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COMBINATORIAL k-SYSTOLES ON A PUNCTURED TORUS
AND A PAIR OF PANTS

ELHADJI ABDOU AZIZ DIOP, MASSEYE GAYE, AND ABDOUL KARIM SANE

Abstract. In this paper S denotes a surface homeomorphic to a punctured torus or a pair
of pants. Our interest is the study of combinatorial k-systoles, that is closed curves with
self-intersection numbers greater than k and with least combinatorial length. We show
that the maximal intersection number Ic

k of combinatorial k-systoles of S grows like k and
lim sup
k→+∞

(Ic
k − k) = +∞.

This result, in case of a pair of pants and a punctured torus, is a positive response to
the combinatorial version of the Erlandsson-Parlier conjecture, originally formulated for the
geometric length.

1. Introduction

Let Σ be a hyperbolic surface of finite type and G the set of primitive closed
geodesics on Σ. For γ ∈ G, let l(γ) denotes its geometric length namely its length
relatively to the hyperbolic metric and i(γ, γ) its self-intersection number. For every
k ∈ N, we consider the set

G>k = {γ ∈ G : i(γ, γ) > k},

of closed geodesics on Σ that self-intersects at least k times and we set

sk := inf{l(γ), γ ∈ G>k}.

By discreteness of the length spectrum, the infimum is achieved by some geodesics.
A k-systole is a closed geodesic in G>k denoted by γk such that l(γk) = sk. The
k-systoles may have different self-intersection numbers and understanding the self-
intersection spectrum of k-systoles is an interesting question. For instance when
k = 0, by suitably smoothing self-intersection points, one can make a closed geodesic
simple and shorter. It follows from this heuristic argument that systoles (0-systoles)
are simple (unless on a pair of pants with three cusps where 0-systoles have self-
intersection number equal to one). For k = 1, Buser [5] showed that 1-systoles have
one self-intersection point.

When k > 2, the self-intersection spectrum of k-systoles is more complicated.
In [12], V. Erlandson and H. Parlier studied:

Ik(Σ) := max{i(γk, γk)};

the maximal self-intersection number of k-systoles introduced by Basmajian and
Buser. They obtained the following:

2010 Mathematics Subject Classification: 32G15, 30F40.
Keywords: closed geodesics, self-intersection, k-systole.

29



30 E.A.A. Diop, M. Gaye & A.K. Sane

Theorem (Erlandsson-Parlier [12]). — Let Σ be an orientable complete hyper-
bolic surface with non-abelian fundamental group. Then

Ik(Σ) 6 31
√
k + 1

4

(
16
√
k + 1

4 + 1
)
.

Previous works due to A. Basmajian [1] provide an upper bound depending on
the topology of the surface when the surface is complete, finite area and finite type.

Erlandsson and Parlier also showed that when Σ is a complete orientable hyper-
bolic surface of finite type with at least one cusp, there exists two constants D(Σ)
and K(Σ) depending on the geometry (the metric) on Σ such that:

Ik(Σ) 6 k +D(Σ) log(k)
for all k > K(Σ).

T. H. Vo [13] proved the best known result (at the time of writing) by showing
that when Σ has at least one cusp there is a constant K(Σ) such that for k > K(Σ),
k-systoles are exact namely Ik = k.

These results imply that for surfaces with at least one cusp, we have:

lim
k→+∞

Ik(Σ)
k

= 1 and lim
k→+∞

(Ik(Σ)− k) = 0.

Conjecture (Erlandsson-Parlier [12]). — If Σ is a compact (and in particular
has no cusp) hyperbolic surface, then

lim sup
k→+∞

(Ik(Σ)− k) = +∞.

In this article, we consider a combinatorial version of Erlandsson-Parlier conjec-
ture and only for a punctured torus and a pair of pants.

If S is a surface homeomorphic to a pair of pants or a punctured torus then,
π1(S) is a free group of rank 2. Let γ be a closed curve in S. We refer to the
combinatorial length of γ, and we denote it by L(γ), as the length of the reduced
word wγ that corresponds to the homotopy class of γ in π1(S) with respect to the
standard generating set. The self-intersection number of γ is the minimal number
of time γ self-intersects in its free homotopy class. A combinatorial k-systole is
a closed curve with self-intersection number greater than k and with the smallest
combinatorial length among all closed curves with self-intersection greater than k.
We denote by Ick the maximal self-intersection number of combinatorial k-systoles.
The problem of geometric k-systoles translates into a combinatorial one. Turning
geometric problems to combinatorial ones is a common practice and one can found
examples of this in the works of M. Chas and al.[6], [8]. Our first result answers to
the combinatorial version of Erlandsson-Parlier conjecture:

Theorem 1. — Let S be a surface homeomorphic to a pair of pants or a punc-
tured torus. Then,

lim inf
k→+∞

Ick − k = 0 and lim sup
k→+∞

Ick − k = +∞.

One way to compute self-intersection numbers of closed curves on surfaces is to
use Bowen-Series coding. First, we endow S with a hyperbolic metric and in this
case, each homotopy class of an essential closed geodesic contains a unique geodesic
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and the minimal self-intersection number of a closed curve in this homotopy class
is achieved by this geodesic. If γ is a closed curve in S and α the unique geodesic in
its homotopy class, The coding wγ of γ is read off from a lift γ̃ of γ to the universal
cover. From wγ , one can derive an upper bound of i(γ, γ) using an argument which
we explain in section 2.
Since our result does not depend on the metric on S, it remains true when S has a
cusp, which contrasts with T. H. Vo’s result [13] in the case of geometric k-systoles.
This is not so surprising since geometric and combinatorial length are not equivalent
when S has at least one cusp.

For a hyperbolic surface without cusps, geometric length and combinatorial
length of closed geodesic are coarsely equivalent [10]. We had expected that The-
orem 1 extends to the geometric case but it requires further work since the gap
(between geometric and combinatorial length) is quite big and one loses a lot of
information about self-intersection. Nonetheless, we like to think our result as a
first step toward Erlandsson-Parlier conjecture. We also show the following:

Theorem 2. — Let S be a surface homeomorphic to a pair of pants or a punc-
tured torus. Then,

lim
k→+∞

Ick
k

= 1.

Outline of the paper. Section 2 is about Bowen-Series coding and self-inter-
section numbers of closed geodesics when we endow S with a hyperbolic metric. In
Section 3, we give the proofs of Theorem 1 and Theorem 2.

2. Preliminaries

In this section, we explain the Bowen-Series coding of closed geodesics on S, and
we explain how to use it to derive their self-intersection numbers.

Bowen-series coding of geodesics on S: Let D denote the Poincaré disk en-
dowed with the hyperbolic metric and O its center. For every hyperbolic isometry
h, we denote by D(h) the half-space bounded by the perpendicular bisector of the
segment [O, h(O)] and containing h(O). Let a and b be two hyperbolic isometries
of D with inverse ā and b̄ such that:

[D(a) ∪D(ā)] ∩ [D(b) ∪D(b̄)] = ∅.
The group Γ := 〈a, b〉 is a Schottky group of rank 2 (see [2, 9]) and S := D/Γ is a

hyperbolic surface homeomorphic to a punctured torus or a pair of pants, depending
on the configuration of the domains D(e); e ∈ {a, ā, b, b̄} (see Figure 2.1).

In this case, the group Γ is a purely hyperbolic Fuchsian group and the set
P =

⋂
e∈{a,ā,b,b̄}

D−
◦
D(e) is a fundamental domain of D for the action of Γ on D.

We denote by W+ (respectively W ) the set of infinite (respectively bi-infinite)
reduced words on the alphabet {a, ā, b, b̄}; and by σ the shift map on W defined
by:

σ((ei)i∈Z) := (ei+1)i∈Z.
Let Λ := Γ.O ∩ ∂D be the limit set of Γ; where Γ.O denotes the orbit of the

origin O.
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↓ ↓

D(a)

D(ā)

D(b)

D(b̄)

D(a)

D(b)

D(ā)

D(b̄)

Figure 2.1. Configuration of the domains D(a), D(ā), D(b), D(b̄) and the
surfaces obtained in the quotient. The shaded regions are the smallest regions
that contain all closed geodesic.

The map

ψ : W+ −→ Λ
w := e0e1e2... 7−→ lim

n→+∞
e0e1e2...en(0).

is a bijection (see [4]) and for η ∈ Λ, we refer to ψ−1(η) as the coding of η.
Let γ̃ be an oriented geodesic of D with endpoints (γ̃−, γ̃+) ∈ Λ×Λ and assume

that γ̃ intersects P. Let w
γ̃+ = e0e1e2... and w

γ̃−
= e−1e−2... be the coding of

γ̃+ and γ̃−. Since γ ∩ P 6= ∅, then e0 6= e1 and the bi-infinite reduced word
W
γ̃

:= ...ē−2ē−1e0e1e2... is the coding of the geodesic γ̃ when we fix P as the origin
tile.

The word W
γ̃
encodes the way γ̃ crosses infinitely many copies of the tiles of D.

In fact, P tiles D and a lift γ̃ that intersects P goes infinitely many times across
the tiles (following the two directions of γ̃ and starting at P). Moreover, if g.P
and h.P are two adjacent tiles in D, then h = g.e with e ∈ {a, ā, b, b̄}. Therefore,
if (gn.P)n∈Z is the bi-infinite sequence of adjacent tiles crossed by γ̃ with g0 = Id,
the coding associated to γ̃ corresponds to:

W
γ̃

:= (ei)i∈Z := ...e−1e0e1...

where ei ∈ {a, ā, b, b̄} is such that gi+1 = gi.ei. The word W
γ̃
is reduced, i.e, two

consecutive letters do not cancel each other.
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Lemma 2.1. — Let γ̃ and γ̃′ be two geodesics of D whose endpoints are in Λ.
Assume that γ̃ and γ̃′ intersect P and there is g ∈ Γ such that γ̃′ = g(γ̃). Then,
then there exists p ∈ Z such that W

γ̃′
= σp(W

γ̃
).

Proof. — Let W
γ̃

:= ...e−1e0e1... be the coding of γ̃. So, the sequence of tiles
crossing by γ̃ is given by (gn(P))n∈Z with g0 = Id. Since there is g ∈ Γ such that
γ̃′ = g(γ̃), γ̃′ crosses the sequence (hn(P))n∈Z where hn = g.gn and hn+1 = hn.en
for all n ∈ Z. Since γ̃′ crosses P, there exists p ∈ Z such that hp = Id. Then,
W
γ̃′

:= ...e′−1e
′
0e
′
1... where e′k = ek+p which implies that W

γ̃′
= σp(W

γ̃
). �

Let γ be a closed geodesic on S and γ̃ a lift of γ that crosses P. The endpoints of
γ̃ are in Λ and W

γ̃
is periodic namely W

γ̃
= ...w

γ̃
w
γ̃
w
γ̃
... where w

γ̃
:= e0e1...em ∈

Γ = π1(S) is cyclically reduced, i.e, all the cyclic permutation of w
γ̃
are reduced.

The word w
γ̃
also correspond to the homotopy class of γ in S and the length

of w
γ̃
does not depend on the choice of the lift crossing P and we refer to it as

the combinatorial length of γ. The Bowen-Series coding of a closed geodesic
γ is the cyclic class of w

γ̃
where γ̃ is a lift of γ that crossing P and with coding

W
γ̃

= ...w
γ̃
w
γ̃
...

Self-intersection of geodesics in S: Here, we explain how to compute self-
intersection using the coding of a closed geodesic and the relation between self-
intersection and combinatorial length.

Two lifts γ̃1 and γ̃2, with endpoints (γ̃−1 , γ̃
+
1 ) and (γ̃−2 , γ̃

+
2 ) respectively, intersect

if and only if their endpoints are cyclically ordered like

γ̃−1 < γ̃−2 < γ̃+
1 < γ̃+

2 (∗).

The self-intersection number of a closed geodesic γ is equal to the number of
time its lifts intersect in the fundamental domain P.

A

D(ā)

D(a)

D(b̄)

D(b)

A

D(b)

D(a)

D(b̄)

D(ā)

Figure 2.2. The order <A defined by a fixed point A ∈ ∂D. In the hyper-
bolic torus, we obtain a <A b̄ <A ā <A b. For the pair of pants, we obtain
a <A b̄ <A b <A ā.

An alphabet is a finite ordered set of distinct symbols. For A ∈ ∂D ∩ P fixed, we
obtain an order <A on the set Γ = {a, ā, b, b̄} (and then an alphabet) by walking
counter-clockwise on ∂D starting at A and recording the order in which the domains
D(a), D(ā), D(b) and D(b̄) appear (See Figure 2.2). Depending on the position of
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A, we obtain four different alphabets. We denote by Γe the alphabet whose first
letter is e. This order induces an order in W+ as follow:

e0e1... <A e
′
0e
′
1... ⇐⇒

 e1 <A e
′
1 if e1 6= e′1; or

∃ k > 1, ei = e′i for i < k, ek <A e
′
k in Γēk−1

J. Birman and C. Series showed in [3]-Theorem A that the order <A on W+ is
compatible with the order on the endpoints.

It follows that using (∗), one can see when two lifts γ̃i and γ̃j intersect or not
using their codings. Since we are interested to intersection points in P between all
the lifts, we can restrict to lifts of γ that intersect the fundamental domain P.

Let γ be a closed geodesic on S and w
γ̃

= e1...en its coding. Let wi :=
eiei+1...ene1...ei−1 and γ̃i the lift of γ with extremities γ̃+

i := wiwi... and γ̃−i :=
w̄iw̄i...

We denote by Lcyc(γ) the set of lifts of γ obtained as above. As a direct corollary
of Lemma 2.1, we have:

Proposition 2.2. — Let γ be a closed geodesic on S. A lift γ̃ of γ intersects
the fundamental domain P if and only if γ̃ ∈ Lcyc(γ).

For a closed geodesic γ on S, we denote by
Iγ = {(γ̃i; γ̃j), γ̃i ∩ γ̃j 6= ∅, γ̃i, γ̃j ∈ Lcyc(γ), 1 6 i < j 6 L(γ)}

the set of intersection points between lifts of γ that intersect the fundamental
domain P. Computing the self-intersection number of γ is equivalent to determine
the number of points of Iγ lying in the fundamental domain. But it is not easy to
know whether two lifts intersect in the fundamental domain or not.
In order to solve this problem, we define the following relation on Iγ : we say that
two points (γ̃i; γ̃j) and (γ̃k; γ̃l) are equivalent and we write (γ̃i; γ̃j) ∼ (γ̃k; γ̃l) if there
exists an isometry in Γ which maps the pair of geodesics (γ̃i, γ̃j) to the pair (γ̃k, γ̃l).

The self-intersection number of γ is equal to the cardinal of the quotient of Iγ
by this equivalence relation:

i(γ; γ) = # Iγ/ ∼ .
The number i(γ, γ) is bounded from above by the number of pairs (γ̃i, γ̃j) where

i 6= j and each γ̃i intersects the fundamental domain. By Proposition 2.2 the
number of γ̃i intersecting the fundamental domain is equal to L(γ). So, we have
the following upper bound:

i(γ, γ) 6 L(γ)(L(γ)− 1)
2 .

The first two authors use the machinery described in this section to give upper
bounds when S is a pair of pants. They proved the following:

Theorem 2.3 (Diop-Gaye, [11]). — Assume that S is a pair of pants and let γ
be a primitive non-simple closed geodesic on S. Then,

i(γ; γ) 6


L2(γ)

4 if L(γ) is even,

L2(γ)− 1
4 if L(γ) is odd.
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Previous to that, M. Chas and A. Phillips showed in [7] a similar result in the
case of a punctured torus:

Theorem 2.4 (Chas-Philips). — Assume that S is punctured torus and let γ
be a primitive non-simple closed geodesic. Then,

i(γ; γ) 6


(L(γ)− 2)2

4 if L(γ) is even,

(L(γ)− 1) (L(γ)− 3)
4 if L(γ) is odd.

Moreover, these bounds are sharp.

3. Proof of theorems 1 and 2

Now, we turn to the proof of the theorems stated in the introduction. We start
with the following lemmas that compute the length of combinatorial k-systoles in
a pair of pants and a punctured torus under some condition on the choice of k.

ab

a b

Figure 3.1. A geodesic on a pair of pants with coding a(ab̄)3.

Lemma 3.1 (Case of a pair of pants). — Let S be a pair of pants and n an
integer.

• If n2 < k 6 n2 + n, then combinatorial k-systoles have length equal to
2n + 1. In particular, the geodesic with coding a(ab̄)n is a combinatorial
k-systole.

• If n2 − n < k 6 n2, then combinatorial k-systoles have length at most
2n+ 1.

Proof. —
• Let n and k be two integers such that n2 < k 6 n2 + n. Let γk be a

combinatorial k-systole, then
i(γk; γk) > k > n2.

By Theorem 2.3, L(γk) > 2n. It follows that L(γk) > 2n+ 1. The geodesic
with coding a

(
ab̄
)n self-intersects n2 +n times (See Figure 3.1 for a repre-

sentation of the corresponding geodesic when n = 3) and its combinatorial
length is 2n+ 1. This prove the result.

• For n2 − n < k 6 n2, the geodesic with coding a(ab̄)n has combinatorial
length 2n+1 and self-intersection number n2 +n. Therefore, combinatorial
k-systoles have length at most 2n+ 1. �
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Figure 3.2. A geodesic on the hyperbolic torus with coding anbm

Lemma 3.2 (Case of a punctured torus). — Let S be a punctured torus and n
an integer.

• If n2 < k 6 n2 + n, then combinatorial k-systoles have length equal to
2n+ 3. In particular, the geodesic with coding an+1bn+2 is a combinatorial
k-systole.

• If n2 − n < k 6 n2, then combinatorial k-systoles have length equal to
2n+ 2. In particular, the geodesic with coding an+1bn+1 is a combinatorial
k-systole.

Proof. —
• Let n be an integer and k an integer such that n2 < k 6 n2 + n. Let γk be
a combinatorial k-systole. Therefore,

i(γk; γk) > k > n2.

Again, by Theorem 2.4, L(γk) > 2n+ 2 which implies that L(γk) > 2n+ 3.
The geodesic with coding an+1bn+2 self-intersects n2 + n times (see Figure
3.2 for a representative of an+1bn+2) and its combinatorial length is 2n+ 3.
This proves the result.

• Let n be an integer and k an integer such that n2 − n < k 6 n2. Let γ be
a geodesic such that L(γ) < 2n+ 2.

By Theorem 2.4,

i(γ, γ) 6 (2n+ 1− 1)(2n+ 1− 3)
4 = n2 − n.

Thus, i(γ, γ) 6 n2 − n < k when L(γ) < 2n+ 2. Therefore when n2 − n <
k 6 n2 − n, combinatorial k-systoles have length greater than 2n+ 2. The
geodesic with coding an+1bn+1 self-intersects n2 times and its combinatorial
length is 2n+ 2. This proves the result. �

Now, we prove our main results, namely Theorem 1 and Theorem 2.
Proof of Theorem 1. — We recall that S is a pair of pants or a punctured torus.

Let k be an integer.
First, for k = n2 + n combinatorial k-systoles have self-intersection equal to k

for a pair pants and a punctured torus. In fact, the geodesic with coding a(ab̄)n
(respectively an+2bn+1) has self-intersection number equal to n2 + n when S is a
pair of pants (respectively a punctured torus). If γ is a closed geodesic on S such
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that i(γ, γ) > n2 + n, Lemma 2.3 and Lemma 2.4 imply that L(γ) > 2n + 1 for a
pair of pants or L(γ) > 2n+ 3 in the case of a punctured torus.

So, for k = n2 + n combinatorial k-systoles are exact that is Ick = k and are
realized by the geodesic mention above. Thus,

lim inf
k→+∞

Ick − k = 0.

Now, let k be an integer such that n2 < k < n2 +n. The geodesic a(ab̄)n (respec-
tively an+1bn+2) is a combinatorial k-systole for a pair of pants (respectively for a
punctured torus) and it self-intersects n2 + n times. So, combinatorial k-systoles
have length 2n + 1 (respectively 2n + 3) when S is a pair of pants (respectively a
punctured torus). Theorem 2.3 and Theorem 2.4 imply that the self-intersection
number of combinatorial k-systoles is bounded from above by n2 + n. It follows
that Ick = n2 + n. Thus :

lim sup
k→+∞

Ick − k = +∞.

This achieves the proof of Theorem 1. �

Proof of Theorem 2. — For any integer k, there exists an integer n such that:
n2 − n < k 6 n2 or n2 < k 6 n2 + n.

Lemma 3.1 and Lemma 3.2 together with Theorem 2.3 and Theorem 2.4 imply
that:

n2 − n < k 6 Ick 6 n
2 + n or n2 < k 6 Ick 6 n

2 + n.

These inequalities imply that:

lim
k→+∞

Ick
k

= 1. �
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