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UNITARY REPRESENTATIONS OF P-ADIC U(5)

CLAUDIA SCHOEMANN

Abstract. We study the parabolically induced complex representations of the unitary group

in 5 variables, U(5), defined over a p-adic field.

Let F be a p-adic field. Let E : F be a field extension of degree two. U(5) has three
proper standard Levi subgroups, the minimal Levi subgroup Mg = E* x E* x E! and the

two maximal Levi subgroups My = GL(2, E) x E! and My = E* x U(3).

‘We consider representations induced from My, representations induced from non-cuspidal,
not fully-induced representations of M7 and Ms and representations induced from cuspidal

representations of Mj.

‘We determine the points and lines of reducibility and the irreducible subquotients of these
representations. Further we describe - except several particular cases - the unitary dual in

terms of Langlands quotients.
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1. INTRODUCTION

Determining the irreducible and the unitary dual of a reductive algebraic group
is an important problem in representation theory, with numerous applications in
harmonic analysis and the theory of automorphic forms. The description of the
irreducible and the unitary dual of the unitary group U(n) over a non-archimedean
local field is a long-standing open question.

We study the parabolically induced complex representations of the unitary group
in 5 variables - U(5) - defined over a non-archimedean local field of characteristic
0, a p-adic field.

A similar example for the composition series for induced representations of SO(5)
over a p-adic field can be found in [12] and examples for unitary duals for groups of
low rank in [13] for SO(5) and in [15] for the simply connected split simple group
of type Ga.

Let F be a p-adic field. Let E : F be a field extension of degree two. Let
Gal(E : F) = {id, o} be the Galois group. We write o(xz) = T for all x € E. Let
E*:=FE\ {0} and let E' :={z € F | 27 = 1}.

U(5) has three proper standard Levi subgroups, the minimal Levi subgroup
My =& E* x E* x E' and the two maximal Levi subgroups M; = GL(2,E) x E*
and My = E* x U(3).

We consider representations induced from My, representations induced from non-
cuspidal, not fully-induced representations of M; and M, and representations in-
duced from cuspidal representations of Mj.

We determine the points and lines of reducibility of the representations of U(5),
and we determine the irreducible subquotients. Further we describe - except several
particular cases - the unitary dual in terms of Langlands quotients.

Tools of proof include intertwining operator methods by long Weyl group ele-
ments, the Jacquet restriction with respect to proper parabolic subgroups and the
Frobenius reciprocity. When inducing from cuspidal representations of GL(2, E) x
E! methods of proof involve base change lift from U(2) to GL(2) ([16]) and the
poles and zeros of local Asai L-functions ([4]).

The irreducible complex representations of U(3) over a p-adic field obtained as
subquotients of parabolically induced representations have been classified by C. D.
Keys in [10], the irreducible complex representations of U(4) over a p-adic field
obtained as subquotients of parabolically induced representations by K. Konno in
[11].

In Section 1 we give some definitions. Section 3 lists results by previous authors
that will be used throughout the article. In Section 4 we give the classification of
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the irreducible non-cuspidal representations of U(3), as has been done in [10]. We
reassemble the results for the irreducible unitary representations.

In Section 5 we determine when the induced representations to U(5) are irre-
ducible. It is done for representations induced from the minimal Levi subgroup M
and for non-cuspidal, not fully-induced representations of the two maximal Levi
subgroups M; = GL(2, E) x E! and My = E* x U(3).

For M; this means that the representation of the GL(2, E)-part is a proper
subquotient of a representation induced from E* x E* to GL(2, E). For My this
means that the representation of the U(3)-part of My is a proper subquotient of a
representation induced from E* x E! to U(3).

Representations of My are of the form | [} x1® | [;? x2 ® \’, where | |, denotes
the p-adic norm on E, a1, as € R, x1, x2 are unitary characters of E* and X is a
unitary character of E'. Reducibility of the induced representation | [5* x1x | |32
X2 X A’ depends on a1, as and on the two unitary characters y; and ys.

Let Ng/p(E) denote the norm map of E with respect to the field extension
E: F, then Ng/p(z) = 27 for all x € E.

In Theorems 5.1, 5.2 and 5.4 we show that for a1, as € Ry, | \;“ X1X | |g‘2 Y2 XN
is reducible if and only if at least one of the following cases holds:

(1) |y —as |=1 and x1 = x2,

(2) |ar+ a2 [=1and xi(2) = x5 ' (T) Vo € B,

(3) Jie{1,2} sty =1 and x; =1,

(4) Fie{1,2} st.a; =1/2and x; | F* # 1, but x; | Ng/p(E*) = 1,
(5) Ji e {1,2} sty =0 and x; # 1, but x; | F* = 1.

Let x be a unitary character of E*. The condition that y(z) = x~1(Z) for all
x € E* is equivalent to the condition that x | Ng,p(E*) = 1 and to the fact that
X is a character of a type as in (3),(4) or (5) of the list above.

In 5.3 we consider representations induced from irreducible non-cuspidal repre-
sentations of M7 and My that are not fully-induced.

We consider | det |} x Stgr, xA" and | det [ x1lgr, x A, where a € Ry, x is a
unitary character of E*, Stgr, is the Steinberg representation of GL(2, E), X is a
unitary character of E' and 1gr, is the trivial representation of GL(2, E).

In Theorem 5.5 and in Proposition 5.6 we show that for o € Ry, | [ x Star, X\
and | |5 x1gr, x A" are irreducible unless one of the following cases holds:

(1) a=1/20or «=3/2 and x =1,
(2) a=0,a=1/2ora=1and x | F* #1, but x | Ng,p(E*) =1,
(3) a=1/2and x #1but x | F* =1.

We consider | |* x x 7, where @ € R, x is a unitary character of E* and 7 is an
irreducible non-cuspidal unitary representation of U(3) that is not fully-induced.
We consider all irreducible proper subquotients 7 of representations induced to U(3)
from its unique proper Levi-subgroup M = E* x E', as classified in [10].

In Theorems 5.7, 5.9, 5.11 and in Propositions 5.8, 5.10 and Remark 5.14 we show
that these representations are irreducible unless one has a certain combination of
a €40,1/2,1,3/2,2} and x = 1, 0or x Z 1 but x | F* =1, or x | F* # 1 but
X | Ng/r(E*) =1.
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In the case of reduciblility the irreducible subquotients are determined in the
course of Section 5. In several cases the irreducible subquotients are determined in
Section 6.

In Section 6 we treat several ’special’ reducibility points of representations in-
duced from the minimal parabolic subgroup Py with Levi subgroup My = E* x E* X
E'. In some cases the induced representation | [%* x1X | |32 x2 % A’ has more than
two irreducible subquotients, more precisely it has four irreducible subquotients.

If this is the case, then a1, an € {0,1/2,1,3/2,2} and y;(z) = x; *(F) fori = 1,2
and for all z € E*. Then x; = 1, 0r x; # 1 but x; | F* =1, or x; | F* # 1 but
Xi | NE/F(E*) = 1, for i = 172

We determine the irreducible subquotients in terms of Langlands quotients, and
we determine whether these Langlands quotients are unitary.

In Section 7 we give a classification of the irreducible unitary representations of
U(5) in terms of Langlands quotients. At first we consider the irreducible subquo-
tients obtained by induction from representations of My and from non-cuspidal, not
fully-induced representations of M; and My (the subquotients determined in Sec-
tion 5). We then consider the irreducible subquotients of representations induced
from cuspidal representations of M; = GL(2, E) x E'.

2. DEFINITIONS

Let F' be a non-archimedean local field of characteristic 0, that is @, or a finite
extension of Q, where p is a prime number.

Let G be a connected reductive algebraic group, defined over F. Let V be a
vector space, defined over the complex numbers. Let m be a representation of G on

V. We denote it by (m,V) and sometimes by 7 or V. Let (7, V) denote the dual
representation of (m, V).

Let E : F be a field extension of degree two, let Gal(E : F) = {id,c}. We write
o(xz) =T for all z € E for the non-trivial element of the Galois group.

Let E* denote the group of invertible elements of E and E! := {z € E : 27 = 1}.

Let Ng/p( ) denote the norm on E corresponding to the field extension £/F of
degree 2: Ng/p(x) = 27 for all x € E. Ng/p(E*) C F* and | F*/Ng,p(E*) |= 2.

Let wg/p : F* — C* be the unique non-trivial smooth character with wg,/p |
NE/F(E*) = 1. Note that wg,r is determined by local class field theory.

Let X, be the set of characters y of £ such that x | F”* = wg/p. Characters
in X, , are unitary.

Let X, be the set of characters x of £* that are non-trivial and whose restric-
tion to F* is trivial: x #1, x | F* = 1.

Let Xnp p(2e) = {1} UXwy, » UXi,.. It exhausts all characters x of E* trivial
on Ng,p(E*), that is verifying x(z) = x ! (z) for all x € E*.

Let ® € GL(n, E) be a hermitian matrix (that is 3 = ®) and Ug the unitary
group defined by @ :

Us = {g € GL(n, E) : g®g" = @},

Let ®,, = (®;;), where ®;; = (=1)""14; ,,41_; and &, is the Kronecker delta.
Let ¢ € E* be an element of trace 0, that is tr(¢() =+ ¢ =0.



UNITARY REPRESENTATIONS OF P-ADIC U(5) 97
1

If n is odd, then ®, = - is hermitian. If n is even, (¥, =

e is hermitian.
¢ ¢
Denote by U(n) the unitary group corresponding to ®,, if n is odd or to (¥,
if n is even, respectively. It is quasi-split.
Let n be a positive integer. We will call Levi subgroup of U(n) a subgroup of
block diagonal matrices

Ay — 0
Ag ‘

where A; € GL,,,(EF) for 1 < i < k, B € U(m)} and m,nq,...,n, are strictly
positive integers such that m 4+ 2% n; = n. (If k = 0, then there are no n; and
M =U(n).)

It is canonically isomorphic to the product GL(nq, E) X - - - x GL(ng, E) x U(m).
We choose the corresponding parabolic subgroup P such that it contains M and
the subgroup of upper triangular matrices in U(n). We call a parabolic subgroup
P that contains the subgroup of upper triangular matrices standard. Let N be the
unipotent subgroup with identity matrices for the block diagonal matrices of M,
arbitray entries in E above and 0’s below. Then one has the Levi decomposition
P=MN.

We consider representations of the Levi subgroups and extend them to repre-
sentations of P by trivial extension to the unipotent subgroup N. We perform
normalized parabolic induction to the whole group U(n).

Let m, i = 1,...k, be smooth admissible representations of GL(n;, E) and
o a smooth admissible representation of U(m). Let m ® ... ® m; ® o denote
the representation of M = GL(n1,E) x ... x GL(ng, E) x U(m) and denote by

= Il’ldg(n)(ﬂ'l ®...0T®0) =m X ... X 7 X o the normalized parabolically
induced representation, where P is the corresponding standard parabolic subgroup
containing M.

Let 7 be an irreducible representation of GL(n, E'). Then there exist irreducible
cuspidal representations p1, pa, ..., pr of general linear groups that are, up to iso-
morphism, uniquely defined by 7, such that « is isomorphic to a subquotient of
p1 X -+ X pg. The multiset of equivalence classes (p1,. .., px) is called the cuspidal
support of 7. It is denoted by supp(n).

Let n € IN and let 7 be an irreducible representation of U(n). Then there
exist irreducible cuspidal representations p1, ..., pi of general linear groups and an
irreducible cuspidal representation o of some U(m) that are, up to isomorphism
and replacement of p; by p;'(~) for some i € {1,...,k}, uniquely defined by 7,
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such that 7 is isomorphic to a subquotient of p; X - -+ X pr ¥ 0. The representation
o is called the partial cuspidal support of 7 and is denoted by Teysp.

For a parabolically induced representation m of G let sp(7) and S, (7) denote
the Jacquet restrictions with respect to the parabolic subgroup P and with
respect to the minimal parabolic subgroup, respectively ([8]).

Let m be a smooth representation of finite length of G. Then & denotes the
Aubert dual of 7, as defined in [1].

Let £(G) be the set of equivalence classes of irreducible square-integrable rep-
resentations of G.

Let Hom (M, C*)™" denote the group of unramified characters of M.

Let R(U(n)) be the Grothendieck group of the category of admissible represen-
tations of finite length of U(n) and let R(U) := €>90R(U(n)).

nz

We define the R-group, a subgroup of the Weyl group W of G. Let A be a charac-
ter of the minimal Levi subgroup My, and Wy := {w € W : wA = A}. Let a(w, A) :
Indg(s)()\) — Indg@(w)\) be the intertwining operator of Ind%(\) corresponding
to w, where wA(m) := AMw~tmw). Let W := {w € W, : a(w,\) is scalar}. Then
Wy =R x W' (|9)).

3. PREVIOUS RESULTS

We list results by previous authors that will be used throughout the article.

The group U(3) has one proper parabolic subgroup P with the Levi subgroup
M = E* x E'. For a smooth character A € Hom(M, C*) there exist unique smooth
characters A\; € Hom(E*,C*) and X' € Hom(E?!, C*) such that A = \; @ .

By [10] the induced representation Indg(g)()\) is irreducible except in the follow-
ing cases:

1) A= 5

(2) A1 :| |§1/2 Xwg/Fo where Xwp/r € XWE/F?

(3) M = Xx1,., where x1,. € X1,..
Note that in 1. and 2. changing the sign of the exponent is equivalent to replacing
A by wA, where w € W is the non-trivial element of the Weyl group. Thus the sign
of the exponent does not affect the set of irreducible constituents. We give the clas-
sification for positive exponent, for negative exponent the irreducible constituents
exchange roles.

The classification does not depend on .

In the first case Indg(?’)()\) has exactly two constituents, the character ¢ :=
A'odet and the square-integrable subrepresentation St (s 0. Both ) and Sty (s) -9
are unitary.

In the second case IndJUD(S)()\) has exactly two constituents, a square-integrable
(and hence unitary) representation T Xep, 5 and a non-tempered unitary represen-

tation T2, Xep

In the third case Indg(3)()\) decomposes into the direct sum o1y, @02y, . -
The two constituents OLx1p and 02,x1,, are tempered, hence unitary.

Let G be a connected reductive group defined over a p-adic field. Let (w, V)
be a representation of G, for a finite dimensional vector space V. The following
construction is given in [18]:
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Remark 3.1. — Assume one has, on the same vector space V', a continuous family
of induced irreducible representations (74, V),a € X, where X is a connected set,
that posses non-trivial hermitian forms (invariant under G). Suppose that some 7,
is unitary. If a family of non-degenerate hermitian forms on a finite dimensional
space, parametrised by X, is positive definite at one point of X, it is positive definite
everywhere. Hence 7, is unitary for all o € X.

Remark 3.2. — One may reduce the argument to finite dimensional spaces by
considering spaces @V (J), where d runs over fixed finite subsets of the irreducible
unitary representations of the maximal compact subgroup of G.

Let M be a Levi subgroup of G and let 7 be an irreducible representation of M.
The Lemma 5.1(i) of [15] is a special case of Theorem 4.5 in [17]:

LEMMA 3.3. — The set of all 0 € Hom(M, C*)™" such that Ind$ (o ® «) has
an irreducible unitary subquotient is compact.

Let A € Hom(My, C*). By [9] Corollary 1, the number of inequivalent irreducible
components of Indg()\) equals the number of conjugacy classes in R.
Let G := [U(Qn) be the unitary group in 2n or 2n 4+ 1 variables, respectively.

U(2n+1)
For m < n let G(m) := {ggzlg SZGL;%T(LQ)WH)' By convention G(0) = U(1).

Let 0; € E(GLy,, (E)), i =1,2,..., and p € E(G(m)).

THEOREM 3.4 ([5], Thm. 3.4). — Let G = U(2n) or U(2n+1). Let P = M N be
a parabolic subgroup of G. Suppose that M = GL(n1, E) x...x GL(n,, E) x G(m).
Let o € &(M), with o 2 01 ® ... ® 0, ® p. Let d be the number of inequivalent

0;, such that Indgg:f:g(m)(ai ® p) reduces. Then R = (Z,/27).

We have Lemma 2.1 of [19]:

LEMMA 3.5 ([19]). — Let 7 be an irreducible representation of U(m) and let p be
an irreducible cuspidal representation of a general linear group GL(p, F'). Suppose

(1) p# 70,

(2) p X Teusp is irreducible.

(3) px p' and p(~) x p’ are irreducible for any factor p' of .
(4) Neither p nor p(-) is a factor of .

Then p x 7 is irreducible.

4. THE REPRESENTATIONS OF U (3)

4.1. The irreducible representations of U(3). Let P be the unique standard
proper parabolic subgroup of U(3), M the standard Levi subgroup and N the
unipotent radical corresponding to P. Then P = M N is the parabolic subgroup of
U(3) defined in Section 2 for m = k =mn; = 1. We have

z0 0 " 1 lapg — 3
M:{(Ok 0 ),xEE ke E Y}, N:{(g(%?),a,ﬁeE,aa:ﬂ—Fﬁ} and

00zt

z0 0 lap z za =P x € E* ke E!
P=MN= (0k0>( a): . e,  keBl, 1
{ 00z ! 00 30591 a,BEE, aa=6+p
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For a smooth character A € Hom (M, C*) there exist unique smooth characters
A1 € Hom(E*,C*) and X' € Hom(E*!, C*) such that

0 0
A (’é 5791) ) = M ()N (27 k), Vo € B, Vk € E".
xT
Remark 4.1. — (1) Every smooth character of E* can be written in the form

A(z) =| z |** x1(z), with oy € R and x; a unitary character.
(2) N : B! — C* is smooth and E! is a compact group, hence )’ is unitary.

These are all characters of M. We extend A from M to P, by taking A | N = 1.
We induce parabolically from P to U(3) and obtain

7:=Ind%® () = md¥® (A @ M) =2 Ay 3 N,
The complex vector space V of the representation 7 is defined as follows:

. . f smooth and f(mng) = 6> (m)A(m) f(g) }
V'_{f'U(S)_)C'VmGM,VnEN,VgEU&) '

Here 5113/ ? is the modulus character, and 7 acts on V' by right translations.

Let o € R} and x be a unitary character of £*. Let A\’ be a character of El. Let
A =||* x®) be a character of the Levi subgroup M and | |* x %\’ the parabolically
induced representation to U(3). Then | |* x x A\’ has a unique irreducible quotient
denoted by Lg(] |* x x \’), the Langlands quotient.

Let T := {(m 1 Wl> ,x € F*} be the maximal split torus over F.
T
Let N(T) be the normaliser and C(T) the centraliser of T in U(3), respectively.
The Weyl group is W := N(T)/C(T) = Z/27Z.
By [10] the induced representation Indg@ (\) is irreducible except in the three
cases:

() =l
2) A1 =115 Xow,
(3) A= Xipn-

In the first case Indg(?’) (M) has exactly two constituents, the unitary character
1 := X odet = Lg(A1; \') and the square-integrable (hence unitary) subrepresen-
tation Sty (s 4.

In the second case Indg(?’)(/\) has exactly two constituents, a square-integrable
(hence unitary) representation Tl Xep, p and a non-tempered unitary representation
=Lg(A\; V).

In the third case Indg(S)()\) decomposes into the direct sum o1y, @S 02y, -

The two constituents o1,y, , and o2y, , are tempered, hence unitary.

7T2’X“’E/F

x )\ is irreducible

Remark 4.2. — T2, Xep 1 is unitary: Let Xwg,p € XwE/F' Xwp, r

and unitary, | [* Xwg, . % A" is irreducible and unitary for o € (0,1/2), by Theorem
4.6, (1.3). By [14] the irreducible subquotients Xt e and T2 Xep 5 of | [M/2
Xwg,p X A are unitary. See Theorem 4.6.

Remark 4.3. — o1y, , and o3,  are tempered: In the third case Ay =: x1,.. €

Xi,.. Since x1,. is square-integrable, x1,. X X is tempered and so are its con-
stituents.
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We obtain the following

COROLLARY 4.4. — If A\ x X is reducible there are always two distinct irre-
ducible subquotients. They are unitary:.

4.2. The irreducible unitary representations of U(3).

PRrROPOSITION 4.5. — The following list exhausts all irreducible hermitian rep-
resentations of U(3) supported in its parabolic subgroup P. Let a > 0, and let x
be a smooth unitary character of E*.

(0) x x N, x & Xi,., 015,02, as introduced above, tempered,
(1) M(det) = Lg(] 1;)‘/)’7r27XwE/p = Lg(| |Y? x;\), for x € Xup,p DON-
tempered, unitary,
(2) N (det) StU(S)vﬂl,wa/F square-integrable,
B) [1*IxN,aZ L[ [*x 3N, a#1/2, x € Xup, s | ¥ x ¥ N, x € X1,
Proof. — Representations of (0), (1) and (2) are unitary, hence hermitian.

If for a > 0, | |* x x A’ is reducible, all subquotients are hermitian and part of
the list.

For (3), let | | xx X, a > 0, be irreducible. By [3], 3.1.2, | [* x XA = | |* x x N

iffw(] |*x®@XN)=2||*x®N for the non-trivial element w of W.

We have [[*x®N = [ x@ X = w(| |* x@X) =| |7* x () @ X & x =
X '(7), that is x € Xny, - 0
For o € RY, let m, =| |* x x A" be a representation of U(3) and V' be the

corresponding vector space. We give, on the same vector space V, a family of
U(3)-invariant hermitian forms, parametrised by o € R* :

(,)a: VXV =C,(f,h)—~ / A(w, \) f(k)h(k)dk.
U(3,0)

w is the non-trivial and the longest element of W, and A(w,A) : | [* x X X —| |7
x~1(=) x )\ is the intertwining operator for | |* x x A’ corresponding to w. O is the
ring of integers of E. For a € R* | one can equivalently define such an intertwining
operator.

Let & € R and x be a smooth unitary character of E*. Like before we set
A= ® N, where \; =| |* x

If Ind (3)()\) reduces we have seen that all subquotients are unitary.

THEOREM 4.6. — (1) Indg(g)()\) is irreducible and unitary if and only if
(1.1) x ¢ X1,. and a =0,
(1.2) x =1 and a €] — 1,0[U]0, 1],

(1.3) x € Xup, and a €] —1/2,0[U]0, 1/2].

(2) Indg(g)()\) is irreducible and non-unitary if and only if

(2.1) xa #1, x1 & Xup,r Vo € R™.

(2.2) x1 =1 and a €] — 0o, —1[U]1, 0],

(2.3) x1€ X and « €] — 00, —1/2[U]1/2, c0].

Xwg, p
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Proof. — We use Remark 4.1 1.
1.1)<) If a = 0, then A = x ® X' is unitary, hence nd%® () is unitary. The
P

representation Indg@)()\) is irreducible unless x € Xi,. [10].

(1.2) and (1.3)<=: Fora =0and x =1 or x € X,, Indg(g)()\) is irreducible

and unitary, hence by Remark 3.1 Ind}z(g)(/\) is unitary for x =1 and a €] — 1, 1]

and for x € Xy, and a €] —1/2,1/2[. The hermitian forms are given above.

If a #0and x ¢ Xn,, (%), Indg@)(/\) is irreducible and not hermitian and
hence not unitarisable.

It remains to show that Indg(g)()\) is non-unitary if « € R* and x € Xy,. (if
a=0and x € X;,. then Indg(?’)()\) is reducible). Further it remains to show that
Indg(s)()\) is non-unitary if x =1 and « €] — 0o, —1[U]1, 00[ and if x € X, nd
a €] — o0, —1/2[UJ1/2, 0.

This will show (1)= and (2)<; (2)= is shown by (1)<.

We use the Lemma 3.3, here | |* ® 1 € Hom(M,C*)™"™ and x ® X is an
irreducible representation of M.

(1)= and (2)«<: Indg@)()\) is irreducible for x = 1 and « €]1,00[ (or a €
] =00, =1, or for x € Xy, and a €] — o0, —1/2[U]1/2, 00], or for x € Xi,. and
a € R*, respectively). If there existed a €]1, co[ (or in one of the other intervals or
in R*, respectively) such that | |* x x A is unitary, with x chosen appropriately,
then by Remark 3.1 all representations | |* x x A’ with « €]1, 00[ (or in one of the
other intervalls or in R*) would be unitary, in contradiction to Lemma 3.3. O

E/F)

E/F a

The induced representations of U(4) over a p-adic field have been classified by
K. Konno [11].

5. THE IRREDUCIBLE REPRESENTATIONS OF U (5)

5.1. Levi decomposition for U(5). Recall the Levi decomposition P = MN,

where P is a standard parabolic subgroup, M is the standard Levi subgroup corre-

sponding to P and N is the unipotent subgroup corresponding to P and to M.
The standard Levi subgroups of U(5) are the following three:

My := E* x E* x B! (the Levi-group corresponding to the
minimal parabolic subgroup),

M; :=GL(2,E) x E' and

My := E* x U(3) (the two Levi-groups corresponding to the
maximal parabolic subgroups).

We obtain the parabolic subgroups

T *
Yy

POZMONOZ{ k axvyaeE*ak€E17*eE}mU(5)7
0 z 7!

P = MN, :{(Z L ) a € GL(2,E), k€ E',x € E} NU(5), and

Py = MyN, :{(zu :1) ze B ucU(3),+cEYnU(®).
x
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5.2. Representations with cuspidal support in M, fully-induced. The ir-
reducible representations of M, are characters. Let A1, A2 € Hom(E*,C*) and
X' € Hom(E', C*) be smooth characters. One may write \; =| |% xi, ¢ = 1,2,
where a; € R and x; is a unitary character of E*. X’ is unitary.
Then each character A of My can be written as
Am) =|z |5 x1(2) [y |% x2 ()N (@7 'yy k),
T 0
m = k ,x,y € E* ke B
v
0 77t
By A := A1 ® A2 ® X we denote the characters of My and by A\ X Ay x X :=
Indg(s)()\l ® A2 ® ) the induced representations to U(5).

We start with the case where A\; = x; and Ay = x2 are unitary characters, i.e.
a1 = Qg = 0.

5.2.1. Irreducible subquotients of x1 X x2 X A'. Let Py be the minimal parabolic
subgroup of U(5) (the upper triangular matrices in U(5)) with Levi subgroup M,
and unipotent subgroup Ny, such that Py = MyNp).

THEOREM 5.1. — Let x1, x2 be unitary characters of E* and let X' be a (uni-
tary) character of E'.

The induced representation x1 X x2 X X' is reducible if and only if there exists
i € {1,2} such that x; € X1,..

Proof. — By [9] Corollary 1, the number of inequivalent irreducible components

of Indgo(5)()\) equals the number of conjugacy classes in the R-group. We apply
the Theorem 3.4 with G = U(5), P = Py the minimal parabolic subgroup and
M = My = GL;(E) x GL1(E) x G(0) & E* x E* x E*.
Then o1 = x1, 02 = X2, and p = \.
Recall that for a unitary character y of E*, xy x X is reducible if and only if
X € X1,.. Then x % N = 01,5 @ 02,5, Where 0, and o3, are tempered.
By the Theorem 3.4, for A = x1 ® xo @ N and W =2 Sy x (Z/27Z)? the integer d
may equal 0,1 or 2.
(0) Let d = 0. x; ¥ X, i € {1,2} is irreducible for ¢ € {1,2}, and R = {1},
X1 X X2 X X is irreducible and unitary.
(1) Let d = 1. Then there exist i, j € {1,2}, i # j, such that x; € X;,. and
Xj ¢ Xi,. or x; € X1,. and x; = x;. Hence R = Z /27, and x1 X x2 ¥ X
has two irreducible inequivalent constituents: x; x o1, and x; X g2.y,-
They are tempered and hence unitary.
(2) Let d = 2, x1 and x2 are two inequivalent characters and x; € X;,. for

i=1,2.
R = (Z,/27)?, and x1 X x2x X" has four irreducible inequivalent unitary constituents.
By [5, Theorem 4.3] they are tempered and elliptic. O

5.2.2. Irreducible subquotients of | |** x1x | |*2 x2 X X, ai,as > 0 and of | |*
X1 X X2 XN, a>0. Let My = E* x E* x E' be the minimal Levi subgroup, and
let Py = MyNy be the corresponding minimal parabolic subgroup.

Let A :i= A1 @ Ao @ X =| |** \1® | |*2 x2 ® X be a character of My, where
a1, as € R and x1, x2 are unitary characters of E*.
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Let a1 > as > 0. If ay > a1 we change parameters. The case ay = 0 is treated
seperately.

Recall that X, , is the set of characters of E* whose restriction to F'* is the
character wg,p, that is whose restriction to F™* is non-trivial on F* but trivial on
Ng/p(E*). X1,. is the set of non-trivial characters of E* whose restriction to F'* is
trivial. Xy, .(g) =1U Xy, » UXi,.. The set Xy, (p~) contains all characters
x of E* satisfying x(x) = x~1(Z). They are unitary.

From now on, the lack of an entry at position i¢j in a matrix means that the
entry equals 0.

THEOREM 5.2. — Let X1, x2 be unitary characters of E* and let X' be a char-
acter of E'. Let oy, € R’ such that ay > as. Then

1 xax [ x2 < N

is reducible if and only if at least one of the following conditions holds:

(1) oy —ag =1 and x1 = X2,

(2) a1 +az=1and x1(z) = x3 ' (%),

(3) ay=1land x1 =1ora; =1/2 and x; € X,
(4) ag =1and xa =1 or as =1/2 and x2 € X,

E/F’

E/F"*
Proof. — Let X :=| |** x1® | |*2 x2 ® X’ be a character of My, and let
UG ryy — U(s) —

A(w7>‘) : IHSPO ()\) ; ;7 In(—i(fo (—ui)\) W —a -1 /

L1 X 172 xz <A X ) 72 xg () @A
be a standard long intertwining operator for the representation | |** xq1x | |*2
X2 X N.

!
Remark 5.3. — w = ( 1 > is the longest element of the Weyl group, and
1

for m € My it is

w)\(m):—)\(< 111 ) ykyﬂ ( 111 ))A( ailky )-

Hence Indg()@ (wA) equals | |7 x7H(=)x | |72 x5 H(=) @ N,

If A(w,A) is either not injective or not surjective it follows that Indg(f5)(A) is
reducible. The decomposition of the long intertwining operator into short operators
shows for which i, a9 and unitary characters x; and xs the long intertwining
operator is not an isomorphism.

10 b
Let wy = 1 and wy := 1 .
01 1
10 1

We have

1 01 1 01 1
11 101 11 101 11
w = = = Wiw2w1wWsa.
1 01 1 01 1 122
1 10 1 10 1
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The following diagram gives the decomposition of A(w, ).

1 xax [%2 xa @ X = 1 xax [%2 xa @ X
A(’U}Q,)\) \LwQ
1o xax |72 xg (7)) % X
A(w, A) | w A(wy, waA) | wq

172 xg ()% [ |* xa = N
Agwg,wlwg)\) \l, 11/12
1722 X ) 7™ X (7)) 2 X
A(wl,walwg)\) \L w1
X O 22 g () e X = [ )< 72 g () =X

If A(w,A) is not an isomorphism, then at least one of the operators A(wa)),
A(wy, we ), A(wa, wiwa) or A(wy, wowiwaA) is not an isomorphism.

A(w1, A) is no isomorphism if and only if the induced representation | |*2 xg x A’
is reducible. This is the case if and only if g = 1 and xo = 1 or ag = 1/2 and
X2 € XwE/F-

A(wy, w2 ) is no isomorphism if and only if the corresponding representation
| 127 x1x | |72 x5 *(~) is reducible if and only if a; + ap = 1 and () = x5 ' (T)
for all x € E*.

A(wsg, wywy) is no isomorphism if and only if | |** x; x X is reducible if and
onlyif ay =1 and x3 =1or a; =1/2 and x; € Xog p-

A(wy, wowiwy ) is no isomorphism if and only if | |~22 x5 *(=)x | |7 x7*(-)
is reducible if and only if & — s =1 and x; = xo2.

In all other cases the short intertwining operators are holomorphic and isomor-
phisms, hence A(w, M) is an isomorphism and the representation | |*t yix | |*2
X2 X X is irreducible.

On the other hand, if at least one of the short intertwining operators is no
isomorphism, | |** x1x | |*2 x2 X X is reducible by induction in stages; in these
cases we determine the irreducible constituents in Theorems 5.5, 5.7, 5.9, 6.2, 6.3,
6.4 and 6.6. (]

Let a1 > ag = 0.

THEOREM 5.4. — Let x1, x2 be unitary characters of E*, let X be a (unitary)
character of E'. Let aq € R* . The induced representation

[ X1 X x2 3 N
is reducible if and only if

(1) an =1 and x1 = xo,

(2) ay =1 and x;1(z) = Xgl(f),

(3) ay=1land x1 =1ora; =1/2 and x1 € X,
(4) x2 € X1,

Proof. — (1)=: We apply the Lemma 3.5 ([19], Lemma 2.1) with 7 & x5 x A’
and p = [ [** x1.

If none of the four cases in Theorem 5.4 holds we are in the position to apply
Lemma 3.5, hence | |** x1 X x2 X X is irreducible.

<: If at least one of the four cases holds, clearly | [** x1 X x2 @\ is reducible. O

E/F’
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In those cases where | |** x1 X x2 X X, @ > 0, is reducible, the irreducible
constituents will be investigated in 5.5, 5.8, 5.10 and in 5.11.

5.3. Representations induced from M; and M,, with cuspidal support in
My. We consider representations induced from the maximal parabolic subgroups
with Levi groups M; and Ms, whose cuspidal support is in My and that are not
fully induced. We begin with M; = GL(2,E) x E*.

5.3.1. Representations | |* x StarL, ¥\ and | |* xlgL, @ A, a > 0. Let o € R,
and x be a unitary character of E*. We study | |* x Star, X\’ that is a subrepre-
sentation of the induced representation | [**1/2 yx | |*71/2 x x X/, and its Aubert
dual | |* xlgL, X N.

THEOREM 5.5. — Let a € RY. and x be a unitary character of E*. The repre-
sentations | |* x(det) Stgr, XA and | |* x(det)lgr, x X are irreducible, unless one
of the following cases holds:

(1) a=1/2 and x € XN, (&),
(2) a«=3/2and x =1,
(3) a=1and x € X,

E/F"
Proof. — In R(U) we have
17200 [ 12712 00 N =[] X Star, @A+ | % xlar, @ A

| |* xStar, XA and | |* xlgr, x A" are dual in the sense of Aubert and have the
same number of irreducible constituents. We give the proof for | |* x Stgr, X\ as
subrepresentation of | [*F1/2 yx | |*71/2 y x N,

Let A :=| [*F1/2 y® | |72 x @ X, and let

A(’LU/,A) 2 |* x StaL, XN == Xﬁl(@) Star, Py

be the long intertwining operator for the representation | |* x Stgr, X\, where w’
is the longest element of W respecting M; = GL(2, E) x E*.

S (0 V(B N[
We have w' := 1 = 1 1 1 = WawWa.
10 1 01 1
01 1 10 1

The decomposition of A(w’,\) into short intertwining operators gives informa-
tion for which « > 0 and unitary characters x of E* this operator is an isomorphism.
The following diagram shows the decomposition of A(w’, A), where i; and iy are
inclusions that depend holomorphically on a.

i1

| [* x(det) Stgr, x\ < | 1oF2 x| |22 x 3 N
A(w27 A) \Ir w2
4172 x0x | 74172 3 () X
A(w', \) | w' A(wy, waA) | wy

717 x| 2 0 X
A(wg, wiwa) | wo

|17 X7 (def) Star, 3N B [ |72 T (=) [ T2 X (=) e X

If o # 1/2, A(wa, \) is no isomorphism if and only if | [*~/2 x x A reduces, if and
only if e =3/2and y =1lora=1and x € Xy,

If « =1/2 and x € Xy,., then x x X reduces.
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A(wy,wy)) is no isomorphism if and only if | [*+1/2 xx | |7@+1/2 y=1(=) reduces,
if and only if « =1/2 and x € XNE/F(E*)‘

A(wy, wiwsA) is no isomorphism if and only if | |*+1/2 y x )’ reduces if and only
ifa=1/2and x = 1.

In all other cases A(ws, \), A(wy, wa\) and A(ws, wiweA) are holomorphic and
isomorphisms and A(w’, \) is also an isomorphism. Hence the representations | |*
x(det) Stgr, A and | |* x(det)lgL, x A" are irreducible.

If one of the three cases in Theorem 1.5 holds, reducibility of | |* x(det) Stgr, XA’
and | |* x(det)lgr, x A has to be investigated. This is done in 5.8, 6.2, 6.4, 6.5
and in 6.6. t

5.3.2. Representations x Stgr, XN and xlgr, X A'. Let 0 < ag < a3, @ > 0. Let
X1,X2,x and x’ be unitary characters of E*. Let A be a unitary character of
F'. Let x ¢ Xi,. (hence y x X is irreducible by [10]). Let 71 be a tempered
representation of GL(2, E), let 75 be a tempered representation of U(3) and let T
be a tempered representation of U(5).

The representations

190 x| 22 x2 e X, xi X x )N, YN, X 7 and 7

|
have a unique irreducible quotient, the Langlands quotient, denoted by

Le(] 1" x15 1172 x2 A), Le(l1* xisx @ X), Le(| [* 73 )), Le(||* x5 72) and 7,
respectively.

PROPOSITION 5.6. — Let x be a unitary character of E*, let X' be a (unitary)
character of E'. The representations x Stgr, X\ and xlgr, x X are reducible if
and only if x € X, .-

Let X =i Xwg,pr € Xwp, - Let Tl Xe g be the unique irreducible square-

integrable subquotient of | |'/2 Xwg,r X A [10]. Then

|1/2 |1/2

XwE/FlGLz x N = Lg(' Xwg/rs | Xwg/F> )‘/) + Lg(l |1/2 XWE/F;T‘-17XWE/F)’

Xwp)r StaL, XA = 71 + 72,

where 7 and Ty are tempered such that 71 = Lg(| [/2 Xup,p | M2 Xwp,p; N) and
7o = Lg(| V2 Xwp, 7T1,XWE/F). All subquotients are unitary.

Proof. — We consider the Jacquet restriction of xlgr, X A with respect to the
minimal parabolic subgroup [8]:

smin(X(det)lgr, ¥ X) = [7Y2x@ | M2 x o X
+HT2XTTO)R P e N
+HT x| T2 XTI ) e N
+HTPXTTO)R TP x e N,

Hence all subquotients of x1gr, x A" are non-tempered.
X Star, ¥\ and xlgr, X X are subquotients of | [/2 yx | |V/2 x x X.
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1
1
Forw( 11 )wehave
1

w( [V2x@ | T2 x @ X) =2 x@ | M2 x 7 () e X,

and | [V/2 xx | 7Y% xx X and | |Y/2 xx | [*2 x71(~) x X\’ have the same irreducible
constituents. Therefore we consider the reducibility of | [/2 xx | [V/2 x=1(=) x X,

If x ¢ X, then Lg(| Y2 x:| |¥2 x~'(=); N) is the only non-tempered
Langlands quotient supported in | [/2 x® | |'/2 x~'(-) ® X. Hence xlgr, 3 A =
Le(] V2 x;| |V2 x~1(-); \) is irreducible. x Stgr, x)\ is irreducible by the Aubert
duality, it is tempered.

Let x = Xwp,r € X

WE/F*

Lg( 1M Xawos | 1% Xegri X)) and Le(| 12 X pi Tk, ,)
are the only non-tempered Langlands quotients supported in
12 Xy e ® 1M X @ N

Xwp/r SUGL, x A is tempered and so are its subquotients. Hence

Lg(‘ |1/2 XUJE/F; | |1/2 XWE/F;)\/) and Lg(| |1/2 XWE/F;WlanE/F)

are the subquotients of xw,,.lcL, X \'. By the Aubert duality Xug, . Star, X\
has the two irreducible subquotients

T1 = Lg(| |1/2 XUJE/F;| |1/2 Xwg,pi )‘/) and 7= Lg(‘ ‘1/2 XWE/F;lewa/F)'

We consider the restriction of xw . Stcr, x A with respect to the parabolic
subgroup P :

SpP (XWE/F Star, XI)‘I) = Xwg,p Star, X + Xwp,/ StarL, QN
+ | |1/2 XWE/F X | |1/2 XWE/F ® )\/'

Xwg,r StaL, @\’ is unitary, hence 71 — X, » StarL, XA and 7 — Xwg, r StGL, XN
By Frobenius reciprocity,

sp, (7’1) = Xwg/r Star, ®X  and Sp, (7'2) = Xwg,p Star, N

Now Xwy, » Star, ®A’ is irreducible and has multiplicity 2 in sp, (Xwy, » StaL, XA').
Hence 71 and 75 have multiplicities 1, and Xw,,, StGL, X is a representation of
length 2. By the Aubert duality

Lg(‘ |1/2 XWE/F; | |1/2 XUJE/F;)\/) and Lg(| |1/2 X(’JE/F;TF17XVJE/F)

have multiplicities 1, and Xw,, gL, ¥ M is of length 2.
Xwg, p Star, XA and Xwp)plGL, X M are unitary, hence all subquotients are
unitary. O
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5.3.3. Representations | |* x X 7 and x X 7, « > 0, 7 irreducible non-cuspidal of
U(3), not fully-induced. We now look at representations induced from the maximal
parabolic subgroup P,, whose cuspidal support is in My and that are not fully
induced.

Recall that P, = MsNy, where My = E* x U(3) is a maximal standard Levi
subgroup and Ns the unipotent subgroup corresponding to P, and Ms.

Let x be a unitary character of E*.

Let 8 € R4. Recall from 4.1 the irreducible subquotients of the induced represen-
tations to U(3) in the cases that | | x x )\’ is reducible: \'(det) Sty (s), N (det)1y(s),
TlXeg 00 T2Xepp0 TlXt e 021 - All irreducible subquotients are unitary.

Let o € R%. We study the representations

[ x > N (det) Sty sy,

Ik
x|

x ¥ N (det) 1y sy, |[|*x T Xeg
XX Oy, and [ |[Yx Xo2y, .

Further we study representations

X X /\'(det) StU(3), X X A/(det)lU(g), X X T

’X""'E/F7
X AHT2 50 XX 01y, and X Xogy, .

5.3.3.1 Representations | |* x x X'(det) Sty sy and | [* x x X' (det)1y sy, a > 0.

THEOREM 5.7. — Let a € R} and x be a unitary character of E*. The repre-
sentations | |* x x X' (det) Sty (3) and | |* x x X' (det)1y 3y are irreducible unless one
of the following conditions holds:

(1) a=2and x =1,
(2) a=1and x =1,
(3) a=1/2 and x € X,

E/F"

Proof. — The proof is similar to the proof of Theorem 5.5. If (1), (2) or (3)
holds, then the reducibility of | [* x x X' (det) Sty (s) and | [* x x N (det)1ys) has
to be investigated. It is done in 6.2 and in 6.6. O

5.3.3.2 Representations x x \'(det) Sty (3) and x x X' (det)1y(s). Let x1,. € Xi,..
Recall that x1,. X\ =01, . ®02y,,., where 01y,  and oa, , are tempered
[10].

PROPOSITION 5.8. — Let x be a unitary character of E*, let X' be a (unitary)
character of E'. The representations y x X' (det) Sty () and x x X' (det)1y sy are
reducible if and only if x =1 or x € Xi,..

o Let x =1.
1%)\,((161])1[](3) =Lg(] | 1; 1x\)+Lg(] |1/2 Star,; A) and 1x )\ (det) StU(g) =
T3 + 74, where 13 and 74 are tempered such that 73 = Lg(] | 1;1 x \’) and
74 = Lg(] [/2 Stgr,; N).

o Let x =: X1, € X1,
Xipe X N(det)ly@) = Lg(l | Liory,,,) +La(l | Lozy,,,) and X1, >
N(det) Stysy = 75 + 76, where 75 and T are tempered, such that 15 =
Leg(] | 1501>X1F*) and 76 = Lg(] | Logixi . )-

All subquotients are unitary.
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Proof. — The proof follows similar lines to the proof of Proposition 5.6. O

5.3.3.3 Representations | |* x X m and | |* x % T2 X O > 0. Let

a € R} and let x be a unitary character of E*. Let xwy . € Xuwy, -, that is Xwp)r
is a (unitary) character of £* whose restriction to F™* equals the character wg,p.

Let Tl X 5 be the unique square-integrable subquotient and let LERO be

the unique irreducible non-tempered subquotient of | |/2 y,, e XA [10].

THEOREM 5.9. — Let a € R’ and x be a unitary character of E*. The repre-

sentations | |* x X 1 and | |* x % T2 Xeg,  AT€ irreducible unless

(1) a=1/20ora=3/2and X = Xwp/r
(2) a=1and x =1,

(3) a=1/2and xy € X

WE/F "

Proof. — The proof is similar to the proof of Theorem 5.5. If (1), (2) or (3) holds,

then reducibility of | |* x % T Xy, a0 [ ] x x T2.Xey, » N€€AS t0 be investigated.

This is done in 5.6 and 6.3 (for | |'/2 Xwg e X TLxp b and | [*/2 Xwg,p X WQ’XNE/F),
in 6.4, 6.6 and in 6.9. U

E/F"*
the unique

5.3.3.4 Representations x X T X and x X T2 X Let Xuwg,r € Xo

Let T X be the unique square-integrable subquotient and T2, X

non-tempered irreducible subquotient of | |1/2 Xwg,r XA Let X1, € X,

PROPOSITION 5.10. — Let x be a unitary character of E* and let X' be a

(unitary) character of E*. The representations x x 7 and x X o are

Xog/p Xeg, p

reducible if and only if x € Xi,..
Let x =: X1, € Xi,.. Then

|1/2

Xipx X T2x0p, p = Lg(| Xwp/rs O1,X1 5. ) + Lg(| |1/2 Xwr/rr 92,X1 s ),

X1px X T Xwp,p = 17 + 73,

—_—
where 17 and 7g are tempered representations with 77 = Lg(| [V/2 Xwp, 4 Tlxi,. )

and 75 = Lg(| ['/? Xwp)ri 02,01, )-
All subquotients are unitary.

Proof. — The proof is similar to the proof of Proposition 5.6. O

5.3.3.5 Representations | [* X X o1y, . and | |* X x 03 o > 0. Let

X1px € X1

X1pw?

THEOREM 5.11. — Let x be a unitary character of E*. Let € RY. The
representations | |* x X 01, and | |[* X X 02, . are irreducible unless one of
the following cases holds:

(1) a=1and X = X105
(2) a=1and xy =1,
(3) a=1/2 and x € X

WE/F "
Proof. — The proof is similar to the proof of Proposition 5.5. If (1), (2) or

(3) holds, then the reducibility of | [* x % 01,y, , and | [* X % 02,5, . has to be
investigated. It is done in 6.6, 6.7 and in 6.8. O
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5.3.3.6 Representations x X O1x1,. and x X O2,x1 s X > 0. Let x be a unitary
character of E*. Let x1,. € X1,..

Remark 5.12. — By Theorem 5.1 the representations x X 01,y, ., and x X025,
are reducible if and only if x € X; .. such that x 2 x1,..

6. ’SPECIAL’ REDUCIBILITY POINTS OF REPRESENTATIONS OF U(5) WITH
CUSPIDAL SUPPORT IN M

We determine the irreducible subquotients of the representations whose reducibil-
ity has not been examined in Chapter 5.

Let Xwp,p € Xup,p- Let Tl Xe g be the unique irreducible square-integrable
subquotient and let T2, X 1 be the unique irreducible non-tempered subquotient
of | |'/2 Xwg,r X XN. Let x1,. € X1,.. Recall that x1,. = Ol DO2x,, s where
Olxi,. and o2,  are tempered [10].

In Theorem 5.5 the irreducible subquotients of the following representations are
left to be examined:

‘ |1/2 Star, XN, | |1/2 lgr, ~ N, | |3/2 Star, XN,
‘ |3/2 lar, N, | |1/2 Xwg/r Star, XN, | |1/2 Xwe,/r Lo, N,
Y2 X1 Stan, XN, [ Y2 X1 dar, XN, || Xwg, e Stan, XX

‘ | XwE/F]-GLz x N

In Theorem 5.7 the irreducible subquotients of the following representations are
left to be examined:

| |2 1 X(det) StU(g), | |2 1 )\'(det)lU(g), | | 1 X(det) StU(g),
| | 1 )‘/(det)lU(E})v | |1/2 Xwg,/F X )‘/(det) StU(3)7 | |1/2 Xwg,r X )‘/(det)lU(f‘l)'

Theorem 5.9 leaves the following representations to be examined:

| |1/2 | |3/2

‘ |1/2 Xwgp X T
‘ |3/2

Xep/p? Xwpp X 7T27XwE/F7 Xwp,p X Wl,wa/Fv

/ XWE/F >qTr2vXWE/F’ | | £>47T17XWE/F’ | | 1>qﬂ_27XwE/F’
1/2 1/2
‘ | XNWLXME/F7 | | XX]WQ,XUJE/F’
for x € XNE/F, X Z Xwp)p-
Theorem 5.11 leaves the following representations to be examined:

| | Xips X O01x1 .0 | | Xips X 02,51, | | L x O1,X1 o )

| |1 %09 | |12

X1 Xwpsr M O1,x1 .0 | | Xwp/r 2 02,x1 0

All representations are treated in this section. We determine whether the irreducible

subquotients are unitary.

6.1. || 1 x 1 x X. In the Grothendieck group of the category of admissible repre-
sentations of finite length one has

| [1x1xN =[[2 Star, xN+ | |72 Lap, x N = 13 (det) Stya) +1x N (det)1y7(3).
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THEOREM 6.1. —
| 112 Star, x\ = Lg(| |'/? Star,; N) + 73,
M2 1, x N =Lg(| | 1;1 % X) + 74,
X X' (det) Sty(s) = 73 + 74,
10 X (det) 1y = Lg(| | 13120 X) + Lg(| ['/2 Star,; V),
where 13 = Lg(| |/1;T>4 N and 14 = Lg(| |1/78\‘LGL2; N). Note that 73 and T4 are
tempered. All irreducible subquotients are unitary.
Proof. — We have seen in Proposition 5.8 that
1 X'(det) Sty(s) = 73 + 74,
10 X (det) L) = Le(| | 1;1 3 X) + Le(| |'/? Star,; A),
where 73 = Lg(] |/1;T><1 N) and 14 = Lg(] \1/2/S\tGL2; ') are both tempered.
| |12 Star, X\ is a subrepresentation of | | 1x1x ), whereas | |'/2 1gr, X\ is a
quotient. Hence Lg(] | 1;1 x X') is a subquotient of | |1/2/1G\L2 .| M2 Star, x N

is the Aubert dual of | |'/? 1gr, x X, hence 73 = Lg(| | 1;1 x X) is a subquotient
of | [/2 Star, »N. Now Lg(| ['/? Star,; \) is a subquotient of | ['/2 Stqr, <\,

hence 74 = Lg(| |1/2 Stqr,; \) is a subquotient of | |'/2 1gr, x N.
13 M(det) Sty sy and 1 x A (det)1y 3y are unitary, hence all irreducible subquo-
tients are unitary. O

6.2. | 2 1x || 1 x X. In the Grothendieck group of admissible representations of
finite length one has

21 [ 1= N =[ 32 Star, <N+ |32 1ar, @ N
=| |21 % X(det) Styz) + | [> 1 3 X (det) 1y ).
THEOREM 6.2. — The representation | |2 1x | | 1 x X is reducible and we have
|2 1x [ | 13 X =X (det) Styy(s) + Le(| [*2 Stary; X')
+ )\'(det)ly(g,) + Lg(] > 1; X (det) Sty (s))-
N(det) Sty sy and X' (det)1y (5 are unitary,
Lg(| |*/? Star,; A') and - Lg(| > 1 (det) Stys)
are non-unitary.

Proof. — By [3], | |? 1x | | 1 x X’ is a representation of length 4.

N (det)1y(sy = Lg(| [* 151 [ 1;X), Lg(] [*/? Star,; X') and Lg(| [* 15 X' (det) Sty s))
are all non-tempered Langlands quotients supported in | |2 1® | | 1 ® X'. The sub-
representation \'(det) Sty 5y = )\’(d/et-)TU@) is square-integrable.

By results of Casselman [2, page 915], \'(det) Sty (5) and its Aubert dual

X (det)1y(sy = Le(| [> 1;] ] 1;X)

are unitary, Lg(| [3/2 Star,; A') and Lg(| |> 1; N (det) Str(3)) are not unitary. O
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6.3. | |12 Xwse X | |1/2 Xog)r X N. Let Xwgp € Xwpp- Let T4 Xe g be

the unique irreducible square-integrable subquotient of | |1/ 2 Xwpgp X N, and let
T2, Xe g be the unique irreducible non-tempered subquotient of | |1/ 2 Xwpp X N
[10].

In the Grothendieck group of admissible representations of finite length one has

| |1/2 Xwg,p X | |1/2 Xwg,p X N = Xwg/p Star, XA Xwg/F lar, > N

=| |1/2 Xwgp X T1 + | |1/2 Xwg,r X T2

Xewg,p Xwpg/p®

THEOREM 6.3. — The representation | |'/2 Xwg,p X | |1/2 Xwg,r XA’ is reducible
and we have

| |1/2 Xwp/p X | |1/2 Xwpp X N = Xwg,r Star, XA+ Xwe,/r lar, N

:‘ |1/2 Xwg/r X Ty + ‘ |1/2 Xwg,F X T2

Xepg/p Xog/p®

Moreover we have

Xwg, p Star, XN =71 + 72,

|1/2

XwE/FlGLz x N = Lg(' Xwg/rs | |1/2 Xwg/F> )‘/) + Lg(l |1/2 XwE/F;TrLXwE/F)’

| |1/2 |1/2

Xwpyp X WlanE/F = Lg(| XWE/F;TFLXAUE/F) + 71,

| |1/2 |1/2

Xwg/p X 7T2,XwE/F = Lg(] |1/2 Xwp/ps ‘ Xwp/p) /\/) + T2,

where 71 and 1y are tempered such that 71 = Lg(| [V/2 Xwy 3 | 172 Xwp,»; ') and

7o = Lg(| V2 Xwp, p Tl X ). All irreducible subquotients are unitary.
Proof. — In Proposition 5.6 we have seen that

Xwpr StaL, XA = 71 + 72,

|1/2

XWE/FlGLQ N = Lg(| Xwg/rs | |1/2 XWE/F;/\/) + Lg(| |1/2 XWE/F;T(17XwE/F)’

where 71 and 7y are tempered such that 71 = Lg(| [Y/2 Xwp,pi | V2 Xwp, ;') and

T2 = Lg(‘ ‘1/2 XWE/F”Tl)'

Le(] 112 X0 Ty, ) 18 0 subauotient of | [V2 Xy % mise, s o, )
is a quotient of | |1/2 Xwg,r X A [Ke], hence | |1/2 Xwp,p X T2
| |1/2 XwE/FX | |1/2 XWE/F X )‘l'

Lg(| |'/? Xewg, i | |1/2 Xwg,r;A') is the irreducible Langlands quotient of | |1/2
Xwp,p X | |1/2 Xwg,r X A, hence Lg(] |1/2 Xwp,ri | |1/2 Xwg,r;A') is @ quotient of

—

| |1/2 Xeom A2 x0 Hence 71 = Lg(] [Y2 Xwp ri | [Y? Xwp,ri A') is a subquotient

Xeg,p 18 & quotient of

A
1/2 — 1/2 . : 3
of | |V Xeg/p X Tlye,,, and 7 = Lg(] |/ XwE/wﬂ'l,wa/F) is a subquotient of

| |1/2 Xwp,p X WQ,XWE/F'

Xwg, p Star, XA and Xwg, Flan, X M are unitary, hence all irreducible subquo-
tients are unitary. O
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6.4 | 132 X, X | M2 Xy @ N

THEOREM 6.4. — Let Xuwy,p € Xuy, - Let Tl X be the unique irreducible

square-integrable subquotient and let T2 X 5 be the unique irreducible non-tem-

pered subquotient of | |'/? Xwg,» X A'. The representation | |3/2 Xwg,r X | |1/2
Xwg,r X A’ is reducible, and we have
| |3/2 Xwg/p X | |1/2 Xwp,p X N =| | Xwg,F Star, X'+ || Xwg,F lar, N
=] |3/2 Xwgp X Wl’wa/F_F ‘ |3/2 Xwg, r X T2, Xep
We have
|| Xwp,)r Star, XN =Lg(] | Xws,» Star,; ') + 6,
| Xy lara 3 X =Le( 22 Xog s | 1 Xorg) w3 )
+Lg( 12 Xow) s Txay, )
[ Xy % Tvey . = L8 7% X i) 5,
1272 Xy 2 T2y = L8012 Xy ws |12 X i X)
+Lg(| | Xwp,r Star,s X),
where § = Lg(| |3/2 XwE/p/é\Hl/Q Xwg,riN') Is square-integrable.
Lg(| | Xo/w Stara; X))  and  Le( 72 Xy, pi T, )
are not unitary.
Proof. — | |3/2 Xwg,p X | |1/2 Xwg,» X A’ has only the following non-tempered

irreducible subquotients: Lg(| | Xwy,» Star,; A'), Le(] |3/2

Le(| 132 Xup, i | 1M Xy wi X)-
Lg(] | Xwg,r StaL,; A') is a subquotient of | | Xwy,,» Star, X
|3/2

Xwgrs ﬂ-LXwE/F) and

3/2 . : :
Lg(| |*/ XWE/F77T17XL«)E/F) is a subquotient of | Xer/e X Xy

We consider the Jacquet restrictions of | | X, Stan, XA and of | [3/2

Tl X m with respect to the minimal parabolic subgroup:

XUJE/F A

5min(| |XwE/F St’GLz >4)\/) =
172 Xy @ | 172 Xeopyr @ N+ P2 X o ® |72 Xaoy e ® X
+ | ‘71/2 Xwpp® | |73/2 Xwp/p @ N+ | |71/2 Xwp/r® | |3/2 Xwp/r ® A
Smin(l |3/2XwE/F X 7"'l,wa/F) =
| |3/2 XwE/F® | |1/2 Xwg,/F QN+ | |73/2 XwE/F® | |1/2 Xwg/r ® N
11 Xeom e ® 1172 Xeomye @ N+ 112 Xeog 2 ® 1172 Yo e @ N
| |2 Xeow) e ® | /2 Xwp,p ® A’ is the only common irreducible subquotient in

the restrictions of | | Xwy,» Star, ¥A" and of | |3/2 Xep/p X TXuy Hence these
representations have exactly one subquotient in common, denoted by é. By the

Casselman square-integrability criterion § is square-integrable [3].
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We have
| | Xwg, r StGL2 N+ | | XwE/p]-GL2 XN =

| |3/2 Xwp,p X1 + | |3/2 Xwpyp X T2

7X“’E/F ’X“’E/F.
Therefore Lg(| | Xwg,» Star,; A') is a subquotient of | |3/2 Xer/e X T2x0p, 00 and
Lg(| |3/ XwE/F37Tl,XwE/F) is a subquotient of | | Xup,,laL, X A,

| | Xwg, rlaL, is the Langlands quotient of | |3/2 Xwg)r X | |1/2 Xwp)r-

|| Xwg,rloL, ® X is a quotient of | |3/2 X e X | |1/2 Xwp e @N.

Hence | | Xwy,rlcL, @ A’ is a quotient of | |3/2 Xwg,p X | |1/2 Xwg,p XA

Lg(| |32 Xewg, i | |1/2 Xwg, 3 A') is the unique irreducible quotient of | |3/2

XWE/FX ‘ |1/2
In the same manner Lg(| |3/2 Xwgri |

Xwg,r @ A, in particular it is a quotient of | | Xwg,»laL, X A
1Y% Xy, 3 A') is a quotient of | [3/2 Xwg)r X
T2 X

So far we have shown:

|| Xwp,r Star, XN =Lg(| | Xwg,» Star,; ') + 0 4 Ay,
| | X“’E/F1GL2 x N :Lg(| |3/2 XwEg/p) ‘ ‘1/2 Xwg,p) )\/)

+ Lg(l |3/2 XWE/F;T(LXwE/F) + As,

‘ |3/2 Xwp/p X ﬂ-l’x“’E/F :Lg(| |3/2 XWE/F;/]TLX“)E/F) + 0+ As,

‘ |3/2 ‘1/2

:Lg(| |3/2 XUJE/F; ‘ X(—UE/F; Al)
+Lg(| | Xwg,r Star,; A') + Ag,

where Aq, Ao, A3, Ay are sums of tempered representations. We will prove that
A=Ay =A3=A,=0.

A tempered representation is the subquotient of a representation induced from a
square-integrable representation. Here, for each proper Levi subgroup M;, i = 0,1, 2
of U(5), Ind%g( |3/2 Xwg,r® | |1/2 Xwg,» ® A') does not contain any square-
integrable subquotient. Hence all tempered subquotients of | [3/2 y,, x| 2
Xwg, p X M\ are square-integrable.

Assume there existed a square-integrable subquotient 3 of | | Xwp, - laL, X A

Xwg/p X 7r27XwE/F

We consider the Jacquet restrictions of | | Xwp)plGL, X N, B and B with respect
to the minimal parabolic subgroup.

Smin(| [Xwg,rlaL, X X) =
12 X e ® |12 Xy @ X4 | M2 X, n® |72 0N
1172 X 2 ® 172 Xy @ N4 172 X o ® |2 X ® N,
hence by the Casselman square-integrability criterion [3]
Smin(8) =| |1/2 Xwg r® | |3/2 Xwg, e @ N

By [1] Théoreme 1.7, sumin(B) = |72 Xup,»® | 732 Xu,r @ N

B is an irreducible subquotient of | | X, StaL, XA. As its restriction is
negative and as Lg(| | Xwg,r Star,; A’) is the only non-tempered subquotient of
| | Xwg,r Star, @A, B must equal Lg(| | Xwp,r» Star, XA).



116 C. Schoemann

We have seen that
Smin(| |XwE/F StGLz >q/\/) =
| |3/2 XWE/F® | |1/2 XUJE/F ® )‘/+ | |3/2 XWE/F® | |_1/2 ®)‘l

+ |71/2 Xwp)p® | |73/2 Xwg/p @ N+ | |71/2 Xwpp® | |3/2 Xwg/r © =

S0 Smin(Lg(] | Xwg,» StaL,; A')) must contain at least the two negative irreducible

subquotients | |~1/2 Xwg,r® | |=3/2 Xwg,r @A and | |-1/2 Xwp/r® | |3/2 Xwg,r @\

Hence § # Lg(| | Xup,» Stara ).
We obtain that Lg(| | Xwg,F StGLz;A/) = Lg(| |3/2 X(.UE/F;Trl,XwE/F)7 and § =

—

L (| P72 X i | [V Xwrp i N)-

6 =Lg(| > Xwp, i | 1"/? Xwy,r; A') is square-integrable, hence unitary. Lg(| [*/2
Xwp,ri | 1% Xwg, i A') is the dual of a square-integrable representation. It should
be unitary, but we have no proof for it. See [6], where the proof for the unitaris-
ability of the Aubert dual of a strongly positive square-integrable representation is
given for orthogonal and symplectic groups. Applying Theorem 1.1 and Remark 4.7

of [7] to the representation | /% X, . X1 oy We See that Lg(] | Xwp, » Star,; )

and Lg(| [3/? Xwg, ri Tl are non-unitary. O

6.5. || Xwp X Xwg,p X MN. In the Grothendieck group of admissible representations
of finite length one has

|| Xws,r X Xwg/p X N =] |1/2 Xwg,r StGL, XA+ | |1/2 Xwg,p 1GLy X N,

We have no proof that | |'/2 Xwg,r StaL, XA and | |1/2 Xwg,plGL, @ A" are
irreducible. See [18], Proposition 6.3, where a proof is given for symplectic and
special orthogonal groups and when the representation of the GLgy,-part, p > 1, of
the inducing representation, is essentially square-integrable.

Remark 6.5. — If we assume that | [/? X, . Star, ¥\ and by the Aubert

|1/2

duality | Xwg,r 1GL, X A’ are irreducible, then

| |1/2 Xwg/r StGLz X\ = Lg(l |1/2 Xwg/r StGL2; )‘/) and

| |1/2 XUJE/FIGLz el )‘/ = Lg(l | XUJE/F;XWE/F X )\/)?

and both subquotients are non-unitary.

Further we are able to prove that | [* X, StaL, XA = Lg(| [* Xwg,» StaLy; A')
and | % Xuwpplar, XN = Lg(| [ Xwg, el [*? Xwgr X A') are non-unitary for
0<a<1/2,1/2<a; <1,as =1—a;. See Remarks 7.7 and 7.19.

6.6. || X1p» X X1p- @ A’ We can not give a complete decomposition of

|| X1 X X1pe XN

into irreducible subquotients. We have the following result:
Let x1,. € Xi,.. By [10] X1, @ X' = 01, . @02y, ., Where o1,  and
02,x,,, areirreducible tempered. The representation | | x1,. X X1,. X A" is reducible
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and we have
| X1pe X X1pe ¥ N =] [Y2 X1, Star, xN+ Y2 X1, Lan, @ X
= [ X1 X 0130 T X1 X o250
Moreover,
| "2 X1, Star, N = Lg(| ['/2 x1,. Stary; V) + 0+ Ay,
| |1/2

g

[ [ X1pe3010,.) + 6+ As,

(
X1px lGLz N = g(‘ ‘ le*;ULXlF* ) + Lg(' | X1px3 0-27X1F* ) + A27
(
(1] X1pe3 02,5, ) + La(| V2 X1, Staras ) + A

L
L
| X1 X 0150, =Lg
[ Xape X O2x,,. =L

where 0 is square-integrable.
Lg(| |1/2 X1p~ StGL2; )‘/)v Lg(' ‘ XlF*;JLXlF*) and Lg(| | XlF*;UZ’XlF*)

are unitary. A; and Ay are either both equal to 0, or A; is equal to ¢ or §’, where
¢' is square-integrable and d # ¢’, and A is either equal to Lg(| [ X1,.502,,,.) or

to Lg(| ['/2 X1,. Stary,; V).
We now prove the assertion that Lg(| |2 x1,. Star,; V), Le(] | X1p+i01,x1,., )
and Lg(| [ X1,.;02,x,,. ) are the only non-tempered irreducible subquotients of *
X1 X X1 @ N

Le(| |'2 x1,. Star,; \) is a subquotient of | |'/2 x1,.. Star, x\'. We consider the
Jacquet restriction of | |'/2 y, »- Star, XA with respect to the minimal parabolic
subgroup.

smin(| "% X140 Star, XX) = [ X1 ® X1 @ N+ || X150 @ X1pe @ N
X1 @ T X, ON + X1 @ | | X1 @ N
=2 X1pe @ X1 QN 4+ X1, @ | |~ Xipe @N
+ X1 @ || X150 @ N

By the Casselman square-integrability criterion [3], Lg(] |Y/? x1,. Star,; \')
is the only non-tempered irreducible subquotient of | |!/2 Xip. Star, XA A
tempered representation is the subquotient of a representation induced from a
square-integrable representation. | |2 xi,. Stgr, ®\ is not square-integrable,
hence any other subquotient of | |'/2 x;,. Stgr, ¥\’ must be square-integrable.
Therefore Lg(| | X15.;01,x,.) and Lg(| | X1,.502,y,,,) are subquotients of | |1/2
Xip-laL, ¥ N. Let § be a square-integrable subquotient of | |'/2 x1,. Star, X\

|| X1pe X 01x,,. and | | X1,. X 02,5, , have the same Jacquet restrictions with
respect to the minimal parabolic subgroup:

Smin(| | X1, X ULXlF*) =Smin(| | X1p. % 02,X1F*)
=1 Xipe @ X1pe @N+] |1 Xipe @ X1pe @ N
X1 @ || Xpes N + X1 @ |7 X1pe @ N
We chose 01,5, , and oa,y, _ such that § is a subquotient of | | x1,. x 01

X1 g

and Lg(| |"/? x1,. Star,; \') is a subquotient of | | x1,. X o2

Xpw ©
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We have no contradiction that | |/ y, »- Star, XA contains a second irreducible
square-integrable subquotient ¢’ that would be a subquotient of | | x1,. % 02,x1 0 0

and that | |*/2 x1,.lgr, ¥ A’ either contains Lg(| | x1,.; 02,x1,. ) with multiplicity
2 or Lg(| |*2 x1,. Star, x\). Lg(| | Xip+302,x:,, ) and Lg(| Y2 X1, Star, x\)
would then be subquotients of | | x1,. % 01, . -

Let 0 < a < 1. By Theorem 5.11 the representations | [* X1,. X 01y, ,
| % X1p. X 02, . are irreducible, they are equal to Lg(| [* X1,.;01,x,,, ) and to
Lg(] ™ X105 O2,x1 o ), respectively. By Theorem 7.23 (2) they are unitary. For a =
1, by [14] the irreducible subquotients of | | X1,. X 01y, . and of [ | X1,. X o2
are unitary.

and

X1 g

6.7. | | 1x | [ Xwp,r ¥ N+ Recall that X(det) Sty (s is the unique irreducible
square-integrable subquotient and that \'(det)1y(s) is the unique irreducible non-
tempered subquotient of | | 1 x \'. Let Xwg,r € X Let T X 1 be the unique

WE/F "
irreducible square-integrable subquotient and let T2 X m be the unique irreducible

non-tempered subquotient of | [*/2 x,,, . % A’ [10].

THEOREM 6.6. — The representation | | 1x | |1/2 Xwg,» X A s reducible, and
we have
| | 1x | ‘1/2 Xwg,r Py :| |1/2 Xwg,/Fp X )‘l(det) StU(?)) + | |1/2 Xwg/p X A/(det)lU@)
=[|1x T Xeg,p |1 T2 Xwg, p

Moreover we have
‘ |1/2 XWE/F X A/(det) StU(3) = Lg(' ‘1/2 XWE/F; )‘l(det) StU(B)) + 67

1Y% X @ N (det) 1) = Lg(| | 151172 Xy, w3 N) + Le(| | LTy, )
[ tmin,, = Le(l | L, )+
1120 w2, o = L 11512 X3 A) + Le(| Y2 Xap,ps X (det) Stus),

where § is square-integrable. § = Lg(| | 1;| [V/2 Xy, .5 N), and

Lg(| 2 Xuwp,p3 N (det) Sto) = Le(| | L, ,)-
The representations
Lg(| V2 Xup,ri N (det) Stogs)), Le(| | 1m

are all unitary.

), Lg(| | 15| Y2 Xy, i N) and 6

Xepg,p

Proof. — | | 1x | |'/2 xw, ,» X A" has only the following irreducible non-tempered
subquotients:

Lg(| "2 Xupps N (det) Stu), Le(l | 1im

Lg(| [*/2 Xwp,r; A (det) Sty(s)) is a subquotient of |

) and Lg(| | 1a| |1/2 XWE/F;)\/)'

KXo p
|1/2 Xwg/r el /\/(det) StU(S)'
We consider the Jacquet restriction of | |1/2 Xwg,p X N(det) Sty sy with respect
to the minimal parabolic subgroup:
Smin(‘ ‘1/2 Xwg/r X )‘,(det) StU(S)) :‘ | 1® | |1/2 Xwg,/r ® N

+ | |1/2 XwE/F® | | 1 ®>‘/+ | |71/2 XWE/F® | | 1 ®)\/+ ‘ | 1® | |71/2 XWE/F ®/\/'
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By the Casselman square-integrability criterion [3],
Smin (Lg(] |1/2 Xwg/ps N (det) StU(S)))

must contain the irreducible subquotient | [7%/% x,, ,® | [ 1® X. We have

Smin(| [ 13m0y, ) =[10] 12 Xeog,e @ XN+ 1M Xurg n® [ 110X
F 1D Y2 Xapye @ XN+ Y2 Xop,r@ [ 171 1O N,
and
Smin(| [ 122y, ) =[1] 7Y% Xeopye @ N+ 72 Xeg,n® [ | 1@ N

T Y2 Xaopy e N+ T2 X e ® | 71 IO X

The irreducible subquotient | |~1/2 Xwg, @ | | 1@ N appears in spin(| | 1 %
WQ’XME/F)7 not in Smin(| | 1 X ﬂ-l’X“’E/F). Hence Lg(] ['/2 Xwg,p; N (det) Stysy)) is a
subquotient of | | 1 x T2 X

Leg(] | 1;m1 is the unique irreducible quotient of | | 1 x 7y

’X“’E/F) ’X“’E/F7

8min(| |1/2 XUJE/F X )‘/(det)lU(S)) =
Y2 X e ® TP LN+ | [TH10 Y2 Xy N
F 172 X w® [T L@ N+ [TH10 |72 X, @ X

Looking at Jacquet modules, we see that Lg(| | 1;m is a subquotient of

| |1/2 Xwg,F X )‘l(det)lU(S)-
N (det)1p(s) is a quotient of | | 1 x A’ [10]. Hence | |'/2 Xwg,r X A'(det) 1y (s) is

)

a quotient of | | 1x | |1/2 Xwg,r XA T2, Xy, p 15 @ quotient of | [}/2 Xwg,r XA
Hence | [ 1% 72y, is also a quotient of | | 1x | 12 X, e XN
Lg(| | 1;] |22 Xwg,r;A') 18 the unique irreducible quotient of | | 1x | |1/2 P

Xwg,/r
N. Hence it is a quotient of | |*/2 Xwg,r X A'(det)1y 3y and of | | 1 x T2 Xy o 10
is of multiplicity one.

Each irreducible subquotient in smin(| [/ Xw,,,. % N (det)ly(s)) is of mul-
tiplicity 1. Hence Lg(| | 1;m ) is of multiplicity 1. We have seen that

Xep)p
Smin (Lg(| |1/2 XWE/F;X(det) Sty(3))) contains | |_1/2 Xwgr® || 1® X\, with mul-
tiplicity 1. | |72 xu,,.® | | 1® X does not appear in smin(] "2 Xup, . ¥

N(det)1y(3))). Hence Lg(| |1/2 Xwg,r; A (det) Sty (s)) equally has multiplicity 1.
By the Casselman square-integrability criterion [3] any subquotient of

‘ |1/2 Xwg,r X )‘I(det) StU(?’)

other than Lg(| |*/2 Xwg, A (det) Sty (s)) is square-integrable.
| 1/2 Xwg,» ¥ A'(det)1y 3y has the two irreducible subquotients

La(| | 5112 Xap, i A) and - Lg(| | L, -

By the Aubert duality | |*/2 x,,, ,r» XN (det) Sty (3) has exactly one square-integrable
irreducible subquotient, denoted by 9.
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Looking at Jacquet modules, we see that 0 is a subquotient | | 1 x Tl X e

5 =Tg(] | 15| 172 X i M), and

Lg(| "% Xup, r3 N (det) Stus) = Le(| | L, ,)-

1 X Xwg/p X M is irreducible by Theorem 5.1 and unitary. For 0 < a1 < 1, 0 <
ag < 1/2, representations | [** 1x | [*2 X, . % A" are irreducible by Theorem
5.2 and unitary by Theorem 7.10 (1). By [Mi], all irreducible subquotients of
|| 1x | [}/2 Xwg,p X A are unitary. O

6.8. | | 1 X x1,. X N. Recall that X' (det) Sty sy is the unique irreducible square-
integrable subquotient and that \'(det)1y(3) is the unique irreducible non-tempered
subquotient of | | 1 x ' ([10]). Let x1,. € X1,..

THEOREM 6.7. — The representation | | 1 X x1,. % X is reducible and we have
[ 1% X150 % N = X1ps X A (det) Sty(3)y FX1pe X )\'(det)lU(g)
=[|1x Ul,XlF*J’_ |1 02, X1 *

Furthermore
X1p. X N (det) Stu(s) = 75 + 7o,
X1pe @ N(det)ly@) = Le(| | Loty ) +Le(| [ 102, ),
[[1x 01y, =Le(l|1501x,.) + T

| | 1> 027X1F* = Lg(' | 1;027X1F* ) + s,

where 75 and 7¢ are tempered with 75 = Lg(| | 1;01,y, ., ) and 76 = Lg(| | 1; 02,5, . )-
All irreducible subquotients are unitary.

Proof. — Lg(| | 1;01,x,,,) and Lg(| | 1502, ) are the only non-tempered
subquotients of | | 1 X Xx1,. X A.

Moreover, Lg(| | 1;01,y, . ) is the unique irreducible quotient of [ [ 1 x o1y, .,
and Lg(| [ 1;02,y, . ) is the unique irreducible quotient of [ [ 1 % o2, -

X1p. X A'(det) Sty sy is tempered, hence all irreducible subquotients of x1,. X
N'(det) Sty (s) are tempered. Hence Lg(| | 1;01,y,,,) and Lg(| | 102y, ) are
subquotients of x1,. x \'(det)1y ().

Let 75 and 76 be two tempered subquotients of x1,. x A'(det) Sty (s, such that
75 is a subquotient of | [ 1 X 02y,  and 7g is a subquotient of | [ 1 X o1y, . -

We now show that no other irreducible subquotients of | | 1 x x1,. x A’ exist.
Assume there exists a tempered subquotient 77 of x1,. x A’(det) Sty (s). Consider
the Jacquet restrictions of x1,. x A (det) Sty 3y and 7; for ¢ € {5,6, 7} with respect
to the minimal parabolic subgroup:

Smin(X1+ X N (det) Sty(s)) =x1,. @ [ [ 1N+ ] 1@ x1,. @ N
X1 @ 1TON+[[1@ X1 @ N
=2X1.9 1N +2|]1®x1,. ®N.

Hence 34 € {5,6,7} such that sy, (7;) does not contain the irreducible subquo-
tient x1,.® | | 1®N. The Casselman square-integrability criterion [3] implies that
T; is square-integrable. This can not be the case. Hence 7; does not exist, and 75
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and 76 are of multiplicity 1. By the Aubert duality, x1,. x X' (det)1y(3) does not
have any subquotients other than Lg(| | 1;01,y, . ) and Lg(| [ 1502, . ), both of
multiplicity 1. - -

We obtain 75 = Lg(| | 1;01,y,,, ), and 76 = Lg(| | 1502y, ).

1x01,y,,, and 1 X 03y,  are irreducible by Theorem 5.1.1, and by [10] o1y,
and 03y, , are unitary. Hence 1x 01y,  and 1X03,y, , are unitary. For 0 <o <
L[[*1x01y,,, and [ [*1X 02y, . areirreducible by Theorem 5.11 and unitary
by Theorem 7.23 (2). By [14], all irreducible subquotients of | | 1 X x1,. X A" are
unitary. 0

6.9. | |'/2 Xwg/r X Xipe XN Let Xup,p € Xy, e Let T X be the unique

square-integrable irreducible subquotient and let T2, X5 be the unique non-tem-

pered irreducible subquotient of | |1/2 Xwg,r XA ([10]). Let x1,. € X1,..

THEOREM 6.8. — The representation | |!/? Xwg,r X X1« X A" is reducible and
we have

1/2 I
| Xwgsp X Xips X A= X1 X Wl,XwE/F + X1px X T2 Xwg, p

= I |1/2 Xwp/r XN 01,x1,. + ‘ |1/2 Xwgr X 02,x1 . -

Furthermore

X1ps X T =177+ Tg,

Xep, g

Xip= X ﬁQ,XwE/F = Lg(| |1/2 Xwe/r I1,x1 u ) + Lg(| ‘1/2 Xwr/r1 92,X1 u )7

‘ ‘1/2 Xwg/p X Olx1. = Lg(| |1/2 Xwp/pi O1,X1 ) + 7,

| ‘1/2 Xowg/rp X 02x1,, = Lg(| |1/2 Xwr/r192,X1 )+ 17,

where 77 and Ty are tempered such that 77 = Lg(| ['/2 Xwp, p; O1,.) and 5 =
Le(] Y2 Xog, s 02,x1,.)- All irreducible subquotients are unitary.

|1/2

Proof. — Lg(| |1/2 XWE/F;O-LXIF*) and Lg(| XWE/F;U27X1F*) are the only

non-tempered subquotients of | [/ xu, X X1, ¥ N

Lg(| ['? Xwp,ri01x1,. ) s the irreducible Langlands quotient of | [V/2 x,, . %

o1x1,. 0 L8 12 Xwg ri02x,.) is the irreducible Langlands quotient of | [*/2

Xwg/p X 02,x1,, -
X1ps AT x o 18 tempered. Hence all irreducible subquotients of x1,,. XL X

are tempered. Hence Lg(| |'/2 Xwg,r} O1xi,. ) and Lg(| |1/2 Xwp,p} 02,x1,. ) are

subquotients of x1,. X LR
Let 77 and 73 be two tempered subquotients of x1 .. % Tl X such that 77 is a

subquotient of | |1/2 Xwg, p X 02 and 7g is a subquotient of | |1/2 Xwpr MO0 x1 . -

X1 g
We now show that no other irreducible subquotients of | ['/2 x,, . X X1, X X
exist. Assume there exists a tempered subquotient 79 of x1,. » Tl X Consider

the Jacquet restrictions of x1,. X m and 7; for ¢ € {7,8,9} with respect to

’X“’E/F
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the minimal parabolic subgroup:

Smin(X1ps X 71 ) =X1p @ | M2 Xwg,pr @ N+ | |1/ Xwg,p @ X1pe @ N

Xep/p
+ XlF*® | |l/2 XWE/F ® )‘/+ ‘ ‘1/2 XUJE/F ® X1px ® )‘/

:2 1/2 )\/ 2 1/2 )\I

X1p+ @ | Xwp/p @A + N Xwg/r @ Xipe @A™

Hence 3 ¢ € {7,8,9} such that syiy(7;) does not contain the irreducible sub-
quotient x1,.® | |"/? xw, ,» @A The Casselman square-integrability criterion [3]
implies that 7; is square-integrable. This can not be the case. Hence 19 does not
exist, and 77 and 7g are of multiplicity 1. By the Aubert duality, x1,. > T2 X m

does not have any subquotients other than Lg(| |1/2 Xwp,ri 01 ) and Lg(| |'/?

Xwp,ri02,x1,. )» Poth of multiplicity 1.

SX1 g

We obtain 77 = Lg(| |1/2 Xwe/ri O1,x1 s )7 and g = Lg(‘ ‘1/2 Xwe/r1 92,x1 4 )

Xwr e X Olxi,. and Xwp p X 021, are irreducible by Theorem 5'1~XwE/F and
by [10] o1,y,,. and 02y, , are unitary. Hence Xuw,,p X 01,5, a0d Xwp)p X025,
are unitary. For 0 < a < 1/2, | |* Xup,p X 01x,,, and | [* Xwp,p X 01y,
are irreducible by Theorem 5.11 and unitary by Theorem 7.23 (3). By [14], all

irreducible subquotients of | ['/2 ., X X1,. % A" are unitary. O

6.10. | [ Xug,mx | V2 Xiog,p X N+ Let Xop s Xop, o € Xwp,p be such that
Xwg, r #+ X;E e Let Tl X m be the unique square-integrable subquotient and

let 2 X be the unique non-tempered irreducible subquotient of | |'/2 x,,, e X
N. Let w1, , be the unique square-integrable irreducible subquotient and let
Xeo
E/F
T2.x,,  be the unique non-tempered irreducible subquotient of | |'/2 Xoog,p XN
E/F
[10].
THEOREM 6.9. — The representation | |'/? Xwgyr X | |1/2 Xog, e X A I8 TE-
ducible. We have
1/2 1/2 s / 1/2 1/2
| | / Xwg,p X | | / XwE/F XA = | l / Xwg,p X ﬂ-LXLE/F_F' ‘ / Xwg p X WQ:XLE/F
1/2 1/2
= | | / XLI;.)E/F ~ ﬂ-lewE/F+| ‘ / XLI/JE/F ~ //TQ,XWE/F'
Furthermore
1/2 1/2
| | / Xwg,p X 7Tl,XLJE/F = Lg(| | / XUJE/F;WLXL,E/F) +9,
1/2 1/2 S 11/2 )
| | / Xwpp X 7r2aX£JE/F - Lg(| | / XWE/F7‘ | / X:L;E/Fﬂ/\/)
1/2
L% X i Tixe, )
1/2 1/2 )
| | / XZ’JE/F A ﬂ-l’XWE/F = Lg(| | / X:JE/FvTrl,XWE/F) +5a
1/2 1/2 L 1/2 .
| | / X(//.)E/F X 7T21XwE/F = Lg(| | / XWE/F7‘ | / XWE/F7)\/)
1/2 R
+Lg(| | / X“’E/F’TrlanE/F)’
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where § = Lg(| ['/2 Xy, w3 | [V? Xy, 3 X') Is square-integrable. Moreover, Lg|(| |1/2

Xeog i | 172 X i XD L 12 X rimix,, ) and Tg(] /2
are unitary.

/ .
XwE/F77T17XwE/F)

)

and Lg(| |/? X;E/F; wlywa/F) are all the non-tempered irreducible subquotients of
| |1/2 XWE/F>< | |1/2 X )\l'

Lg(| |'/2 XwE/F”Tl,X;E/F) is a subquotient of | |*/2 Xwg,p X T

Proof. — Clearly Lg(| ["? Xwp,ps| [V? X0y, i N)s Le(] [V? Xeop)pi 7t

Xeg)p

!/
XUJE/F

Xog,p
Consider the Jacquet restrictions of

1/2 1/2 ./ 1/2 1
| | XWE/F el 7T17X£JE/F7 | | XWE/F A 7T17XwE/F and | | XUJE/F e 7T27XwE/F

with respect to the minimal parabolic subgroup:
1Y

Smin( 2XwE/F A ’/TLXZ"E/F) =
12 Xeopy e @ |12 X p @ N+ 112 Xy @ 11 Xy ® N

1172 Xaom e ® Y2 X @ X4 1172 X, ® 1172 X ® X
)

As Lg(] |12 XWE/F”TLXLE/F) is non-tempered, spin(Lg(| |1/? Xow/ri TLXL,

must contain the irreducible subquotient | |~1/2 Xwg,r® | |1/2 XL,E/F ® N.
Smin( | |1/2 X:,JE/F X Trl’X“"E/F) =
12 0 @12 Xy © N |12 Xy ® |2 X @ X

+ | |_1/2 X:JE/F® | |1/2 XWE/F ®)‘I+ | |1/2 XWE/F® | |_1/2 X(:.}E/F ® )‘/a and

Smin( | |1/2

X‘/*)E/F . 7T27XWE/F) -
| |1/2 X(/.UE/F® | |_1/2 XOJE/F ® )‘/+ ‘ ‘_1/2 XUJE/F® | ‘1/2 XZUE/F ® )‘/

+ |71/2 X:JE/F® | |71/2 Xwg/F @ N+ | |71/2 Xwg/r® | |71/2 X:‘)E/F BN

The irreducible subquotient | |~1/2 Xwg, r® | |1/2 Xy, ® A" does appear in
Smin(l ‘1/2 X/wE/F X 7T2)XWE/F)7 but not in smin(' |1/2 X(:JE/F X Wl,XwE/F)' Hence

Lg(] [*/? XwE/F”Tl,XLE/F) is also a subquotient of | [1/2 Xeog, e X T2

Xeg/p '

Lg(] |1/2 XL,E/F;M,XWE/F) is a subquotient of | |1/2 X‘/UE/F XL X e In the
same manner as above we find that Lg(| |'/2 X"*"E/F;WLXWE/F) is also a subquotient
of | |}/2 X/ X T2, -

T2 Xy, 1S @ quotient of | |1/2 Xwg,r X A'. Hence | |1/2 X"‘)E/F R
a quotient of | /2 Xwg,r X | |1/2 Xoog,m XA LERG. is a quotient of | |1/2
X;E/F x X, hence | ['/2 Xwg,p X LER. is a quotient of | |!/2 Xwp, p X | |1/2
Xog, e ¥ A Lg(| |1/2 Xws, e | |1/2 Xlop, 3 A') is the unique irreducible quotient of
| |1/2 Xwp/p X | |1/2 X;E/F x \. Hence Lg(| |'/2 Xwg,r | |1/2 X;E/F;X) is a quotient
of | |1/2 X:JE/F X T2 Xeg ¢ and of | |1/2 Xwgp X 7T27X®E/F'
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A tempered representation is the subquotient of a representation induced from
a square-integrable representation of a parabolic subgroup. Here, for i = 0,1, 2,
Ind}7i (| Y2 Xeg,»® | [M/2 Xiog,» ® A') does not contain any square-integrable
subquotient. Hence any irreducible subquotient of | |*/2 x| M2 XL, e XN
other than Lg(| M2 Xy, 3| M2 X, X, T(] Y2 X i, ) and Lg(] /2

XWE/F

X‘/*’E/F;Wl’XWE/F) must be square-integrable.
Smin(] |12 Xwg,p X ﬂ-l’X{"E/F) contains only one negative subquotient, | |~1/2
Xwg,r® | |1/2 Xioy,» ®N'. Hence Lg((| |1/2 XwE/F”TLx;E/F) is the only non-tempered
irreducible subquotient of | [1/2 Xop/p XX, -

Let & denote a square-integrable irreducible subquotient of | [V/2 y,,,, . %
1/2

/ .
’XWE/F

Looking at Jacquet modules we find that ¢ is also a subquotient of | | pu

!
Xwg/p
Tl’X“’E/F N

So far we have seen:

12 Xarg,r Ty, = L&(] /2 Xeop /3 T, ) 0+ AL,

12 Xeoppr X T2, =LY Xepri |12 X X)
L8 1M Xy o3 M, ) T Az,

\ |1/2 X&E/F L B = Lg(] |1/2 XZJE/F;WLXWE/F) + 0 + As,

12 Xoog e X T2 e = L8 X |12 X i )
+La( "2 Xeg ri T, )+ Aay

where A, Az, A3 and Ay are sums of tempered representations. We will now show
that Ay, Ao, A3 and A4 are equal to 0.
Srin (| |1/2 Xwg, p X 7T2’X‘I*’E/F> does not contain any non-negative subquotients.

Hence by the Casselman square-integrability criterion [3], all irreducible subquo-
tients of | |1/2 Xwg/r X T2, . are non-tempered. Since each subquotient in

Smin(l |1/2 Xwg,p X 7-‘-Q,XLE/F) is of multiplicity one, Lg(| |1/2 Xwg,rs | |1/2 X;E/FQ )\/)

and Lg(| ['/2 X, i 1 are of multiplicity one in | |'/2 Xwg,p X T2

Xoog p°
‘1/2

)
The irreducible subquotient | [~%/% x,, ,® | ['/2 Xy, p @ A0 Smin(Lg(|
XWE/F”TLXLE/F)) does not appear in sy, (| |2 Xwgp X 7T21X£1E/F). Hence Lg(| |*/?
) : : 1/2
XWE/F’WLX’WE/F) is no subquotient of | |1/ Xwp,p X LERN.
Equivalently we obtain that all irreducible subquotients of | |'/2 X e X2 X0

‘ ‘1/2 XWE/F;| |1/2 XZUE/F;A/) and Lg(| |1/2 XUJE/F;T(LXL)E/F)
1/2

are non-tempered, Lg(
are of multiplicity one and Lg(| |'/2 XwE/F;m»XLE/F) is no subquotient of | |

X T . By the Aubert duality, | [*/? xu,,, . ¥ TNy and | |1/2 X X

/
XWE/F ’X“’E/F
Tl X m do not have any other subquotients.
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We obtain that § = Lg(| [V/2 Xwp, s | [1/2 ; \) and

Xlog,

Lg( "2 Xeop i T, ) = L8012 X 3 Ty )

Xwg/p X XZ’JE/F x A is irreducible by Theorem 5.1 and unitary. For 0 < o, as <
/2, [ % XwppX || X‘/UE/F % A is irreducible by Theorem 5.2 and unitary by
Theorem 7.13 (1). By [14], all irreducible subquotients of | |!/2 Xwg/p X | |1/2
X;E/F x A are unitary. O

7. IRREDUCIBLE UNITARY REPRESENTATIONS OF U(5), IN TERMS OF
LANGLANDS QUOTIENTS

7.1. Representations with cuspidal support in M, fully-induced. For any
Xwg,p € Xwg,p, let Tl Xe g w be the unique irreducible square-integrable subquo-
tient of | |1/2 Xwp, p X XN. Let x1,. € X1,.. Recall that x1,. = T1x1 . D O2x1 0
where 01y, , and o2, . are tempered [10].

PropoSITION 7.1. — Let 0 < ao < ag, a > 0. Let x1,x2 and x be unitary
characters of E*. The following list exhausts all irreducible hermitian representa-
tions of U(5) with cuspidal support in My:

(0) tempered representations of U(5),
(1) Lg(] |** x1;1 1% x2; A") where x1,x2 € XNy, p(E") OF @1 = az and x1(z) =
Xz ' (T) Vo € 7,
g(| 1% x1;x2 X A') where x; € XNg,p(E*) and x2 ¢ X1,
(I % xStery; A') where X € Xn, o (5),
(4) Le(l | x; A (det) Stys)), Lell [* X5 Tix, ) Ll 1% X5 01,x,,.) and
(e

Outline of the proof: 0. Tempered representations are unitary, hence hermitian.
1.-4. Let \;, for ¢ = 0,1, 2, be representations of the Levi subgroups My, M; and

M. By [3], IndM(‘r’)()\l) = Ind](\]f)()\i), for i =0, 1,2, is equivalent to the existence

of w € W such that ): = w\; for i = 0,1,2. This holds also for the Langlands
quotients, and the proof is immediate. O

7.1.1. Irreducible subquotients of x1 X x2 X A. Let x1, x2 be unitary characters of
E*.
e All irreducible subquotients of x1 x x2 X A are tempered, hence unitary.
o Lg(| 1% x5 1192 x25A), 0 < a2 < an,y X1 & Xivg o (7) OF X2 & XN o (7))

THEOREM 7.2. — Let x1, X2 be unitary characters of E* with x, ¢ XNy, r(E)
or X2 & Xnp,p(8%)-
(1) Let 0 < ag < aq. Let ay # ag or Iz € E* 5. t.xi(z) # x5 (7). Lg(] |*
X1;] [*? Xx2; A') is non-unitary.
(2) Let 0 < a1 = Q9 and Xl(I) = X;l(f) Vo c E*. Then Lg(| |a1 X1; | |a2
Xz;)\/) is unitary for 0 < oy = ay < 1/2, and Lg(] |** x1;] |2 X2»>\) is
non-unitary for a > 1/2.
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Proof. —

(1) Let a3 # ag or there exists + € E* such that x;(z) # x5 '(%). The
representations | |“* x1x | |2 x2 X X are not hermitian, by [3] 3.1.2.
Lg(] |** x15| |*2 x2; ") is not hermitian, hence not unitary.

(2) Let oy = ap and x1(z) = x5 (%) for all z € E*. Representations |
x1% | |22 x2 x X are hermitian. Let a1 = ap < 1/2 and x1(z) = x5 (%)
for all x € E*. Representations | [** x1x | [*2 x2 X A are irreducible by
Theorem 5.2 and equal to their Langlands quotients Lg(| |** x1;] [*2 x2; V).
X1 X x2 X X is irreducible by Theorem 5.1 and unitary. For ay = ap < 1/2,
representations Lg(] |** x1;] |2 x2;’) form a continuous 1-parameter
family of irreducible hermitian representations that we realize on the same
vector space V (for a detailed version of this argument in a similar case
see the proof of Theorem 7.4). By Remark 3.1, Lg(] |** x1;| |*2 x2; A') is
unitary for a; = ay < 1/2. For a; = ay = 1/2 and x1(z) = x5 (%) for
all z € E*, | |Y/2 x1x | |2 x2 x X is reducible by Theorem 5.2. By [14],
Le(| 12 x1; | [V/? x2; V') is unitary.

Let oy = ap > 1/2 and () = x5 '(Z) for all z € E*. Representations
[ %t x1x | |*2 x2 x A" are irreducible by Theorem 5.2 and equal to their
Langlands quotients Lg(| |** x1;] |*2 x2; ). By Remark 3.1 and Lemma
3.3 Lg(] |** x13] |2 x2; V) is non-unitary for a; = ag > 1/2. O

|

7.1.2. Lg(] |* x15x2 X N), @ > 0, x1 ¢ XNp,p(E7) OT X2 ¢ XNy, p(Er)- Let

X1gx € X1,.. Recall that XNE/F(E*) =1UX

UXi,..

WE/F

THEOREM 7.3. — (1) Let & > 0. Let x1 ¢ XNp,p(Ee) and Xo ¢ Xi,..
Then Lg(] |* x1;x2 X X') Is non-unitary.
(2) Let o > 0. Let x1 ¢ Xny, (). Then Lg(| [* x1501,,,.) and Lg(| |
X102,y . ) are non-unitary.
(3) Let a > 0. Let x1 € XNy, p(E7) and X2 ¢ XNy e (E")-
(3.1) Let x1 =1. Let 0 < o < 1. Lg(] |* 1; x2 x A’) is unitary.
Let o > 1. Lg(| |* 1; x2 x X’) is non-unitary.
(3.2) Let x1 € Xy, Let 0 < a < 1/2. Lg(| |* Xwp, pi X2 X A') is unitary.
Let o> 1/2. Lg(| [* Xwg, s X2 X A') is non-unitary.
(3.3) Let x1 € X1,.- Let & > 0. Lg(| |* x1,.; X2 X X) is non-unitary.

Proof. —

(1) For « > 0, representations | |* x1 X x2 x A" are not hermitian. By [3] 3.1.2,
Lg(] |* x1;x2 @ \') is not hermitian, hence not unitary.

(2) For a >0, |[* x1 X 01,y,,. and [ |* x1 X 02,5, , are not hermitian. By [3]
Lg(| [* X1501,x1,. ) and Lg(| | X1502,,,.) are not hermitian and hence
non-unitary.

(3) (3.1) 1x x2x X isirreducible by Theorem 5.1 and unitary. For 0 < o < 1,

representations | |* 1 X x2 x A’ are irreducible by Theorem 5.4 and
equal to their Langlands quotient Lg(] |* 1; x2 x A’). By Remark 3.1
these Langlands quotients are unitary. For a = 1, | | 1 x x2 x X
reduces for the first time, by Theorem 5.4. By [14] Lg(| | 1; x2 X ) is
unitary. For a > 1, representations | |* 1 x y2 x A are irreducible by
Theorem 5.4 and equal to their Langlands quotient Lg(| |* 1; x2 < \).



UNITARY REPRESENTATIONS OF P-ADIC U(5) 127

By Remark 3.1 and Lemma 3.3 these Langlands quotients are non-
unitary.

(3-2) Xwp,r XXx2\" is irreducibly by Theorem 5.1 and unitary. For 0 < a <
1/2, representations | [* Xw,,,» X X2 X A’ are irreducible by Theorem
5.4 and equal to their Langlands quotient Lg(| |* Xuw,, ;X2 3 N).
By Remark 3.1 these Langlands quotients are unitary. For a = 1/2,
| |1/2 Xwg,r X X2 X A’ reduces for the first time, by Theorem 5.4. By
[14] Lg(] |/? Xwg, i X2 X A') is unitary. For o > 1/2, representations
| [* Xwg» X X2 @ A" are irreducible by Theorem 5.4 and equal to
their Langlands quotient Lg(| [* Xwg,»; X2 X A). By Remark 3.1 and
Lemma 3.3 these Langlands quotients are non-unitary.

(3.3) For a > 0, representations | |* xi,. X x2 x A are irreducible by
Theorem 5.4 and equal to their Langlands quotient Lg(| |* X1 ,.; X2 X
). By Remark 3.1 and Lemma 3.3 these Langlands quotients are
non-unitary. O

We now take x1,x2 € XNE/F(E*)'

7.1.3. Lg(| [* L;[[*2 1, N), 0 <as <oq, Lg(] |[* 151 x A), a>0.

THEOREM 7.4. — (1) Let 0 < as < a1 < 1 and a1 + ag < 1. Then
Lg(] |** 1;]| |*2 1; X') is unitary.
(2) Let 0 < ay < a1, a1 + e > 1, (a1,0) # (2,1). If oy = 1, then let
ag ¢ (0,1]. Then Lg(] |** 1;] |*2 1; \') is non-unitary.
(2.1) Lg(| > ;]| N) = 1y (5) is unitary.
(3) For0 < a <1, Lg(||*1;1 x X) is unitary.
(4) For a> 1,Lg(| |* 1;1 x X') is non-unitary.

Proof. —

(1) 1x1x X isirreducible by Theorem 5.1 and unitary. Let 0 < as < ay. For
a1+ s < 1, representations | [** 1x | |*2 1x )\ are irreducible by Theorem
5.2, hence equal to Lg(] |** 1;| |*2 1; X).

We will now construct a continuous one-parameter family of hermitian
representations. Let 0 < ap < oy be such that oy + s < 1. Let mqo, a0
denote the two-parameter family of hermitian representations | [** 1x | |*2
1 x N. Let Vi, o, be the vector space of mq, a,-

Recall the Levi decomposition Py = MyNy, where Py is the minimal
x 0
Yy
parabolic subgroup of U(5), Mg = { k , T,y € B* k€ BE'}

71

0 !
is the minimal Levi subgroup and Ny the unipotent radical of F.

Let (m, V) be the extension to Py of the representation 1®1® A of M.
Let 6p, denote the modulus character of P, and put

Voo ={f:G — V: fis smooth and f(pg) = dp,(p)m(p)f(g)Vg € G},
Varas = {h: G — V : h is smooth and for all g € G
h(pg) = dp,(p) | z || y |** m(p)h(9)},
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where p € Py, p = k , x,y € E*, k€ E', « € E. Let
0 — 7!
O denote the ring of integers of E. | |: E* — F* is unramified, hence
(z,y) —| = |“1] y |*2 for z,y € E* is trivial on E!' x E' = O* x O*.
Let K := U(0O); this is a maximal compact subgroup of G. We have
G = KPy. Let f € Vo0. There exists a unique extension of fix : G = V
to a function h € Vi, a,, 50 filgx = hjx. This induces an isomorphism
Tor00 = Voo 5 Vo ,an- Via the composition with Ty, o, we consider all
representations mq, o, in Vo o.
Let w € W be the longest element of the Weyl group. Let

Aw, A | [* Ix []*2 13N = [T Ix |72 1 x N

be the standard long intertwining operator.
On Vp o we define a set of non-degenerate hermitian forms (, )a,.a, by

B o = /zﬂwkﬁ%W®thﬁevm,
U(o)

such that (, )a, a, is invariant by 7!, Ta; as Lo as-

Fix a; and g such that ay + ag = 1. Let m = oy tas, for ¢ € [0,1],
denote a continuous one-parameter family of hermitian representations. Let
V, be the vector space of ;. Via the isomorphism T} : Vy = V;, we consider
all representations m; in Vp, as before.

Choose a real polynomial p(t), such that A(t) = p(¢)A(w, \) is holomor-
phic and non-zero for ¢t € [0,1]. So for the one-parameter family of repre-
sentations 7; one obtains, on the same space Vj, a set of non-degenerate
hermitian forms (, ); given by

Uﬁﬁ:‘/AUﬁ%M%Mhﬂhe%,
U(o)

such that (, )y is invariant under T} ‘7, T;.

(', )o is positive definite, hence by Remark 3.1 (, ); is positive definite
until | |**1 1x | [**2 x )\ reduces for the first time, for ¢ = 1. By [14], for
t = 1, the irreducible subquotients of | [** 1x | |*2 1x )" are unitary. Hence
for 0 < az < a1 <1, a1 + az < 1, the Langlands quotients Lg(| |** 1;| |*2
1; ') are unitary.
and 2.1. | [2 1x | | 1x X is reducible.X'(det) Sty (s) is the unique irreducible
square-integrable subquotient of | | 1\ [10]. By [2, p.915] the subquotient
| 1>/2 1gL, » A is reducible and has the subquotients 1y 5y = Lg(| |2
L] | LX) and Lg(| [* 1; N (det) Styes)). lues) = Le(l 2 L] | LX) is
unitary, Lg(| [* 1; N'(det) Sty (s)) is non-unitary ([2]). For 1/2 < a < 3/2,
representations | |* 1gr, X A’ are irreducible by Theorem 5.5, they form
a continuous one-parameter family of irreducible hermitian representations
on the space V,,. Like before we identify the vector spaces V,, for 1/2 <
o < 3/2. For a = 3/2, the irreducible subquotient Lg(| [* 1; N (det) Sty(3))
of | |/2 1gp, x X is not unitary [2]. Hence, by [14] and by Remark 3.1,
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| 1% 1gr, @ X = Lg(] |** 1;| |** 1;X) is non-unitary for 1/2 < a < 3/2,
that is for 1 < a1 < 2, a7 — ag = 1.

By [2, p.915] the subquotient | | 1 x N'(det)1y () of the representation
| [* 1x | | 1 x X is reducible. It has the subquotients 1) = Lg(] |?
L[ [ 1;N) and Lg(| [¥2 Star,; X'). lys) is unitary, Lg(| [¥/2 Ster,; X) is
non-unitary [2].

Let 1 < o < 2. Representations | [* 1 x X (det)1y (3 are irreducible by
Theorem 5.7, they form a continuous one-parameter family of irreducible
hermitian representations on the space V,. Similar as before we identify
V, for 1 < a < 2. The irreducible subquotient Lg(| |*/? Stagr,;\) of
| [ 1% XN(det)ly(s) is non-unitary [2]. Hence by [14] and by Remark 3.1
representations | [ 1 3 N (det)1y (3 = Lg(] [** 15| |' 1;X) are non-unitary
forl=an<a; =a<2.

Let 1 < <2,0< ag < 1,1 —ag < 1. | |* 1Ix | [*21x XN
is irreducible by Theorem 5.2 and equal to its own Langlands quotient
Lg(] [* 1;] |*® L;N). Fix 0 < ag < land let 1 < oy < ag + 1. Let 7q,
denote the continuous one-parameter family of hermitian representations
| |** 1x | |*2 1 x X on the same vector space V. For a; = ag + 1
irreducible subquotients of the representations | [** 1x | |*2 1 x X are non-
unitary, as seen in the previous paragraph. By [14] and by Remark 3.1 the
Langlands quotients Lg(] [** 1;] |*2 1; \') are non-unitary. (II in Figure 7.1
on page 130)

Let ag > 2, oy —ag = 1. Lg(| |** 1;| |*2 1;\) is non-unitary by Remark
3.1 and Lemma 3.3. For a; > 2, as = 1, Lg(| |** 1;]|*2 1; \') is non-unitary
by the same argument.

The same holds for Lg(| |** 1;| |*2 1; ), where oy > 1,0 < ap < 1,
ay —ag > 1, for 1 <as <o, ar —as < 1and for a; > 2, a3 —as > 1
(ITI, IV, V in Figure 7.1 on page 130).

Let a1 = 1, ag € (0,1]. We have no proof that Lg(] | 1;] |*2 1;X) is
non-unitary.

(3) 1 x 1 x ) is irreducible by Theorem 5.1 and unitary. For 0 < a < 1,
| |*1x 1%\ isirreducible by Theorem 5.4 and equal to its own Langlands
quotient Lg(] |* 1;1x\'). By Remark 3.1 these representations are unitary.
For aa=1,|]1x1x X\ reduces for the first time, hence Lg(| | 1;1 x ) is

unitary [14].
(4) Fora>1,||*1x1x X =Lg(| |*1;1 x X) is irreducible by Theorem 5.4
and by Remark 3.1 and Lemma 3.3 non-unitary. O

7.14. Lg(| |O‘1 XUJE/F;| |a2 XwE/p;)‘/)7 0 <a < ag, Lg(| |a Xwg,pi Xwg/p X )\/),
a>0, Xwg,r € X Let Xwp,p € X

WE/F " WE/F*

THEOREM 7.5. — (1) Let 0 < az < a1 < 1/2. Then Lg(| [** Xwg,r; | [**
Xwg,p; A') IS unitary.
(2) Let a1 > 1/2, as < ay, (o1, a2) # (3/2,1/2). If 0 < ay < 1/2, then let
a1 ¢ (1/2,1 = ag]. Then Lg(| [** Xwp/ri | [*® Xwg, riA') is non-unitary.
(3) Let 0 < a < 1/2. Then Lg(| |* Xwp)pi Xwp,» X A') is unitary.
(4) Let a > 1. Then Lg(| |* Xwp)ri Xws,» X A') is non-unitary.
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Q2
9 — reducible; irreducible subquotients non-unitary

— reducible; irreducible subquotients unitary

- irreducible non-unitary subquotient

- irreducible unitary subquotient

2 Qq
Figure 1
FIGURE 7.1. Let aj,as > 0, Figure 1 shows lines and points of
reducibility of the representation | [** 1x | |2 1 x A’ and the
unitary dual. Let 0 < ag < 3. Lg(] |** 1;]|*2 1; \) is unitary for
O0<as<a; <l1,a; +as <1 and for a; = 2, ag = 1. Except for
a3 = 1,0 < ay < 1, it is non-unitary. Lg(] |* 1;1 x X’) is unitary
for 0 < a < 1 and non-unitary for o > 1.
Proof. —

(1)

Xwp/p X Xwgp X X' is irreducible by Theorem 5.1 and unitary. For 0 <
ag < a1 < 1/2, [ | Xowg,pX | [*? Xwg,r ¥ A is irreducible by Theorem
5.2 and equal to its Langlands quotient Lg(| |** Xwp il [*2 Xwg,pi A)-
Let a1 = 1/2 and fix 0 < ap < 1/2. For t € [0,1], let m(11/2,ta,) =: T
denote the continuous one-parameter family of hermitian representations
|12 Xewg e X | 2 Xwg,m ¥ . For t € [0,1) these representations are

|t1/2 |to2

equal to their own Langlands quotient Lg(| Xwg,rs | Xwg,r;A') and
by Remark 3.1 unitary. For t = 1 the representations m; reduce for the first
time. By [14] Lg(| "2 Xwp, x| [*? Xewp,»; A) is unitary.

Let 1 < oy < 3/2 and let a3 — ag = 1. Then | | Xwg,p X | |*2 Xwg,r X N

is reducible by Theorem 5.2. The subquotients | |alJ2r0(2 Xwg,rlGL, X A" are

irreducible by Theorem 5.5. They form a continuous 1-parameter family of
irreducible hermitian representations, that similar as before, we realize on
the same vector space V.

Let oy = 3/2, ag = 1/2. Then

3/2+1/2 , ,
2 =
w
| | X E/FlGLZ XA | | XOJE/FlGLZ XA

reduces by Theorem 6.4. Let Tl Xe g be the unique square-integrable

subquotient of | |1/2 Xwg,r X A" [10]. By Theorem 1.1 and Remark 4.7 in
[7] the irreducible subquotient Lg(| [3/2 Xwp,p3 T1 ) of | | Xwp,rlaL, X

Xog/p
A is non-unitary. By [14] and Remark 3.1 the representations | |al;a2
Xwg,rlaL, @ N, for 1 < a3 < 3/2 and oy — ap = 1, that are equal to
Lg(] |« XwE/F5| |*2 XwE/F§X)a for 1 < oy < 3/2 and a3 — ay = 1, are

non-unitary.
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Let 1/2 < oy < 3/2, ag = 1/2. By Theorem 5.2 the representa-
tions | [** Xuwy, X | Y% Xuwg,» ¥ A are reducible. Let T2xup,» DE the
unique irreducible non-tempered subquotient of | |*/2 Xwg,r X A [10]. For
1/2 < ay < 3/2, the representations | [** Xw,, X T2 are irreducible
‘1/2

Xeg,p
by Theorem 5.9 and equal to the Langlands quotient Lg(| |** Xwp, ;|
Xwg, ;). They form a l-parameter family of irreducible hermitian rep-
resentations, that we realise on the same vector space V. For o = 3/2,

| [3/2 Xep/r X T2xuy , p reduces by Theorem 6.4, and by Theorem 1.1 and

Remark 4.7 in [7] its irreducible subquotient Lg(| | Xw,,,» Star,; A') is non-
unitary. By [14] and Remark 3.1

| |a1 ‘ocl |1/2

Xwg,r ATy = Lg(‘ Xwg,ps | Xwp/p> A,)

is non-unitary for 1/2 < oy < 3/2.

Representations | |** X, » X | [*? Xwy,» @ A in ILIILIV,V of Figure 7.2
on page 132 are irreducible by Theorem 5.2 and equal to their own Lang-
lands quotient Lg(| [** Xwg, ;| [** Xwp,r;A'). The Langlands quotients
Le(] [* Xwp,ri | [*® Xwg,riA) in 1T are non-unitary by [14] and Remark
3.1 Leg(] 1% Xwg/pil 12 XWE/F;)\’) in III, IV and V are non-unitary by
Remark 3.1 and Lemma 3.3.

(3) Xwg/r X Xwg,r ¥ A" is irreducible by Theorem 5.1 and unitary. For 0 <
a < 1/2, | |* Xwg,p X Xwgp X X is irreducible by Theorem 5.4 and equal
to its Langlands quotient Lg(| [* Xwp, 5 Xwg,» ¥ A'). By Remark 3.1 these
Langlands quotients are unitary.

For o = 1/2, | |'/? Xwg,r X Xwg,p X A’ reduces for the first time (5.4).
By [14] Lg(] ['/* Xwp,pi Xwp,r X ') is unitary.

(4) Fora>1,]||* Xwg/r X Xwg)p X X is irreducible by Theorem 5.4 and equal
to its Langlands quotient Lg(| |* Xwg,p; Xwp i A'). By Remark 3.1 and
Lemma 3.3 these Langlands quotients are non-unitary. O

Remark 7.6. — Unfortunately we do not have a proof that the representation
Lg(] |32 Xwg,p X | |1/2 Xwg,r X A') is unitary. It is the Aubert dual of a square-
integrable representation and is expected to be unitary, see Theorem 6.4. See [6],
where the proof is given for orthogonal and symplectic groups.

Remark 7.7. — In the Grothendieck group of the category of admissible repre-
sentations of finite length one has

| | Xwg p X Xwg/p X N :| |1/2 Xwe,/r Star, XA+ | |1/2 Xwg,r lar, N

If we assume that | |1/2 Xwg,r StaL, @A and | |1/2 Xwg,rlaL, X A" are irreducible

(see Remark 6.5), we are able to prove that Lg(| [** Xwp,pi | |*? Xwg,»; A') is non-
unitary for 1/2 < a; < 1, ag < 1 — ay, and that Lg(] [* Xwp)pi Xeg, i) i
non-unitary for 1/2 < o < 1.

Let 1/2 < aq <1, az = 1—ay. The representations | [** Xuwy,p X [ [*? Xwp,p XA

@] —ag

are reducible by Theorem 5.2, and the subquotient | |72 xw,,.laL, @ A is
irreducible by Theorem 5.5. It is equal to Lg(] [*' Xwg,ri| [** Xwg,r3A)- By

assumption | |'/2 Xwg,r 1GL, X A is irreducible, it is equal to Lg(| | Xws, 3 Xwp, r X
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X'). Hence we can extend the argument 2 in the proof of Theorem 7.5: Lg(| |*
XwE/p§| |2 XwE/p?/\/) is non-unitary for 1/2 < ay < 1 and ag = 1 — 3 and for
1< <3/2, ag =01 — 1, and Lg(| | Xwg,r; Xwp,» ¥ A) is non-unitary.

Let 1/2 < a1 < 1, ag < 1 — ;. By Theorem 5.2 the representations | |*
Xwg,r X | [%? Xwg,r X A" are irreducible, they are equal to their Langlands quotient
Lg(| [** Xwg,ri | |2 Xwg, 3 A) (Lin Figure 7.2, page 132). By [14] and by Remark
3.1 these Langlands quotients are non-unitary.

Let 1/2 < a < 1. By Theorem 5.4 representations | |* Xwy,p X Xwg,» X A" are
irreducible, they are equal to their Langlands quotient Lg(| |* Xwpri Xwg,» X A')-
| | Xwg/r X Xwg,r ¥ A" is reducible by Theorem 5.4, Lg(| | Xwp/r X Xwg,riA)
is non-unitary by the foregoing argument. By [14] and by Remark 3.1 Lg(| |*
Xwp, s Xwpp X ') is non-unitary for 1/2 < a < 1.

Q2
3/2
— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
1 - irreducible non-unitary subquotient
- irreducible unitary subquotient

1/2

1/2 1 3/2 a1
Figure 2

FIGURE 7.2.  Let oy, 2 0, let xup, € Xop, .. Figure 2
shows lines and points of reducibility of the representation | |*
Xwg)p X | |2 Xwg)r X X and the unitary dual. Let 0 < ag < aj.
Le(] 1% Xwg ril 1% Xwp,riA') is unitary for 0 < ag < oq < 1/2.
Except for 1/2 < a1 < 1,0 < ag < 1 — aq and for a3 = 3/2,
ag = 1/2, it is non-unitary. Lg(| |* Xwg,r; Xwg,» X A') is unitary
for 0 < o < 1/2. For a > 1 it is non-unitary.

7.1.5. Lg(] |* X1pe3 1172 X153 N), 0 < a2 < .

THEOREM 7.8. — Let x1,. € X1,-
(1) Let 0 < a2 < a1, a1 +az > 1. Then Lg(| |** xip.;] |*® X1pe3N) IS
non-unitary.
(2) Let 0 < g < a1, a1+ = 1. Then Lg(| |** x1,.5] |*? X1,.; ) is unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.3 on
page 133. O

Remark 7.9. — Let 0 < as < a1, a; + as < 1. We do not have a proof that
Lg(] |** X1pe3] ¥ X1p.3 A7) is non-unitary.
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(%)

— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary

- irreducible non-unitary subquotient

- irreducible unitary subquotient

1 2 Qi
Figure 3

FIGURE 7.3. Let aj,a0 2 0, let x1,. € Xi,.. Figure 3 shows
lines and points of reducibility of the representation | |** x1,. X
| *2x1,. X X and the unitary dual. Let 0 < as < ;. Then
Lg(] 1Y X1pe3] [*? X1p.3A) is unitary for ag + ap = 1. It is
non-unitary for ay + ag > 1.

In the following Theorems 7.10, 7.11 and 7.12, when speaking of the Langlands
quotient, we will exceptionally allow that c; < as for ease of notation.

7.1.6. Lg(| [** L] |* XwgmiA), 1,02 > 0, Lg(] % Lixwg,» @A), Le(] |
Xwp,pi 1 X A, a > 0, Xwgr € Xwp/p- Lot Xwg,p € Xwp, - Let T Xep, 5 de-
note the unique square-integrable subquotient and let LERON denote the unique

non-tempered subquotient of | [1/2 x,,, PP

THEOREM 7.10. — Let Xuwy,p € Xu

E/F"
(1) Let 0 < a1 < 1,0 <ag <1/2. Lg(| [** L;][** Xwp,r; A) is unitary.
(2) Let ay > 1, a0 >0, orlet 0 < g < 1, ap > 1/2. Lg(| [** 15[ [*2 Xwp, 5 N)
is non-unitary.
) Let 0 <a < 1. Lg(] [* 15 Xwp,» @ A') is unitary.
4) Let a > 1. Lg(| | 1;Xwg,» x \') is non-unitary.
) Let « < 1/2. Lg(] |* x ;1 % X') is unitary.
) 1% X

WE/F)
Let oo > 1/2. Lg( ;1 x ') is non-unitary.

WE/F)

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.4 on
page 134. O

717 Lg(] |* ;] 2 X1p.3A), aq,a2 > 0, Lg(] |* X131 X X), @ >0, x1,. €
X1 Let x1,. € X1,

THEOREM 7.11. — (1) Let o, > 0. Lg(] |[** 1;] |** X1,.;A) is non-
unitary.
(2) Let o> 0. Lg(] |* x15.;1 x A') is non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.5 on
page 134. O
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Qa2
— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
1 - irreducible non-unitary subquotient
IV 11T - irreducible unitary subquotient
1/2
11
1/2 1 a1
Figure 4

FIGURE 7.4. Let a1, a2 2 0, let xwy,p € Xup,p- Figure 4 shows
lines and points of reducibility of the representation | |** 1x | |*2
Xwg,r X A" and the unitary dual. Lg(| [** 15| [*2 Xy, A) is
unitary for 0 < a3 < 1, 0 < ag < 1/2. Otherwise it is non-unitary.
Le(] % 1; Xwy, » X A') is unitary for 0 < o < 1, Lg(| |* Xwp,p5 10 A)
is unitary for 0 < a < 1/2. Otherwise these Langlands-quotients
are non-unitary.

Qa2
9 — reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
- irreducible non-unitary subquotient
1 - irreducible unitary subquotient

1 2 ay
Figure 5

FIGURE 7.5. Let aj,a0 2 0, let x1,. € Xi,.. Figure 5 shows
lines and points of reducibility of the representation | [** 1x | |*2
X1p« X A and the unitary dual. Lg(] |** 1;] |*? x1,.;A’) is non-
unitary for all a1, as > 0. Lg(| |* x1,.;1 % A’) is non-unitary for
all a > 0.

7.1.8. Lg(| |a1 XUJE/F;| |a2 XlF*;A/)’ ai,ap >0, Lg(‘ |a Xip= Xwp/p X /\l)f a>0,
Xwp/r € Xog/pr Xipe € Xipuo Let Xop p € Xap ) 1ot X1, € X

THEOREM 7.12. — (1) Let aj,ag > 0. Lg(| |*" Xwp,pil 12 X1pe;A) s
non-unitary.
(2) Let a > 0. Lg(| [* X145 Xwg,» X A') is non-unitary.



UNITARY REPRESENTATIONS OF P-ADIC U(5) 135

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.6 on
page 135. (]

(&%)

— reducible; irreducible subquotients non-unitary

1 — reducible; irreducible subquotients unitary
- irreducible non-unitary subquotient
1/2 - irreducible unitary subquotient

1/2 1 Qi
Figure 6

FIGURE 7.6. Let ai,az > 0, let Xuwy,p € Xup psXipe € Xipn-
Figure 6 shows lines and points of reducibility of the represen-
tation | [*' Xup,-X | [*® Xip. x A and the unitary dual.
Le(l " Xwg)ri | [%X1+3A") is non-unitary for all ai,az > 0.
Lg(] [ X153 Xwg/p ¥ A') is non-unitary for all o > 0.

7.1.9. Le(| 1% Xewpyr13 | 1% Xwp,p2;A), 0 < ag < a1, LE(| % Xop, .15 Xwg)p2 X
)‘/)7 a > 0’ XwE/F,thE/F,Z S XwE/F7 XwE/F,l % XwE/F,Q-

THEOREM 7.13. — Let Xwyp,1, Xwp,p2 € Xwp,p, SUCh that Xwy p1 Z Xwg, p,2-

(1) Let 0 < az < a1 < 1/2. Lg(] [** Xwp)r15| |2 Xwp,p2; A') is unitary.

(2) Let an > 1/2, 0 < g < a1. Lg(] [** Xwp w15 | [*2 Xwp,p2 @ A') is non-
unitary.

(3) Let 0 < v < 1/2. Lg(| | Xwg,pls Xwpg, p2 X X') is unitary.

(4) Let a>1/2. Lg(| |* Xwp, p.1} Xwg,p,2 X A') is non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.7 on
page 136. (]

7.1.10. Lg(| |O‘1 le*,1;| |Ot2 XlF*’Q;)\/)7 0 < ay < Q. Let Xlpx,1, X1p«,2 S le*;
such that x1.. Z X2p-

THEOREM 7.14. — Let ay,a2 > 0. Then Lg(| |** X1, 15| |*? Xipw,2; ) I
non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.8 on
page 136. O
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Qa2
— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
1 - irreducible non-unitary subquotient
TI11 - irreducible unitary subquotient
1/2
11
1/2 1 a1
Figure 7

FIGURE 7.7. Let ar,a0 2 0, let Xwp, p,1s Xwp, r2 € Xwpps D€
such that Xwp, r1 Z Xwg,r,2- Figure 7 shows lines and points of
reducibility of the representation | [** Xwy 1% | [*2 Xwp p,2 X A
and the unitary dual. Lg(| [** Xwp,r,15 ] [*? Xwp/r,2;A') is unitary
for 0 < a2 < a1 < 1/2. Otherwise it is non-unitary. Lg(] |*
Xwg,r13 Xwg, 2 X A') is unitary for 0 < o < 1/2. Otherwise it is
non-unitary.

a2

— reducible; irreducible subquotients non-unitary
- irreducible non-unitary subquotient

- irreducible unitary subquotient

aq

Figure 8

FIGURE 7.8. Let a1, 00 2 0, let X141, X15+,2 € X1,. besuch that
X1pe,1 2 X1p«,2- Figure 8 shows lines and points of reducibility of
the representation | |** X1,..1X | |*? X1,.,2 ¥ A" and the unitary
dual. Lg(] [** X1, 15| [** X1pe,2;A') is non-unitary for 0 < as <
7.

7.2. Representations induced from M;, with cuspidal support in M;, not
fully-induced.

7.2.1. Irreducible subquotients of x Stgr, XA’. Let x be a unitary character of E*.
As x Stgr, X\ is tempered unitary, all irreducible subquotients of x Stgr, XA’
are tempered and unitary.



UNITARY REPRESENTATIONS OF P-ADIC U(5) 137

Remark 7.15. — By Proposition 5.6 x Stgr, X\’ is reducible if and only if x =:
Xwg,r € Xwp/p+ Xwp,r StaL, XA" has two tempered subquotients.

7.2.2. Lg(| |* x Stary; A), a > 0.

THEOREM 7.16. — Let x be a unitary character of E* such that x ¢ XNp, p(B)-
Lg(| |* x StgL,; A") is non-unitary for all a > 0.

Proof. —If x ¢ Xn,,.(5+), the representations Lg(| [* xStgr,;A") are not
hermitian. g

THEOREM 7.17. — (1) Let 0 < w < 1/2. Lg(| |* Star,; \') Is unitary.
(2) Let ao> 1/2. Lg(| |* StgL,; A') is non-unitary.

Proof. —

(1) Let 0 < a < 1/2. The representations | |* Stgr, XA’ are irreducible
by Theorem 5.5. They form a continuous one-parameter family of ir-
reducible hermitian representations, that, similar as in Theorem 7.4, we
realize on the same vector space V. Stgr, X\ is irreducible by Proposi-
tion 5.6 and tempered, hence unitary. By Remark 3.1 the representations
| |* Stgr, XN = Lg(| |* Stgr,; ') are unitary for 0 < o« < 1/2. By
Theorem 5.5 | [/2 Stqp, x\ is reducible. By [14] Lg(] |/? Stgr,; \) is
unitary.

(2) Let 1/2 < o < 3/2. The representations | |* Stgr, XA’ are irreducible
by Theorem 5.5 and equal to their Langlands quotient Lg(| |* Stgr,; ).
They form a continuous 1-parameter family of irreducible hermitian rep-
resentations, that we realize on the same vector space V. For a = 3/2,
Lg(| [3/? Star,; \') is a subquotient of the representation | |2 1x | |* 1 x X
(Theorem 6.2). By results of Casselmann [2], page 915, it is non-unitary.
By [14] and Remark 3.1 Lg(] |* Stgr,; \') is not unitary for 1/2 < o < 3/2.

The representations Lg(| |* Star,;A'), o > 3/2, form a continuous 1-
parameter family of irreducible hermitian representations. If there existed
a > 3/2 such that Lg(] |* Stqr,;A’) was unitary, then by Remark 3.1
Lg(] |* Stgr,;A') would be unitary for all « > 3/2, in contradiction to
Lemma 3.3. (Figure 7.9, page 138). O

THEOREM 7.18. — Let Xuwy,p € X

weype Let a>1/2. L] |* Xwp, » Star,; A)
is non-unitary.

Proof. — Let 1/2 < a < 1. | |* Xwp,, Star, ¥\ is irreducible by Theorem
5.5 and equal to its own Langlands quotient Lg(| [* Xwg,r Star,; A'). For a = 1,
by Theorem 6.4 | | Xy, StaL, A" is reducible, by Remark 4.7 in [7], Lg(| |
Xwg,r StGLy; A') is non-unitary. By [14] and Remark 3.1 Lg(| [* Xwp,/» Star,; A') is
not unitary for 1/2 < o < 1.

Let @ > 1. | [* Xwp,» Star, ¥A" is irreducible by Theorem 5.5 and equal to its
own Langlands quotient Lg(| [* Xwy,» Star,;A'). If there existed a > 1 such that
Leg(| |* Xwg,r StaL,; A') was unitary, then by Remark 3.1 Lg(| |* Xwg,» Star,; A)
would be unitary for all @« > 1, in contradiction to Lemma 3.3. (Figure 7.10,
page 138) O
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a2
9 — reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
- irreducible non-unitary subquotient
1 - irreducible unitary subquotient
Lg(] |* StaLy; A)

1 2 ay
Figure 9

FIGURE 7.9. Let aj,as > 0. Figure 9 shows lines and points
of reducibility of the representation | [** 1x | [*2 1 x X. For
0 < a < 1/2, Lg(|] |* Stgr, »A’) is unitary, for a > 1/2 it is
non-unitary.

(%)

3/2

— reducible; irreducible subquotients non-unitary
- irreducible non-unitary subquotient

1 / - irreducible unitary subquotient
1/2 N

Le(l 1 Xwpg /g StaLyi A)

1/2 1 3/2 a1
Figure 10

Ficure 7.10. Let aq,a2 > 0, let xwy,, € Xwpy,p- Figure 10
shows lines and points of reducibility of the representation | |*
XUJE/F X ‘ |a2XWE/F X )\/' Let o > 1/2 Lg(‘ ‘a XUJE/F StGL2;)‘/) is
non-unitary.

Remark 7.19. — Let 0 < o < 1/2. Then | |[* Xup,, Star, ¥\ is irreducible by
Theorem 5.5 and equal to its own Langlands quotient Lg(| |* Xwy, » StcLy;A).
If we assume that | |!/2 Xwg,r StaL, XA’ is irreducible and equal to Lg(| |1/2
Xwg,r StGL,; A'), see Remark 6.5, then we can extend the argument that Lg(| |

Xwp,r StGL,; ') is non-unitary to a > 0.

THEOREM 7.20. — Let x1,. € Xi,..
Let 0 < o < 1/2. Then Lg(| |* X1~ StaL,; \') is unitary.
Let a > 1/2. Then Lg(| |* x1,. StaL,;A’) Is non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.17. See Figure 7.11 on
page 139. O
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(%)

— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary

- irreducible non-unitary subquotient

- irreducible unitary subquotient

Le(| 1% X1 Stany: A
1 2 ai
Figure 11

FIGURE 7.11. Let ag,a2 = 0, let x1,. € Xi,.. Figure 11 shows
lines and points of reducibility of the representation | |** x1,. X
| 1*2x1,. @ N. For 0 < a < 1/2, Lg(] |* X1, Star,;A’) is unitary,
for o > 1/2 it is non-unitary.

7.3. Representations induced from M, with cuspidal support in M;, not
fully-induced.

7.3.1. Irreducible subquotients of x X T, T tempered non-cuspidal of U(3), not fully-
induced. Recall that \'(det) Sty (s) is the unique square-integrable subquotient of
| | 1 XN [10]. Let Xuwg,, € Xup, - Let Tl xey,, denote the unique square-

integrable irreducible subquotient of | |1/2 Xwg,p XA Let x1,. € X1,.. We have
Xipe XX = Olxipe P02, where 011, and 02,x1,., are irreducible tempered
[10].

X (det) Sty (s), T Xy T o and 03y,  are all non-cuspidal tempered rep-
resentations of U(3) that are not fully induced [10].

Let x be a unitary character of E*. The representations x x A'(det) Sty (s),
XX T x o X O, and x X 02,x1,. are tempered, hence unitary. Hence all
their irreducible subquotients are tempered, hence unitary.

Remark 7.21. — By Proposition 5.8 x x X' (det) Sty (3) is reducible if and only if
x = 1lor x € Xy,.. By Proposition 5.10 x x Tl X 5 is reducible if and only if
X € Xip.. By Theorem 5.1 x % 01,,,, and X X 02, , are reducible if and only
if x € X1, but x 2 X1,

Let x1,. € X1, 1 x N (det)Sty(s), X1, % N(det)Stys), Xi1p. X T X
X X 01, and x X 02, ., where x € Xy,. but x & x1,., have two tempered
subquotients (Propositions 5.8, 5.10 and Theorem 5.1).

7.3.2. Lg(| |* x;7), @ > 0, 7 tempered non-cuspidal of U(3), not fully-induced.
Recall that X' (det) Sty (s) is the unique square-integrable subquotient of | | 1 x
N [10]. Let Xwp/p € Xuwg,p- Let 1 Yoy, denote the unique square-integrable
irreducible subquotient of | |*/2 Xwg,p XA Let x1,. € X1,.. We have x1,. x\' =

Olxi,. © 02y, , where o1, and 03y, _ are irreducible tempered [10].
/

A (det) StU(B)v ﬂl,XwE/Fv X1

resentations of U(3) that are not fully induced [10].

o1 and 02,y, , are all non-cuspidal tempered rep-
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THEOREM 7.22. — Let x ¢ Xn,,.(E*). Let a > 0. Lg(| |* x; N'(det) Sty s)),
Lg(] [* x,m ), Le(| |* x;01,x,,. ) and Lg(| |* x;02,y,,, ) are non-unitary.

’X“}E/F

Proof. — The representations Lg(| [* x ; A'(det) Stys)), Le(l [* x5 T15x,. )
Lg(| [ X;01,x,,. ) and Lg(| [* X;02,x, . ) are not hermitian, hence not unitary. [

Let X € XNE/F(E*) = 1UXWE/F UXIF*-

Let Xuwg,ps X;E/F € Xup,p» such that X;E/F # Xwp,p> and let X1,., X1,. €
X1, such that xj . # X1p.-

THEOREM 7.23. — (1) Let o> 1. Lg(] |* 1; X'(det) Styy(3)) is non-unitary.

(2) Let 0 <a < 1. Lg(| [* Ly, ) Le(l |* Loy, ), Le(l " o2, ),
Le(| 1* X1+ 0131, ) and Lg(] [* X1,.502,x, . ) are unitary.

(3) Let a > 1. Lg(| [* Limix,, )» Le(l 1* Loy, ), Le(l | ooy, ),
Lg(| [* X1pe301,5,.. ) and Lg([ |* X1,.;02,x,,, ) are non-unitary.

(4) Let 0 < a < 1/2. Lg(| |* Xwg,r; A'(det) Sty (s ), Le(] | XwE/F”TLXwE/F)f
Le(l 1% X3 T ) LBU Xy 0130,.) and Lg% Xeog/r5 02,x1,,.)
are unitary.

(5) Let o> 1/2. Then Lg(| [* Xwg,r; A'(det) Stus)), L 1% Xog i Tixey, )
Le(| 1% Xop)ri Txe ) L8 Xog,ri 01x0,..) and Lg(] [
are non-unitary.

(6) Let v > 0. Lg(] |* x1,-; N (det) Stys)), Lell [% Xaps Ty, )r Lell [
Xipe301xa,. ) and Lg(| [* X1,.;:02,x,,., ) are non-unitary.

Xwg/rp? UQ,XlF*)

Proof. —

(1) Let 1 < a < 2. By Theorem 5.7 | [* 1 x X (det) Sty (s) is irreducible
and equal to its Langlands quotient Lg(| [* 1; X' (det) Sty (s)). By [2] the
representation | [* 1 3 A (det) Sty(s) is reducible. By the same author
Lg(| [* 1; N (det) Sty (s)) is non-unitary. By [14] and Remark 3.1 Lg(| |
1; X'(det) Styy(3)) is non-unitary for 1 < o < 2.

Let o > 2. | [* 1 x N (det) Sty (s) is irreducible by Theorem 5.7 and
equal to its Langlands quotient Lg(] |* 1; X'(det) Sty (3)). By Remark 3.1
and Lemma 3.3, Lg(| |* 1; A (det) Sty (3)) is non-unitary for o > 2.

Let 0 < a < 1. We have no proof that Lg(| |* 1; X (det) Sty s)) is
non-unitary. (Figure 7.12, page 142).

(2) The representations 1 x Tl X e 1€ irreducible by Proposition 5.10, rep-
resentations 1 X o1y, 1 X 02y, X1pe X 01y, and X1,. X 02y, , are
irreducible by Theorem 5.1. All representations are unitary. For 0 < o < 1,
representations | [* 1 % T X e AX€ irreducible by Theorem 5.9, represen-
tations ‘ ‘Oé 1> Ul’le*’ | |a 1> 0'27X1F*7 | |a X1ps A 017X1F* and ‘ ‘Oé X1px X
02,x1,,. are irreducible by Theorem 5.11. The representations are equal
to their own Langlands quotients Lg(] |« 1;7T1’X“’E/F)7 Lg(| [* Lo1,x4,. ),
Le(| [* Loax,. ) Le(l " Xip; 01y, ) and Lg(] [* Xip 02, ), Te-
spectively. By Remark 3.1 these Langlands quotients are unitary. For
a=1 [ txm, o Lo [T oa o L X X001,

and | | X1,. X 02, ., reduce for the first time (Theorems 5.9 and 5.11).
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By [14] Le(| | Limixe, ) Lell | Loy, ) Le(l | Loy, ), Le(l |
Xip+i01,x1,. ) and Lg(| [* X1,.502,,,.) are unitary.

(3) For o > 1, representations | |* 1 xmy 1x0q *1x09

Xeg/p? | |a X1 | ‘ X1 g )
1% Xipe X O1x,. and | [* X1, X 02,y , are irreducible (Theorems
5.9 and 5.11) and equal to their Langlands quotients Lg(] | liwl,wa/F)’
Le(| [ Loy, ), Le(l 1™ Loz, ), Le(| [* X1pe301,x0,. ) and Lg(| |*
X1p=: 021 . ), respectively. By Remark 3.1 and Lemma 3.3 these Lang-
lands quotients are non-unitary.

(4) Representations ., ¥ A'(det) Sty (3), Xwp,» XL X0 XL'E/F XL X 0
Xwg,r X Olxi1 and Xwp,p X 02,x1,. are irreducible (Propositions 5.8,
5.10 and Theorem 5.1) and unitary. For 0 < « < 1/2, representations
1% Xeogyr 2 X (det) Stues)s |1 Xepr X Tixey o0 |1 X X e
| 1Y Xwgr ¥ Olxi,, and [ % Xwp, . X 02,y . are irreducible (Theo-
rems 5.7, 5.9 and 5.11) and equal to their Langlands quotients Lg(] |¢
XWE/F;A/(det) StU(?)))’ Lg(| |a XWE/F;’/T:LXLJE/F)7 Lg(| ‘a XK//JE/F;’/T:LXLJE/F)’
Lg(| ‘Oé XWE/F;O.1»X1F*) and Lg(| |a XWE/F;027X1F*)7 respectively. By Re-
mark 3.1 these Langlands quotients are unitary. For a = 1/2, | |/2
Xwg,p X N'(det) Sty sy, | |1/2 Xwg,r X T1 | M2 X T
| 12 Xep,r ¥ O1,x:,, and | M2 Xewgw ¥ 02,x,,, reduce for the first time
(Theorems 5.7, 5.9 and 5.11). Lg(| [*/2 Xy, 0 N (det) Stys)), Le(| /2
Xorm e Txwp, ) D8I Y2 Xop, niMiixey ) LU Y2 Xep,ri 01, ) and
Lg(] |1/2 XWE/F;O-27X1F*) are unitary by [14].

(5) For o > 1/2, representations | |* Xwg,» % N(det) Stye), | |* Xwp,r ¥
ﬂ-lewE/F’ | |a X‘;E/F NWLXWE/Fa | |a Xwg/r A01,x1 . and | |a Xwp/r N02,x1 .
are irreducible (Theorems 5.7, 5.9 and 5.11) and equal to their Langlands
quotients Lg(| |* Xwg,r; A'(det) Stus)), Lell [* Xeg,ri Tixuy,, ) L8|
Xop i Tlixewg,p )0 L8 Y Xepyri 01x1,. ) and Lg(| % Xewg) i 02,3, ) TE
spectively. By Remark 3.1 and Lemma 3.3 these Langlands quotients are
non-unitary.

(6) Let o > 0. The representations | |* x1,. x N (det)Sty(), | [* x1,. *

1Y X X 01xq,., and | [* XY, X 02, are irreducible (The-

/
XUJE/F

/
X, p Xwg/p X p

7r1’XWE/F
orems 5.7, 5.9 and 5.11) and equal to their Langlands quotients Lg(
X103 A (det) Stys)), Lell 1% Xapei Tixe,, ) LU 1" X105 010, ) and
Le(| |* X1,.:02x,.)- By Remark 3.1 and Lemma 3.3 these Langlands
quotients are non-unitary. O

"

7.4. Representations with cuspidal support in M;. Recall M; = GL(2, E) x
E'.

7.4.1. Lg(| |* m;N), o > 0, 7w a cuspidal unitary representation of GLa(E). Let
m be a cuspidal unitary representation of GLy(E). Let o > 0. Assume it exists
g € GL(2, E) such that 7(g) # 7((g")~!). Then the induced representations 7 x \’
and | |* m x X are irreducible.m x X\’ is unitary, | |* © x A’ is not hermitian for all
a > 0, hence not unitary.



142 C. Schoemann

(%)

— reducible; irreducible subquotients non-unitary

2 - irreducible non-unitary subquotient
Lg(] |* 1;,X (det) Sty (s))
1

1 2 a1
Figure 12

FIGURE 7.12. Let ay,as > 0. Figure 12 shows lines and points of
reducibility of the representation | [** 1x | |*2 1 x \. For a > 1,
Lg(] |* 1 x M (det) Sty (3)) is non-unitary.

Qa2

3/2

— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary

1 - irreducible unitary subquotient
Le(l 1% xwp, pi ™Kl )
1/2 N -

1/2 1 3/2 a1
Figure 13

FIGURE 7.13. Let aq, a0 2 0, let oy, € X - Figure 13 shows
lines and points of reducibility of the representation | [* xup . ¥
|12 Xwg,» XA Let T Xeogs 1 be the unique square-integrable sub-

quotient of | |1/2 Xwg,r ¥ A'. Then Lg(] | X"-’E/F;ﬂ-lvwa/F) is
unitary for 0 < a < 1/2. It is non-unitary for oo > 1/2.

Assume 7(g) = 7((g")~!) for all g € GLy(E). Then 7 is obtained by base change
lift from U(2) to GL(2, E), that is by endoscopic liftings from endoscopic data of
U(2) to data of GLy(E) [16].

Let G := U(2) and G = Resp,» G = GL(2, E).
Let Xwp,r € Xw Let “G be the L-group of G. Recall that o is defined to

E/F"*

be the non-trivial element of Gal(E, F). Let ¢ denote the F-automorphism of G

~

associated to o by the F-structure of G. Let I denote the absolute Galois group
of E, let Wr and Wg denote the Weil groups of F' and FE, respectively. Let pg



UNITARY REPRESENTATIONS OF P-ADIC U(5) 143

(%)

— reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
- irreducible non-unitary subquotient

- irreducible unitary subquotient

Lg(| |¢ X1 ‘711X1F* ), Le(] 1 X1 02’X1F* )
1 2 ay
Figure 14

FIGURE 7.14. Let aj,a2 = 0, let x1,. € Xi,.. Figure 14 shows
lines and points of reducibility of the representation | |** x1,. X
| [*2X1p. X A Let o > 0. Then Lg(| [* X1.,01,x,,.) and Lg(| [*
X1p+:02,x1,., ) are unitary for 0 < a < 1 and non-unitary for o > 1.

a2
Le(| 1% Xwp g3 A (det) Sty (s))
1 — reducible; irreducible subquotients non-unitary
— reducible; irreducible subquotients unitary
irreducible non-unitary subquotient
1/2 = "o~ = - irreducible unitary subquotient
Lg(] |* 1;7r1,><wE/F)

1/2 1 a1
Figure 15

FIGURE 7.15. Let ay, a2 2 0, let Xwy,» € Xy - Figure 15 shows
lines and points of reducibility of the representation | |[** 1x | |*2
Xwg,r X A Lg(] | 1;7T1’X“’E/F) is unitary for 0 < o < 1. It is
non-unitary for a > 1. Lg(| [* Xwy,»; A'(det) Sty (s)) is unitary for
0 < a < 1/2. Tt is non-unitary for o > 1/2.

denote an L-action of I" on G and let P, denote an L-action of I' on G. One fixes
We € WF\WE

LEMMA 7.24 ([16], 4.7). — Up to isomorphism, the base change problem for
U(2) consists of the endoscopic liftings from endoscopic data (G,%G,1,£) and
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Q2
Lg(| |% X1 s 3 X (det) Sty (s))
2 — reducible; subquotients non-unitary
— reducible; subquotients unitary
1 - irreducible non-unitary subquotient
- irreducible unitary subquotient
. Lg(] .‘.a 1 01’X1F* ), Le(l 171 JQ’XlF* )

1 2 ay
Figure 16

FIGURE 7.16. Let aj,a2 = 0, let x1,. € Xi,.. Figure 16 shows
lines and points of reducibility of the representation | [** 1x | |*2
Xipe XA Lg(] [* 101y, ) and Lg(] |* 1502, ) are unitary for
0 < a < 1 and non-unitary for o > 1. Lg(] [* x1,..; ' (det) Sty (s))
is non-unitary Ya > 0.

(&%)
Lg(l % X1 px Tl )
1 — reducible; subquotients non-unitary
— reducible; subquotients unitary
1 / 9 irreducible non-unitary subquotient
- irreducible unitary subquotient
. Lg(l'l.CY Xwp piolx1py ) LU Xog, piozx )

1/2 1 a1
Figure 17

FIGURE 7.17. Let aj,as > 0, let Xwg,p € XwE/p and x1,. €
X1,.. Figure 17 shows lines and points of reducibility of the rep-
resentation | [ Xwg, . X | [*2 X1 2 A Lg(| 1% Xewp)ri0i,.)
and Lg(| |* Xwp,pi02,x:,. ) are unitary for 0 < o < 1/2 and non-
unitary for a > 1/2. Lg(| |¢ XlF*vﬂl,wa/F) is non-unitary for all
a > 0.

(G, G, l’fwa/F) for ((N},E, 1) to G. Here

f:LGangGw»—)(g,g)NpaweLG

I (9Xwp) p (@).9Xwp o (€)X WE'G if WEWE
wa : G 99 >qpG w - G
E/F I . -
(9:—9)Xp, wo €LG if w=ws

G

£ is called standard base change and gwa/F is called twisted base change ([11]).
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Let Iiemp(G) be the set of equivalence classes of irreducible admissible tempered

~

representations of G. Let e, (G) be the set of equivalence classes of irreducible

admissible tempered representations of G. Let IT be a tempered L-packet of G,
then g(H)’gwa/p (IT) € Itemp(G).

2,
7((g*) 1) for all g € GL(2, E), then 7 = o) (IT) or m = &(II) ([1

As before let m be a cuspidal unitary representation of GL(2,E). If n(g) =
6

, 4.2]).
Let 7 be a cuspidal unitary representation of GLa(E).
(1) If 7 = waE/F (IT), then 7 x X is reducible ([11, 4.2]; [4, 6.2]). 7 x X

71(m) + T2(7), where 71(7) and 7»(7) are irreducible tempered.

| |* 7 x X is irreducible and never unitarisable for a > 0 ([4, 6.3]).
(2) If w = &(ID), then m x X is irreducible ( [11, 4.2]; [4, 6.2]).
By results of Goldberg ([4, 6.3]) one has:

(a) | |* 7 = X is irreducible and unitarisable for 0 < o < 1/2.

(b) | [¥/? % X is reducible. One has | |'/2 7 x N = o + Lg(] |2 m; \),
where ¢ is a generic, non-supercuspidal and square-integrable subrep-
resentation, and Lg(| |/ 7; \') is unitary.

(c) | |* mx X is irreducible and never unitarisable for o > 1/2

We obtain the following.
THEOREM 7.25. — Let m = §XwE/p (IT), let o« > 0. Then

e Lg(| |* m; \') is non-unitary.
o mx N =7 (n) + m2(m), where 71 (7) and 7o(w) are irreducible tempered.

Let 7 = £(I0).

o Let 0 < aw< 1/2. Lg(] |* m, \') is unitary.
o Let a=1/2. Lg(| |2 7w, X) is unitary.

o Let o >1/2. Lg(| |* w, \’) is non-unitary.
e m x X is irreducible and unitary.
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