivations ∂,∆ commuting with σ such
that ∂∆−∆∂ = cK∂ with cK ∈ Kσ. We assume that ∂ is nontrivial on K, that is,
it is not the zero derivation. The element cK has to be considered as part of the
data of the notion of (σ, ∂,∆)-field. An extension of (σ, ∂,∆)-fields is an inclusion
of two (σ, ∂,∆)-fields (K,σK , ∂K ,∆K) ⊂ (L, σL, ∂L,∆L) such that

• K ⊂ L is a field extension;
• σK , ∂K ,∆K are the restrictions of σL, ∂L,∆L to K;



78 T. Dreyfus & C. Hardouin

• cK = cL.
If there is no confusion, we shall omit the subscripts K , L. If σ is the identity, we
shall speak of (∂,∆)-fields, (∂,∆)-field extension for short.

Example C.4. — As we will see in § D, the following fields are (σ, ∂,∆)-fields,
that correspond respectively to the framework of the genus zero and genus one
kernel curve. Remind that σq denotes the automorphism of Mer(C∗) defined by
f(s) 7→ f(qs) and Cq denotes the field of meromorphic functions fixed by σq.
In the two examples, we have ∆q,t = ∂t(q)

q `q(s)∂s + ∂t where `q is the so called
q-logarithm. That is, an element of Mer(C∗) satisfying σq(`q) = `q + 1, and
cK = ∂t(q)

q ∂s(`q) ∈ Cq.
• Let q ∈ C∗ with |q| 6= 1. Then, the inclusion

(Cq(s, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q)

is an extension of (σ, ∂,∆)-fields.
• Let q and q two elements of C∗ such that |q|, |q| 6= 1, that are multiplica-
tively independent, that is, there are no (r, l) ∈ Z2\(0, 0) such that qr = ql.
Since Cq ⊂Mer(C∗) and Cq ⊂Mer(C∗), we consider Cq.Cq ⊂Mer(C∗),
the field compositum of Cq and Cq insideMer(C∗). Then, the inclusion

(Cq.Cq(`q, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q)

is an extension of (σ, ∂,∆)-fields.

Definition C.5. — Let (K, ∂,∆) ⊂ (L, ∂,∆). An element f in L is said to be
(∂,∆)-differentially algebraic over K if there exists N ∈ N, such that the elements

• ∂i(f) for i 6 N are algebraically dependent over K if ∆ is a K-multiple of
∂;

• ∂i∆j(f) for i, j 6 N are algebraically dependent over K otherwise.
Otherwise, we will say that f is (∂,∆)-transcendental over K.

Remark C.6. — Note that since ∂∆−∆∂ = c∂ with c ∈ Kσ ⊂ K, the (∂,∆)-field
extension of K generated by some element f ∈ L coincides with the field extension
of K generated by the set {∂i∆j(f), for i, j ∈ N}.

Let us make a remark concerning the field of definition of the coefficients of the
differential polynomials.

Remark C.7. — Let (K, ∂,∆) ⊂ (K ′, ∂,∆) ⊂ (L, ∂,∆) and assume that K ′ is a
field generated over K by elements that are (∂,∆)-differentially algebraic over K.
By [22, Proposition 8, p. 101], an element f in L is (∂,∆)-differentially transcen-
dental over K if and only if it is (∂,∆)-differentially transcendental over K ′.

The following lemma will be crucial in many arguments:

Lemma C.8. — If K ⊂M is a σ-field extension such that Mσ = K and K ⊂ L
is a σ-field extension with Lσ = L. Then M and L are linearly disjoint over K.

Proof. — Let c1, . . . , cr ∈ L be K-linearly independent elements, that become
dependent overM . Up to a permutation of the ci’s, a minimal linear relation among
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these elements over M has the following form

c1 +
r∑
i=2

λici = 0, (C.1)

with λi ∈M for i = 2, . . . , r. Computing σ((C.1))− (C.1), we find
r∑
i=2

(σ(λi)− λi)ci = 0.

By minimality, σ(λi) = λi and λi ∈Mσ = K. By K-linear independence of the ci,
we find that λi = 0 for i = 2, . . . , r and then c1 = 0. A contradiction. �

The following statement, whose proof is due to Michael Singer, is a version of an
old theorem of Ostrowski [28, 21] and its proof follows the lines of the proof of [9,
Proposition 3.6]. In this last paper, it was assumed that Kσ is algebraically closed,
which is not the case in this article. One could use the powerful scheme-theoretic
tools developed in [29] to prove the result in our more general setting. Instead we
will argue in a more elementary way to reduce Theorem C.9 to the case where Kσ

is algebraically closed.

Theorem C.9. — Let (K,σ, ∂,∆) be a (σ, ∂,∆)-field such that Kσ is relatively
algebraically closed in K, that is there are no proper algebraic extension of Kσ

inside K. Let (L, σ, ∂,∆) be a (σ, ∂,∆)-ring extension of (K,σ, ∂,∆). Let f ∈ L
and b ∈ K such that σ(f) = f + b. If f is (∂,∆)-differentially algebraic over K
then there exist `1, `2 ∈ N, ci,j ∈ Kσ not all zero and g ∈ K such that∑

06i6`1,
06j6`2

ci,j∂
i∆j(b) = σ(g)− g. (C.2)

Furthermore, we may take `2 = 0 in the case where ∂ and ∆ are K-linearly depen-
dent. We call (C.2) a telescoping relation for b.

The proof of this result depends on results from the Galois theory of linear
difference equations and we will refer to [9, Appendix A] and the references given
there for relevant facts from this theory. Let (K,σ) be a difference field and consider
the system of difference equations

σ(y0)− y0 = b0, . . . , σ(yn)− yn = bn, with b0, . . . , bn ∈ K. (C.3)

Let us see (C.3) as a system σ(Y ) = AY , where A ∈ GL2(n+1)(K) is a diagonal

bloc matrix A = Diag(A0, . . . , An) with Ai =
(

1 bi
0 1

)
which corresponds to the

equation σ(yi)− yi = bi. A Picard-Vessiot extension for σ(Y ) = AY is a difference
ring extension (R, σ) of (K,σ) such that:

• there exists U ∈ GL2(n+1)(R) such that σ(U) = AU ;
• R is generated as a K-algebra by the entries of U and det(U)−1;
• R is a simple difference ring, that is, the σ-ideals of R are {0} and R.

We will need the following result.

Lemma C.10 (Proposition A.9 in [9]). — Assume that (K,σ) is a difference field
with Kσ algebraically closed. Let R be a Picard-Vessiot extension for the system
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(C.3) and z0, . . . , zn ∈ R be solutions of this system. If z0, . . . , zn are algebraically
dependent over K, then there exist ci ∈ Kσ, not all zero, and g ∈ K such that

c0b0 + . . .+ cnbn = σ(g)− g.

Before proving Theorem C.9, we give a slight generalization of Lemma C.10.

Lemma C.11. — Let (K,σ) be a difference field withKσ relatively algebraically
closed in K and let b0, . . . , bn be some elements in K. Let (L, σ) be a σ-ring
extension of (K,σ). Let z0, . . . , zn ∈ L be solutions of σ(zi)− zi = bi. If z0, . . . , zn
are algebraically dependent over K, then there exist ci ∈ Kσ, not all zero, and
g ∈ K such that

c0b0 + . . .+ cnbn = σ(g)− g.

Proof. — Let k be the algebraic closure of Kσ. We extend σ to be the identity
on k4. Under the assumption that Kσ is relatively algebraically closed, the ring
K̃ = K ⊗Kσ k is an integral domain and in fact is a field. We have K̃σ = k. Let
L̃ = L⊗Kσ k. We then have a natural inclusion of K̃ ⊂ L̃. Let S = K̃[z0, . . . , zn] ⊂
L̃. It is easily seen that S is a σ-ring extension of K̃. Let I be a maximal difference
ideal in S and let R = S/I. For each r = 0, . . . , n, let ur be the image of zr in R.
Since K̃σ = k is algebraically closed and R is a simple difference ring, we have that
R is a Picard-Vessiot ring for the system associated to σ(yr)−yr = br, r = 0, . . . , n,
over K̃. The elements u0, . . . , un are algebraically dependent over K and solutions
of σ(yr)− yr = br, r = 0, . . . , n. Lemma C.10 proves that there exist ci ∈ k, not all
zero, and g ∈ K̃ such that ∑

06i6n
cibi = σ(g)− g.

Let {dr} ⊂ k be a Kσ-basis of k. By Lemma C.8, applied with K = Kσ, L = k
and M = K, it is also a K-basis of K̃. We may write each ci and g as

ci =
∑
r

ci,rdr and g =
∑
r

grdr

for some ci,r ∈ Kσ and gr ∈ K. Since not all the ci are zero, there exists r such
that ci,r are not all zero. For this r, we have∑

i6n

ci,rbi = σ(gr)− gr.

This yields the conclusion of the proof. �

Proof of Theorem C.9. — Assuming that f is (∂,∆)-differentially algebraic over
K, there is some finite set {∂i0∆j0(f), . . . , ∂in∆jn(f)} ⊂ L of elements that are
algebraically dependent over K. Note that jk = 0 for all k if ∆ is K-linearly
dependent from ∂. Since σ commutes with ∆ and ∂, we have for all r = 0, . . . , n,

σ(∂ir∆jr (f))− ∂ir∆jr (f) = ∂ir∆jr (b).
To conclude it remains to apply Lemma C.11 with zr = ∂ir∆jr (f) and br =
∂ir∆jr (b) for r = 0, . . . , n. �

4On the other hand, there is no unique procedure to extend a field automorphism of Kσ to
the algebraic closure k. Indeed, these extensions are controlled by the Galois group of the field k
over Kσ .
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Appendix D. Meromorphic functions on a Tate curve and their
derivations

In this section we translate the galoisian criteria of Theorem C.9 in the context
of elliptic function field. We start by defining the derivations. Studying the tran-
scendence properties of the q-logarithm, we then perform a descent on the field of
coefficients and on the number of derivations involved in the telescoping relation.

D.1. Derivation on nonarchimedean elliptic function fields. Let q ∈ C∗

such that |q| 6= 1 and let σq denote the automorphism of Mer(C∗) defined by
σq(f(s)) = f(qs). We denote by Cq the field of meromorphic functions fixed by
σq. By Proposition 4.2, it is the field of rational functions on the Tate curve Eq or
E1/q, depending whether |q| < 1 or |q| > 1. In this section, we construct, as in [6,
§2] a derivation of these functions that encode their t-dependencies and commute
with σq.

The fact that ∂s = s dds acts on Mer(C∗), and its commutation with σq is
straightforward. Unfortunately, the t-derivative of q may be nontrivial, implying a
more complicated commutation rule between ∂t = t ddt and σq. More precisely, we
have

∂s ◦ σq = σq ◦ ∂s;
∂t ◦ σq = ∂t(q)

q σq ◦ ∂s + σq ◦ ∂t.
The following statement holds.

Lemma D.1. — The ∂s-constants Mer(C∗)∂s = {f ∈ Mer(C∗)|∂s(f) = 0} of
Mer(C∗) are precisely the constant functions C.

The next lemma introduces a twisted t-derivation that commutes with σq. Re-
mind that the q-logarithm `q has been defined in § 3.3.

Lemma D.2 (Lemma 2.1 in [6]). — The following derivations ofMer(C∗){
∂s
∆t,q = ∂t(q)

q `q(s)∂s + ∂t,

commute with σq. Moreover, we have

∂s∆t,q −∆t,q∂s = ∂t(q)
q ∂s(`q)∂s,

where ∂t(q)
q ∂s(`q) ∈ Cq.

Remark D.3. — Note that since ∂s,∆t,q commute with σq, we can differenti-
ate the equation σq(`q) = `q + 1 to find σq(∂s(`q)) = ∂s(`q) and σq(∆t,q(`q)) =
∆t,q(`q). We then conclude that ∂s(`q),∆t,q(`q) belong to Cq.

The link with the iterates of ∆t,q and the derivatives ∂s, ∂t is now made in the
following lemma.

Lemma D.4. — For any i ∈ N, there exist cj,k,l ∈ Cq such that

∆i
t,q =

(∂t(q)
q `q

)i
∂is +

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l
t.
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Proof. — Let us prove the result by induction on i. For i = 1, this comes from
the fact that ∆t,q = ∂t(q)

q `q∂s + ∂t. Let us fix i ∈ N and assume that the result
holds for i. We find

∆i+1
t,q =

(∂t(q)
q `q∂s + ∂t

)((∂t(q)
q `q

)i
∂is +

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l
t

)
,

that is

∆i+1
t,q =

(∂t(q)
q `q

)i+1
∂i+1
s + ∆t,q

((∂t(q)
q `q

)i)
∂is +

(∂t(q)
q `q

)i
∂t∂

i
s

+
i−1∑
k=0

k∑
j=0

i∑
l=0

∆t,q(cj,k,l`jq)∂ks ∂lt +
i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l
∂t(q)

q `j+1
q ∂k+1

s ∂lt

+
i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l+1
t .

Note that the commutation of σq with ∆t,q implies that Cq is stabilized by ∆t,q.
Since by Remark D.3, ∆t,q(`q) belongs to Cq, we get that, for any integer j, any
c̃ ∈ Cq, we have ∆t,q(c̃(`q)j) = ∆t,q(c̃)(`q)j + c̃c(`q)j−1 where c = j∆t,q(`q) ∈ Cq.
Therefore, with ∆t,q(c̃) ∈ Cq, we find that ∆t,q(c̃(`q)j) ∈ Cq[`q] is of degree at
most j in `q. With ∂t(q)

q , cj,k,l ∈ Cq, this ends the proof. �

From now on, let us fix q ∈ C∗ with |q| 6= 1, that is multiplicatively independent
of q, that is there are no (r, l) ∈ Z2 \ (0, 0) such that qr = ql. Remind that
Cq.Cq ⊂ Mer(C∗) is the compositum of fields and `q ∈ Mer(C∗) is a solution of
σq(`q) = `q + 1. We now give examples of difference differential fields for σq, ∂s
and ∆t,q.

Lemma D.5. — The following statements hold.
(1) The field Cq(s, `q) is stabilized by σq, ∂s and ∆t,q. The field Cq(s) is

stabilized by σq and ∂s. The field C(s) is stabilized by ∂s, ∂t.
(2) The field Cq.Cq(`q, `q) is stabilized by σq, ∂s and ∆t,q. The field Cq.Cq(`q)

is stabilized by σq and ∂s. The field Cq(`q) is stabilized by ∂s and ∂t.

Proof. —
(1) Since σq(`q) = `q + 1, we easily see that Cq(s, `q), Cq(s) are stabilized by

σq. Since σq commutes with ∂s and ∆t,q, the field Cq is stabilized by ∂s
and ∆t,q. It is now clear that Cq(s) is stabilized by ∂s and ∆t,q(Cq(s)) ⊂
Cq(s, `q). By Remark D.3, ∆t,q(`q), ∂s(`q) ∈ Cq. Combining the last
assertions, we obtain the result for Cq(s, `q). Finally, the field C(s) is
stable by ∂s, ∂t, since C is stable by ∂s, ∂t, and ∂s(s) = s, ∂t(s) = 0.

(2) Let us prove that Cq(`q) is stabilized by σq. Using σq(`q) = `q + 1 and the
commutation between σq and σq, we find that σq(`q)− `q ∈ Cq. Similarly,
σq(Cq) ⊂ Cq, proving that Cq(`q) is stabilized by σq. Using ∂s(Cq) ⊂ Cq,
∂s(Cq) ⊂ Cq, and ∂s(`q) ∈ Cq, we find that the field Cq.Cq(`q) is stabilized
by σq and ∂s.

We now consider the field Cq.Cq(`q, `q). From what precedes, Cq.Cq(`q)
is stabilized by ∂s. Similarly, we deduce that Cq.Cq(`q) is stabilized by ∂s.
Then, Cq.Cq(`q, `q) is stable by ∂s. The field Cq(`q) is clearly stable by σq.
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From what precedes, Cq(`q) is stable by σq, and therefore, Cq.Cq(`q, `q) is
stable by σq. It now remains to show that ∆t,q(Cq(`q)) ⊂ Cq.Cq(`q, `q).
The same arguments as used in (1) prove that ∆t,q(Cq(`q)) ⊂ Cq(`q),
∂s(Cq(`q)) ⊂ Cq(`q), and ∂s(Cq(`q)) ⊂ Cq(`q). It remains to prove that
∆t,q(Cq(`q)) ⊂ Cq.Cq(`q, `q). We note that ∂t(q)

q `q∂s+∂t = ∆t,q = ∆t,q +
(∂t(q)

q `q − ∂t(q)
q `q)∂s. Since Cq is stabilized by ∆t,q and ∂s, we find that

∆t,q(Cq) ⊂ Cq.Cq(`q, `q). Moreover, since ∂s(`q),∆t,q(`q) belong to Cq,
see Remark D.3, we find that ∆t,q(`q) ∈ Cq.Cq(`q, `q). We have shown
the inclusion ∆t,q(Cq(`q)) ⊂ Cq.Cq(`q, `q). This concludes the proof for
Cq.Cq(`q, `q).

Let us now consider Cq(`q). By Remark D.3 and ∂t = ∆t,q− ∂t(q)
q `q∂s, we

find that the inclusion holds ∂s(`q), ∂t(`q) ∈ Cq(`q). Since ∂s,∆t,q commute
with σq, Cq is stable by ∂s,∆t,q. With ∂t = ∆t,q− ∂t(q)

q `q∂s, it follows that
∂t(Cq) ⊂ Cq(`q). Finally, we obtain that the field Cq(`q) is stable by
∂s, ∂t. �

D.2. Difference Galois theory for elliptic function fields. In this section, we
apply the results of § C to the specific cases of elliptic function fields introduced in
Lemma D.5. The latter yields that the following field extensions are (σ, ∂,∆)-field
extensions.

• Let q ∈ C∗ with |q| 6= 1. Then, let us consider
(Cq(s, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q).

• Let q and q two elements of C∗ such that |q|, |q| 6= 1, that are multiplica-
tively independent. Let us consider

(Cq.Cq(`q, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q).
In that framework, the criteria obtained in § C to guaranty the (∂s,∆t,q)-differential
transcendence of a solution of a rank one q-difference equation can be simplified
via some descent arguments. We will prove that the existence of a telescoping
relation involving the two derivatives implies the existence of a telescoping relation
involving only the derivation ∂s. More precisely, we find the following proposition
that will be applied to our two examples in Section refsec:trsnforellipticfunctions:

Proposition D.6. — Let K ⊂ Mer(C∗) be a (σq, ∂s)-field and let us assume
that
(H1) L = K(`q) is a (σq, ∂s,∆t,q)-field;
(H2) Kσq = Lσq = Cq is relatively algebraically closed in L;
(H3) `q is transcendental over K.
Let f ∈Mer(C∗), that satisfies σq(f) = f+b, for some b that belongs to a subfield
of K stable by ∂s, ∂t.

If f is (∂s,∆t,q)-differentially algebraic over L, then there exist m ∈ N, h ∈ K
and d0, . . . , dm ∈ Cq not all zero, such that

d0b1 + d1∂s(b) + · · ·+ dm∂
m
s (b) = σq(h)− h.

Proof. — Since f is (∂s,∆t,q)-differentially algebraic over L andKσq is relatively
algebraically closed, Theorem C.9 yields that there exist M ∈ N, ci,j ∈ Lσq not all
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zero, and g ∈ L such that ∑
i,j6M

ci,j∂
i
s∆

j
t,q(b) = σq(g)− g. (D.1)

By Lemma D.4, for all i ∈ N, there exist cj,k,l ∈ Cq such that

∆i
t,q =

(∂t(q)
q `q

)i
∂is +

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l
t. (D.2)

Combining this equation with Remark D.3, yields that the left hand side of (D.1)
is a polynomial in `q with coefficients in K. By Lemma C.3 with (H2) and (H3),
we find that g ∈ K[`q] as well.

Thus, let us write g =
∑R
k=0 αk`

k
q with αk ∈ K and αR 6= 0. Let

N = max{j ∈ N|∃i such that ci,j 6= 0}.

By (D.2), the coefficient of highest degree in `q of the left hand side of (D.1) is(∑
i6M

ci,N

(∂t(q)
q

)N
∂N+i
s (b)

)
`Nq . (D.3)

On the other hand, we have

σq(g)−g = `Rq (σq(αR)−αR))+`R−1
q (σq(αR−1)−αR−1 +Rσq(αR))+P (`q), (D.4)

where P (X) ∈ K[X] is a polynomial of degree strictly smaller than R − 1. Then,
comparing (D.3) and (D.4), we find that

• either R < N so that∑
i6M

ci,N

(∂t(q)
q

)N
∂N+i
s (b) = 0, (D.5)

• either R = N so that∑
i6M

ci,N

(∂t(q)
q

)N
∂N+i
s (b) = σq(αN )− αN , (D.6)

• or R > N so that R > 0, 0 6= αR ∈ Lσq . We claim that R = N − 1.
Indeed, R > N −1 implies σq(αR) = σq(αR), σq(αR−1)−αR−1 +RαR = 0
and then σq(αR−1

αR
) − αR−1

αR
+ R = 0 with αR−1

αR
∈ K in contradiction with

Lemma C.2 applied to f = `q. Thus, we get R = N − 1 and∑
i6M

ci,N
αR

(∂t(q)
q

)N
∂N+i
s (b) = σq

(αR−1

αR

)
− αR−1

αR
+R. (D.7)

For all these cases, note that there exists i0 such that ci0,N 6= 0 by definition of
N . Since ∂s commutes with σq, we can differentiate (D.7) with respect to ∂s and
obtain that in any case, there exist dk ∈ Lσq = Cq not all zero and h ∈ K such
that ∑

k6M+1
dk∂

k
s (b) = σq(h)− h. (D.8)

�
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D.3. Transcendence properties. The goal of this subsection is to prove some
transcendence properties of the q-logarithm in order to perform some descent pro-
cedure on telescopers. More precisely, we need to prove that the assumptions (H1)
to (H3) of Proposition D.6 are satisfied for the fields Cq(s) and Cq.Cq(`q, `q) for
q and q two multiplicatively independent elements of C∗ with |q| 6= 1, |q| 6= 1. We
recall that q and q are multiplicatively independent if there are no (r, l) ∈ Z2\(0, 0)
such that qr = ql. Remind that Cq.Cq ⊂ Mer(C∗) is the compositum of fields
and `q ∈ Mer(C∗) is a solution of σq(y) = y + 1. With Lemma D.5, (H1) of
Proposition D.6 is satisfied for K = Cq(s) and K = Cq.Cq(`q).

Lemma D.7. — Any element in a σq-extension of Cq5 that is algebraic over Cq
and invariant by σq is in C. Any element in a σq-extension of Cq that is algebraic
over Cq and invariant by σq is in C.

Proof. — The two statements are symmetrical, so let us only prove the first one.
First let us prove that Cq∩Cq = C. Let f be an element of Cq that is σq-invariant.
Suppose to the contrary that f is nonconstant. Then f has a nonzero pole c.
Since σq(f) = f , the multiplication by q induces a permutation of the poles of f
modulo q. Since the set of poles modulo q is a finite set, there exists m ∈ N∗ such
that qmc = qdc for some d ∈ Z. A contradiction with the fact that q and q are
multiplicatively independent. Now, let f be in a σq-extension of Cq algebraic over
Cq and invariant by σq. Let µ(X) ∈ Cq[X] be the monic minimal polynomial of f
above Cq. Since σq(f) = f , we easily see that the coefficients of µ must be fixed
by σq. Then, these coefficients belong to Cq ∩ Cq, which is equal to C. Then, f
is algebraic over C. The latter field being algebraically closed, we conclude that
f ∈ C. �

Lemma D.8. — The following statements hold:
(1) the fields Cq and Cq are linearly disjoint over C;
(2) for all α ∈ Cq.Cq, σq(α) 6= α+ 1 and σq(α) 6= α+ 1;
(3) for all α ∈ Cq(s), σq(α) 6= α+ 1.

Proof. —
(1) This is Lemmas D.7 and C.8 with K = C, M = Cq and L = Cq, σ = σq.
(2) Suppose to the contrary that there exists α ∈ Cq.Cq, such that σq(α) =

α + 1. Since Cq is by Proposition 4.2, the field of meromorphic functions
over a Tate curve, there exist x, y ∈ Cq such that x is transcendental over
C, y algebraic of degree 2 over C(x) and Cq = C(x, y). Since Cq is linearly
disjoint from Cq over C, the field Cq.Cq equals Cq(x, y) and there are
P (X), Q(X) ∈ Cq(X) such that α = P (x)y +Q(x). Since x, y are fixed by
σq and y is of degree 2 over Cq(x), we deduce from σq(α) = α + 1 that
Pσq (x) = P (x) and Qσq (x) − Q(x) = 1 where Pσq (X) (resp. Qσq (X))
denotes the fraction obtained from P (X) (resp. Q(X)) by applying σq
to the coefficients. Let Cq be some algebraic closure of Cq. We endow
Cq with a structure of σq-field extension of Cq. Let us write Q(X) =
cr
Xr + · · ·+ c1

X +R(X) with R ∈ Cq(X) with no pole at X = 0. Then, since

5We recall that since σq and σq commute, the field Cq is a σq-field.
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x is transcendental over Cq and fixed by σq

Qσq (x)−Q(x) = 1 = σq(cr)− cr
xr

+ · · ·+ σq(c1)− c1
x

+Rσq (x)−R(x).

Using the transcendence of x over Cq, we find that 1 = σq(β̃) − β̃ for
β̃ = R(0) ∈ Cq. There exists a unique derivation extending ∂s to Cq
and this derivation commutes with σq. Denoting this derivation by ∂s and
differentiating 1 = σq(β̃) − β̃, we conclude that ∂s(β̃) ∈ Cq. On the other
hand, ∂s(β̃) ∈ Cq. Then, σq induces a permutation on the set of roots of
the minimal polynomial of ∂s(β̃) over Cq. Thus, there exists r′ ∈ N∗ such
that σr′q (∂s(β̃)) = ∂s(β̃). Then, ∂s(β̃) ∈ Cq ∩Cqr′ . Note that q and qr′ are
multiplicatively independent. By Lemma D.7, we find that ∂s(β̃) ∈ C which
leads to β̃ = cs+ d for some c, d ∈ C. A contradiction with 1 = σq(β̃)− β̃.
The proof for q is similar.

(3) Let α ∈ Cq(s). Using the partial fraction decomposition of α in Cq(s), the
fact that σq(s) = qs and the transcendence of s over Cq, one can easily see
that σq(α)− α 6= 1. �

Lemma D.9. — The following statements hold:
(1) the function `q (resp. `q) is transcendental over Cq.Cq;
(2) the function `q is transcendental over Cq(s). In particular, (H3) of Propo-

sition D.6 is satisfied for K = Cq(s).

Proof. —
(1) Since σq(`q) = `q + 1 and Cq ⊂ (Cq.Cq)σq ⊂ Mer(C∗)σq = Cq, we can

apply Lemma C.2 and find that `q is algebraic over Cq.Cq if and only if there
exists α ∈ Cq.Cq such that σq(α) = α + 1. We conclude by Lemma D.8.
The proof for `q is symmetrical.

(2) Since σq(`q) = `q + 1 and Cq ⊂ (Cq(s))σq ⊂ Mer(C∗)σq = Cq, we can
apply Lemma C.2 and find that `q is algebraic over Cq(s) if and only if
there exists α ∈ Cq(s) such that σq(α) = α + 1. We again conclude by
Lemma D.8. �

Lemma D.10. — The following statements hold:
(1) let f ∈ Cq. If there exists α ∈ Cq.Cq satisfying σq(α)− α = f , then there

exists β ∈ Cq such that σq(β)− β = f ;
(2) let f ∈ Cq.Cq. If there exists α ∈ Cq.Cq(`q) satisfying σq(α)−α = f , then,

there exist ã ∈ Cq, b̃ ∈ Cq.Cq such that σq(ã`q + b̃)− (ã`q + b̃) = f .

Proof. —
(1) Analogously to the proof of Lemma D.8, let us write α = P (x)y + Q(x)

for P (X), Q(X) ∈ Cq(X) and Cq = C(x, y). Reasoning as in the proof of
Lemma D.8, we find that Qσq(x) − Q(x) = f . Since x is transcendental
over Cq, we conclude as in Lemma D.8 that there is β̃ ∈ Cq, for some Cq
algebraic closure of Cq such that σq(β̃) − β̃ = f . Since by Lemma D.7,
Cq

σq = C
σq
q = C, Lemma C.2 implies that there exists β ∈ Cq such that

σq(β)− β = f .
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(2) First of all, let us note that since σq and σq commute, there exists d ∈ Cq
such that

σq(`q) = `q + d. (D.9)
By Lemma D.9, the function `q is transcendental over Cq.Cq. This implies
that `q /∈ Cq and then d 6= 0. Since Cq.Cq(`q)σq = Cq = Mer(C∗)σq =
Cq.C

σq
q = Cq, Lemma C.3, applied to σq(`q) = `q + d, implies that there

exists P ∈ Cq.Cq[X] such that
f = σq(P (`q))− P (`q).

Now, let us write P (X) =
∑N
k=0 akX

k with ak ∈ Cq.Cq, and N minimal.
We find

f = (σq(aN )− aN )`Nq + (σq(aN−1)− aN−1 +Ndσq(aN ))`N−1
q

+ terms of order less than N − 1.
(D.10)

We conclude in view of (D.10) that if N = 0 we are done by setting ã = 0
and b̃ = aN . Let us now assume that N > 0. Then, by minimality of N ,
σq(aN ) = aN . We claim that

σq(aN−1)− aN−1 +Ndσq(aN ) = σq(aN−1)− aN−1 +NdaN 6= 0.
Otherwise, σq(aN−1) = aN−1 −NdaN implies

σq(aN−1

aN
+N`q) = aN−1

aN
+N`q and aN−1

aN
+N`q ∈ Cq,

contradicting the transcendence of `q over Cq.Cq, see Lemma D.9. This
proves the claim. If N > 1, then (D.10) with σq(aN ) = aN and σq(aN−1)−
aN−1 + NdaN 6= 0, would give an equation of order N − 1 which would
contradict the transcendence of `q over Cq.Cq. This proves that N = 1 and
f = σq(a1`q + a0)− (a1`q + a0) for some a1 ∈ Cq, a0 ∈ Cq.Cq. �

Lemma D.11. — The function `q is transcendental over Cq.Cq(`q). In particu-
lar, the assumption (H3) of Proposition D.6 holds for K = Cq.Cq(`q).

Proof. — By Lemma C.2, the function `q is algebraic over Cq.Cq(`q) if and only
if we have `q ∈ Cq.Cq(`q). Suppose to the contrary that `q ∈ Cq.Cq(`q). Since
1 = σq(`q) − `q, we conclude by Lemma D.10 that there exist ã ∈ Cq, b̃ ∈ Cq.Cq
such that 1 = σq(ã`q+ b̃)−(ã`q+ b̃). Combining this equation with σq(`q)−`q = 1,
we find that σq(`q)− `q = σq(ã`q + b̃)− (ã`q + b̃), proving that σq(ã`q + b̃− `q) =
ã`q + b̃− `q ∈ Cq. Then, there exists b̃1 ∈ Cq.Cq such that

`q = ã`q + b̃1. (D.11)
Differentiating (D.11) with respect to ∂s, we find

∂s(`q) = ∂s(ã)`q + ã∂s(`q) + ∂s(b̃1).
By Remark D.3, ∂s(`q), ∂s(`q) ∈ Cq.Cq. In virtue of the commutation between
∂s and σq, σq, the fields Cq, Cq are stabilized by ∂s, which implies ∂s(ã), ∂s(b̃1) ∈
Cq.Cq. By Lemma D.9, the function `q is transcendental over the latter field, we
conclude that ∂s(ã) = 0 and therefore ã ∈ C. In particular it belongs to Cq and
Cq. Using 1 = σq(ã`q + b̃)− (ã`q + b̃), we find

1− ãd = σq(̃b)− b̃,
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where d = σq(`q) − `q ∈ Cq, see (D.9). Since 1 − ãd ∈ Cq, we conclude by
Lemma D.10, that there exists b̃2 ∈ Cq such that 1− ãd = σq(b̃2)− b̃2. Replacing
the left hand side gives

σq(`q)− `q − σq(ã`q) + ã`q = σq(b̃2)− b̃2.

This shows that `q − ã`q − b̃2 ∈ Cq and then, there exists c ∈ Cq such that
`q + c = ã`q + b̃2. Differentiating this equation with respect to ∂s, we find (we use
∂s(ã) = 0)

∂s(`q) + ∂s(c) = ã∂s(`q) + ∂s(b̃2).
By Remark D.3, the left hand side of the equation belongs to Cq whereas the right
hand side is in Cq. By Lemma D.7, we conclude that ∂s(`q + c) ∈ C. This means
that there exist a0, b0 ∈ C such that `q = a0s + b0 − c in contradiction with `q
transcendental over Cq(s), see Lemma D.9. �

We can now prove that our fields satisfy the assumption (H2) of Proposition D.6.

Lemma D.12. — The following holds:
(1) Cq is relatively algebraically closed in Cq(s, `q);
(2) Cq is relatively algebraically closed in Cq.Cq(`q, `q).

In particular, (H2) of Proposition D.6 holds for K = Cq(s) and K = Cq.Cq(`q).

Proof. —
(1) The first point is a consequence of transcendence of s over Cq, and the

transcendence of `q over Cq(s), see Lemma D.9.
(2) Let us prove the second point. Let us start by proving that Cq is relatively

algebraically closed in Cq.Cq. As in the proof of Lemma D.8, we have
Cq = C(x, y) and Cq.Cq = Cq(x, y) where y is of degree 2 over both C(x)
and Cq(x). Let f ∈ Cq(x, y). Then f = P (x)y + Q(x) with P (x), Q(x) ∈
Cq(x). If f is algebraic over Cq then Lemma C.1 implies that σrq(f) = f
for some r ∈ Z∗ and therefore σrq(P (x)) = P (x) and σrq(Q(x)) = Q(x).
We claim that P (x) and Q(x) are in C(x), and therefore that f ∈ Cq.
Let P (x) = P1(x)/P2(x) where P1(x), P2(x) ∈ Cq[x] are relatively prime
and P1(x) is monic. We then have that σrq(P1(x))P2(x) = σrq(P2(x))P1(x)
and consequently P1(x) divides σrq(P1(x)) (resp. σrq(P1(x)) divides P1(x)).
Since P1(x) is monic, P1(x) = σrq(P1(x)) and P2(x) = σrq(P2(x)). This
implies that the coefficients of P1(x) and P2(x) are left fixed by σrq. Note
that by assumption, q and qr are multiplicatively independent. Therefore,
by Lemma D.7, applied with q replaced by qr, P1, P2 ∈ C[X]. The proof
for Q is similar. This proves our claim and shows that f ∈ Cq. Then Cq is
relatively algebraically closed in Cq.Cq.

Note that Lemma D.9 implies that `q is transcendental over Cq.Cq and
Lemma D.11 implies that `q is transcendental over Cq.Cq(`q). Therefore
Cq is relatively algebraically closed in Cq.Cq(`q, `q). �

The results of Appendix D.3 are summarized in the following crucial corollary.

Corollary D.13. — The assumptions of Proposition D.6 are satisfied for
• Genus zero case: K = Cq(s) and b ∈ C(s) with q ∈ C∗ such that |q| 6= 1;
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• Genus one case: K = Cq.Cq(`q) and b ∈ Cq(`q) with q, q ∈ C∗ such that
|q|, |q| 6= 1 and q and q are multiplicatively independent.

Proof. — The fact that the field K and b satisfy the assumptions (Hi) is Lem-
mas D.5, D.9, D.11, and D.12. �

Finally, we prove a lemma that will allow us to descend some telescoping relations
on smaller base fields.

Lemma D.14. — Let b ∈ Cq such that there exist N ∈ N, ci ∈ Cq with cN 6= 0,
and g ∈ Cq.Cq(`q, `q) that satisfy

N∑
i=0

ci∂
i
s(b) = σq(g)− g. (D.12)

Then, there exist m ∈ N, d0, . . . , dm ∈ C not all zero and h ∈ Cq such that
d0b+ d1∂s(b) + · · ·+ dm∂

m
s (b) = σq(h)− h.

Proof. — First of all note that the left hand side of (D.12) belongs to Cq.Cq.
By Lemma D.11, the function `q is transcendental over Cq.Cq(`q). By Lemma C.3,
g ∈ Cq.Cq(`q)[`q]. So let us write g =

∑R
k=0 αk`

k
q with αk ∈ Cq.Cq(`q), αR 6= 0.

Claim. There exist m ∈ N, c′k ∈ Cq, c′m 6= 0, and α ∈ Cq.Cq(`q) such that
m∑
k=0

c′k∂
k
s (b) = σq(α)− α. (D.13)

If R = 0 the claim is proved. Assume that R > 0. Then, we have
σq(g)− g = `Rq (σq(αR)− αR)) + `R−1

q (σq(αR−1)− αR−1 +RαR) +P (`q), (D.14)
where P (X) ∈ Cq.Cq(`q)[X] is a polynomial of degree smaller than R − 1. Then,
comparing (D.14) and (D.12), we find, by transcendence of `q over Cq.Cq(`q), see
Lemma D.11, that σq(αR) = αR. Let us prove that σq(αR−1)− αR−1 +RαR 6= 0.
Indeed if σq(αR−1) − αR−1 + RαR = 0 then σq(αR−1

αR
) − αR−1

αR
+ R = 0 with

αR−1
αR
∈ Cq.Cq in contradiction with Lemma D.9 and Lemma C.2. We then obtain

that R = 1 since otherwise we would deduce from (D.14) an algebraic relation for
`q over Cq.Cq(`q), contradicting Lemma D.11. Thus,

N∑
i=0

ci
α1
∂is(b) = σq

(α0

α1

)
− α0

α1
+ 1. (D.15)

Remind that α1 ∈ Cq and the latter field is stable by ∂s due to the commutation
between ∂s and σq. By Lemma D.5, the field Cq.Cq(`q) is stabilized by ∂s. We can
differentiate (D.15) with respect to ∂s and using the commutation between σq and
∂s, we obtain our claim.

Claim. There exist M ∈ N, dk ∈ Cq, dM 6= 0 and β ∈ Cq.Cq such that
M∑
k=0

dk∂
k
s (b) = σq(β)− β.

Indeed, by Lemma D.10, we can find a ∈ Cq, b ∈ Cq.Cq such that
m∑
k=0

c′k∂
k
s (b) = σq(a`q + b)− (a`q + b). (D.16)
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If a = 0, then
∑
k c
′
k∂

k
s (b) = σq(b) − b for some b ∈ Cq.Cq. It remains to consider

the case a 6= 0. Assume that a 6= 0. Dividing (D.16) by a and differentiating with
respect to ∂s, we find

m+1∑
k=0

dk∂
k
s (b) = σq(∂s(`q) + ∂s(b/a))− (∂s(`q) + ∂s(b/a)),

where the dk are in Cq, dm+1 = c′m
a 6= 0. Furthermore, by Remark D.3 and the

fact that Cq, Cq are stable by ∂s, we find ∂s(`q) + ∂s(b/a) ∈ Cq.Cq. This proves
the claim.

Now, let us consider an equation of the form
M∑
k=0

dk∂
k
s (b) = σq(β)− β,

with β ∈ Cq.Cq, dk ∈ Cq and dM 6= 0, minimal with respect to the maximal order
of derivation M of b. We can write this minimal equation as follows

dM∂
M
s (b) +

M−1∑
k=0

dk∂
k
s (b) = σq(β)− β,

with dM ∈ C∗q. Then dividing by dM , we find

∂Ms (b) +
M−1∑
k=0

dk
dM

∂ks (b) = σq

( β

dM

)
− β

dM
.

Therefore, we can without loss of generality assume that dM = 1. Now, if we
compute the element σq(σq(β)− β)− (σq(β)− β) and use the fact that b ∈ Cq, we
find

M−1∑
k=0

(σq(dk)− dk)∂ks (b) = σq(σq(β)− β)− (σq(β)− β).

By minimality, we find that, for all k, the element dk ∈ Cq is fixed by σq. This
means that dk ∈ C by Lemma D.7.

Since ∂Ms (b) +
∑M−1
k=0 dk∂

k
s (b) ∈ Cq and ∂Ms (b) +

∑M−1
k=0 dk∂

k
s (b) = σq(β) − β

with β ∈ Cq.Cq, Lemma D.10 shows that we have the existence of h ∈ Cq such that

∂Ms (b) +
M−1∑
k=0

dk∂
k
s (b) = σq(h)− h. �
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