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UNITARY REPRESENTATIONS OF P-ADIC U(5)

CLAUDIA SCHOEMANN

Abstract. We study the parabolically induced complex representations of the unitary group
in 5 variables, U(5), defined over a p-adic field.

Let F be a p-adic field. Let E : F be a field extension of degree two. U(5) has three
proper standard Levi subgroups, the minimal Levi subgroup M0 ∼= E∗ × E∗ × E1 and the
two maximal Levi subgroups M1 ∼= GL(2, E) × E1 and M2 ∼= E∗ × U(3).

We consider representations induced from M0, representations induced from non-cuspidal,
not fully-induced representations of M1 and M2 and representations induced from cuspidal
representations of M1.

We determine the points and lines of reducibility and the irreducible subquotients of these
representations. Further we describe - except several particular cases - the unitary dual in
terms of Langlands quotients.

Contents

1. Introduction 94
2. Definitions 96
3. Previous Results 98
4. The representations of U(3) 99
4.1. The irreducible representations of U(3) 99
4.2. The irreducible unitary representations of U(3) 101
5. The irreducible representations of U(5) 102
5.1. Levi decomposition for U(5) 102
5.2. Representations with cuspidal support in M0, fully-induced 103
5.3. Representations induced from M1 and M2, with cuspidal support in

M0 106
6. ’Special’ Reducibility points of representations of U(5) with cuspidal

support in M0 111
6.1. | | 1× 1o λ′ 111
6.2. | |2 1× | | 1o λ′ 112
6.3. | |1/2 χωE/F× | |1/2 χωE/F o λ′ 113
6.4. | |3/2 χωE/F× | |1/2 χωE/F o λ′ 114
6.5. | | χωE/F × χωE/F o λ′ 116
6.6. | | χ1F∗ × χ1F∗ o λ′ 116
6.7. | | 1× | |1/2 χωE/F o λ′ 118
6.8. | | 1× χ1F∗ o λ′ 120
6.9. | |1/2 χωE/F × χ1F∗ o λ′ 121
6.10. | |1/2 χωE/F× | |1/2 χ′ωE/F o λ

′ 122
7. Irreducible unitary representations of U(5), in terms of Langlands

quotients 125

2020 Mathematics Subject Classification: 22E50, 11S85, 20G05, 20C99.
Keywords: Representations, unitary group, unitary, U(5), p-adic groups.

93



94 C. Schoemann

7.1. Representations with cuspidal support in M0, fully-induced 125
7.2. Representations induced from M1, with cuspidal support in M0, not

fully-induced 136
7.3. Representations induced from M2, with cuspidal support in M0, not

fully-induced 139
7.4. Representations with cuspidal support in M1 141
References 145

1. Introduction

Determining the irreducible and the unitary dual of a reductive algebraic group
is an important problem in representation theory, with numerous applications in
harmonic analysis and the theory of automorphic forms. The description of the
irreducible and the unitary dual of the unitary group U(n) over a non-archimedean
local field is a long-standing open question.

We study the parabolically induced complex representations of the unitary group
in 5 variables - U(5) - defined over a non-archimedean local field of characteristic
0, a p-adic field.

A similar example for the composition series for induced representations of SO(5)
over a p-adic field can be found in [12] and examples for unitary duals for groups of
low rank in [13] for SO(5) and in [15] for the simply connected split simple group
of type G2.

Let F be a p-adic field. Let E : F be a field extension of degree two. Let
Gal(E : F ) = {id, σ} be the Galois group. We write σ(x) = x for all x ∈ E. Let
E∗ := E \ {0} and let E1 := {x ∈ E | xx = 1}.
U(5) has three proper standard Levi subgroups, the minimal Levi subgroup

M0 ∼= E∗ × E∗ × E1 and the two maximal Levi subgroups M1 ∼= GL(2, E) × E1

and M2 ∼= E∗ × U(3).
We consider representations induced fromM0, representations induced from non-

cuspidal, not fully-induced representations of M1 and M2 and representations in-
duced from cuspidal representations of M1.

We determine the points and lines of reducibility of the representations of U(5),
and we determine the irreducible subquotients. Further we describe - except several
particular cases - the unitary dual in terms of Langlands quotients.

Tools of proof include intertwining operator methods by long Weyl group ele-
ments, the Jacquet restriction with respect to proper parabolic subgroups and the
Frobenius reciprocity. When inducing from cuspidal representations of GL(2, E)×
E1 methods of proof involve base change lift from U(2) to GL(2) ([16]) and the
poles and zeros of local Asai L-functions ([4]).

The irreducible complex representations of U(3) over a p-adic field obtained as
subquotients of parabolically induced representations have been classified by C. D.
Keys in [10], the irreducible complex representations of U(4) over a p-adic field
obtained as subquotients of parabolically induced representations by K. Konno in
[11].

In Section 1 we give some definitions. Section 3 lists results by previous authors
that will be used throughout the article. In Section 4 we give the classification of
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the irreducible non-cuspidal representations of U(3), as has been done in [10]. We
reassemble the results for the irreducible unitary representations.

In Section 5 we determine when the induced representations to U(5) are irre-
ducible. It is done for representations induced from the minimal Levi subgroup M0
and for non-cuspidal, not fully-induced representations of the two maximal Levi
subgroups M1 ∼= GL(2, E)× E1 and M2 ∼= E∗ × U(3).

For M1 this means that the representation of the GL(2, E)-part is a proper
subquotient of a representation induced from E∗ × E∗ to GL(2, E). For M2 this
means that the representation of the U(3)-part of M2 is a proper subquotient of a
representation induced from E∗ × E1 to U(3).

Representations of M0 are of the form | |α1
p χ1⊗ | |α2

p χ2 ⊗ λ′, where | |p denotes
the p-adic norm on E, α1, α2 ∈ R, χ1, χ2 are unitary characters of E∗ and λ′ is a
unitary character of E1. Reducibility of the induced representation | |α1

p χ1× | |α2
p

χ2 o λ′ depends on α1, α2 and on the two unitary characters χ1 and χ2.
Let NE/F (E) denote the norm map of E with respect to the field extension

E : F , then NE/F (x) = xx for all x ∈ E.
In Theorems 5.1, 5.2 and 5.4 we show that for α1, α2 ∈ R+, | |α1

p χ1× | |α2
p χ2oλ′

is reducible if and only if at least one of the following cases holds:

(1) | α1 − α2 |= 1 and χ1 = χ2,
(2) | α1 + α2 |= 1 and χ1(x) = χ−1

2 (x) ∀x ∈ E∗,
(3) ∃i ∈ {1, 2} s.t.αi = 1 and χi = 1,
(4) ∃i ∈ {1, 2} s.t.αi = 1/2 and χi | F ∗ 6= 1, but χi | NE/F (E∗) = 1,
(5) ∃i ∈ {1, 2} s.t.αi = 0 and χi 6= 1, but χi | F ∗ = 1.

Let χ be a unitary character of E∗. The condition that χ(x) = χ−1(x) for all
x ∈ E∗ is equivalent to the condition that χ | NE/F (E∗) = 1 and to the fact that
χ is a character of a type as in (3),(4) or (5) of the list above.

In 5.3 we consider representations induced from irreducible non-cuspidal repre-
sentations of M1 and M2 that are not fully-induced.

We consider | det |αp χStGL2 oλ′ and | det |αp χ1GL2 o λ′, where α ∈ R+, χ is a
unitary character of E∗, StGL2 is the Steinberg representation of GL(2, E), λ′ is a
unitary character of E1 and 1GL2 is the trivial representation of GL(2, E).

In Theorem 5.5 and in Proposition 5.6 we show that for α ∈ R+, | |αp χStGL2 oλ′
and | |αp χ1GL2 o λ′ are irreducible unless one of the following cases holds:

(1) α = 1/2 or α = 3/2 and χ = 1,
(2) α = 0, α = 1/2 or α = 1 and χ | F ∗ 6= 1, but χ | NE/F (E∗) = 1,
(3) α = 1/2 and χ 6= 1 but χ | F ∗ = 1.

We consider | |α χ o τ , where α ∈ R+, χ is a unitary character of E∗ and τ is an
irreducible non-cuspidal unitary representation of U(3) that is not fully-induced.
We consider all irreducible proper subquotients τ of representations induced to U(3)
from its unique proper Levi-subgroup M ∼= E∗ × E1, as classified in [10].

In Theorems 5.7, 5.9, 5.11 and in Propositions 5.8, 5.10 and Remark 5.14 we show
that these representations are irreducible unless one has a certain combination of
α ∈ {0, 1/2, 1, 3/2, 2} and χ = 1, or χ 6= 1 but χ | F∗ = 1, or χ | F ∗ 6= 1 but
χ | NE/F (E∗) = 1.
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In the case of reduciblility the irreducible subquotients are determined in the
course of Section 5. In several cases the irreducible subquotients are determined in
Section 6.

In Section 6 we treat several ’special’ reducibility points of representations in-
duced from the minimal parabolic subgroup P0 with Levi subgroupM0 ∼= E∗×E∗×
E1. In some cases the induced representation | |α1

p χ1× | |α2
p χ2o λ′ has more than

two irreducible subquotients, more precisely it has four irreducible subquotients.
If this is the case, then α1, α2 ∈ {0, 1/2, 1, 3/2, 2} and χi(x) = χ−1

i (x) for i = 1, 2
and for all x ∈ E∗. Then χi = 1, or χi 6= 1 but χi | F ∗ = 1, or χi | F ∗ 6= 1 but
χi | NE/F (E∗) = 1, for i = 1, 2.

We determine the irreducible subquotients in terms of Langlands quotients, and
we determine whether these Langlands quotients are unitary.

In Section 7 we give a classification of the irreducible unitary representations of
U(5) in terms of Langlands quotients. At first we consider the irreducible subquo-
tients obtained by induction from representations ofM0 and from non-cuspidal, not
fully-induced representations of M1 and M2 (the subquotients determined in Sec-
tion 5). We then consider the irreducible subquotients of representations induced
from cuspidal representations of M1 ∼= GL(2, E)× E1.

2. Definitions

Let F be a non-archimedean local field of characteristic 0, that is Qp or a finite
extension of Qp, where p is a prime number.

Let G be a connected reductive algebraic group, defined over F . Let V be a
vector space, defined over the complex numbers. Let π be a representation of G on
V . We denote it by (π, V ) and sometimes by π or V . Let (∼π,

∼
V ) denote the dual

representation of (π, V ).
Let E : F be a field extension of degree two, let Gal(E : F ) = {id, σ}. We write

σ(x) = x for all x ∈ E for the non-trivial element of the Galois group.
Let E∗ denote the group of invertible elements of E and E1 := {x ∈ E : xx = 1}.
Let NE/F ( ) denote the norm on E corresponding to the field extension E/F of

degree 2: NE/F (x) = xx for all x ∈ E. NE/F (E∗) ⊂ F ∗ and | F ∗/NE/F (E∗) |= 2.
Let ωE/F : F ∗ → C∗ be the unique non-trivial smooth character with ωE/F |

NE/F (E∗) = 1. Note that ωE/F is determined by local class field theory.
Let XωE/F be the set of characters χ of E∗ such that χ | F ∗ = ωE/F . Characters

in XωE/F are unitary.
Let X1F∗ be the set of characters χ of E∗ that are non-trivial and whose restric-

tion to F ∗ is trivial: χ 6= 1, χ | F ∗ = 1.
Let XNE/F (E∗) = {1} ∪XωE/F ∪X1F∗ . It exhausts all characters χ of E∗ trivial

on NE/F (E∗), that is verifying χ(x) = χ−1(x) for all x ∈ E∗.
Let Φ ∈ GL(n,E) be a hermitian matrix (that is Φt = Φ) and UΦ the unitary

group defined by Φ :

UΦ = {g ∈ GL(n,E) : gΦgt = Φ},

Let Φn = (Φij), where Φij = (−1)i−1δi,n+1−j and δab is the Kronecker delta.
Let ζ ∈ E∗ be an element of trace 0, that is tr(ζ) = ζ + ζ = 0.
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If n is odd, then Φn =


1
·
·
·

1
−1

1

 is hermitian. If n is even, ζΦn =


ζ
·
·
·

−ζ
ζ

−ζ

 is hermitian.

Denote by U(n) the unitary group corresponding to Φn if n is odd or to ζΦn
if n is even, respectively. It is quasi-split.

Let n be a positive integer. We will call Levi subgroup of U(n) a subgroup of
block diagonal matrices

M := {



A1 − 0
A2 |

. . .
Ak

B
tA
−1
k

|
. . .

0 − tA
−1
1


,

where Ai ∈ GLni(E) for 1 6 i 6 k, B ∈ U(m)} and m,n1, . . . , nk are strictly
positive integers such that m+ 2

∑k
i=1 ni = n. (If k = 0, then there are no ni and

M = U(n).)
It is canonically isomorphic to the product GL(n1, E)×· · ·×GL(nk, E)×U(m).

We choose the corresponding parabolic subgroup P such that it contains M and
the subgroup of upper triangular matrices in U(n). We call a parabolic subgroup
P that contains the subgroup of upper triangular matrices standard. Let N be the
unipotent subgroup with identity matrices for the block diagonal matrices of M ,
arbitray entries in E above and 0′s below. Then one has the Levi decomposition
P = MN .

We consider representations of the Levi subgroups and extend them to repre-
sentations of P by trivial extension to the unipotent subgroup N . We perform
normalized parabolic induction to the whole group U(n).

Let πi, i = 1, . . . k, be smooth admissible representations of GL(ni, E) and
σ a smooth admissible representation of U(m). Let π1 ⊗ . . . ⊗ πk ⊗ σ denote
the representation of M = GL(n1, E) × . . . × GL(nk, E) × U(m) and denote by
π := IndU(n)

P (π1 ⊗ . . . ⊗ πk ⊗ σ) = π1 × . . . × πk o σ the normalized parabolically
induced representation, where P is the corresponding standard parabolic subgroup
containing M .

Let π be an irreducible representation of GL(n,E). Then there exist irreducible
cuspidal representations ρ1, ρ2, . . . , ρk of general linear groups that are, up to iso-
morphism, uniquely defined by π, such that π is isomorphic to a subquotient of
ρ1×· · ·×ρk. The multiset of equivalence classes (ρ1, . . . , ρk) is called the cuspidal
support of π. It is denoted by supp(π).

Let n ∈ N and let τ be an irreducible representation of U(n). Then there
exist irreducible cuspidal representations ρ1, . . . , ρk of general linear groups and an
irreducible cuspidal representation σ of some U(m) that are, up to isomorphism
and replacement of ρi by ρ−1

i (−) for some i ∈ {1, . . . , k}, uniquely defined by τ ,
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such that τ is isomorphic to a subquotient of ρ1× · · · × ρk o σ. The representation
σ is called the partial cuspidal support of τ and is denoted by τcusp.

For a parabolically induced representation π of G let sP (π) and smin(π) denote
the Jacquet restrictions with respect to the parabolic subgroup P and with
respect to the minimal parabolic subgroup, respectively ([8]).

Let π be a smooth representation of finite length of G. Then π̂ denotes the
Aubert dual of π, as defined in [1].

Let E2(G) be the set of equivalence classes of irreducible square-integrable rep-
resentations of G.

Let Hom(M,C∗)n.r. denote the group of unramified characters of M .
Let R(U(n)) be the Grothendieck group of the category of admissible represen-

tations of finite length of U(n) and let R(U) := ⊕
n>0

R(U(n)).

We define the R-group, a subgroup of the Weyl groupW of G. Let λ be a charac-
ter of the minimal Levi subgroup M0, and Wλ := {w ∈W : wλ = λ}. Let a(w, λ) :
IndU(5)

P (λ) → IndU(5)
P (wλ) be the intertwining operator of IndG

P (λ) corresponding
to w, where wλ(m) := λ(w−1mw). Let W ′ := {w ∈ Wλ : a(w, λ) is scalar}. Then
Wλ = RnW ′ ([9]).

3. Previous Results

We list results by previous authors that will be used throughout the article.
The group U(3) has one proper parabolic subgroup P with the Levi subgroup

M ∼= E∗×E1. For a smooth character λ ∈ Hom(M,C∗) there exist unique smooth
characters λ1 ∈ Hom(E∗,C∗) and λ′ ∈ Hom(E1,C∗) such that λ ∼= λ1 ⊗ λ′.

By [10] the induced representation IndU(3)
P (λ) is irreducible except in the follow-

ing cases:
(1) λ1 =| |±1

E

(2) λ1 =| |±1/2
E χωE/F , where χωE/F ∈ XωE/F ,

(3) λ1 = χ1F∗ , where χ1F∗ ∈ X1F∗ .
Note that in 1. and 2. changing the sign of the exponent is equivalent to replacing
λ by wλ, where w ∈W is the non-trivial element of the Weyl group. Thus the sign
of the exponent does not affect the set of irreducible constituents. We give the clas-
sification for positive exponent, for negative exponent the irreducible constituents
exchange roles.

The classification does not depend on λ′.
In the first case IndU(3)

P (λ) has exactly two constituents, the character ψ :=
λ′ ◦det and the square-integrable subrepresentation StU(3) ·ψ. Both ψ and StU(3) ·ψ
are unitary.

In the second case IndU(3)
P (λ) has exactly two constituents, a square-integrable

(and hence unitary) representation π1,χωE/F and a non-tempered unitary represen-
tation π2,χωE/F .

In the third case IndU(3)
P (λ) decomposes into the direct sum σ1,χ1F∗

⊕ σ2,χ1F∗
.

The two constituents σ1,χ1F∗
and σ2,χ1F∗

are tempered, hence unitary.
Let G be a connected reductive group defined over a p-adic field. Let (π, V )

be a representation of G, for a finite dimensional vector space V . The following
construction is given in [18]:
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Remark 3.1. — Assume one has, on the same vector space V , a continuous family
of induced irreducible representations (πα, V ), α ∈ X, where X is a connected set,
that posses non-trivial hermitian forms (invariant under G). Suppose that some πα
is unitary. If a family of non-degenerate hermitian forms on a finite dimensional
space, parametrised byX, is positive definite at one point ofX, it is positive definite
everywhere. Hence πα is unitary for all α ∈ X.

Remark 3.2. — One may reduce the argument to finite dimensional spaces by
considering spaces ⊕V (δ), where δ runs over fixed finite subsets of the irreducible
unitary representations of the maximal compact subgroup of G.

Let M be a Levi subgroup of G and let π be an irreducible representation of M .
The Lemma 5.1(i) of [15] is a special case of Theorem 4.5 in [17]:

Lemma 3.3. — The set of all σ ∈ Hom(M,C∗)n.r. such that IndG
P (σ ⊗ π) has

an irreducible unitary subquotient is compact.

Let λ ∈ Hom(M0,C
∗). By [9] Corollary 1, the number of inequivalent irreducible

components of IndGP (λ) equals the number of conjugacy classes in R.
Let G :=

[
U(2n)
U(2n+1) be the unitary group in 2n or 2n+ 1 variables, respectively.

For m 6 n let G(m) :=
[
U(2m) if G=U(2n)
U(2m+1) if G=U(2n+1) . By convention G(0) = U(1).

Let σi ∈ E2(GLni(E)), i = 1, 2, . . ., and ρ ∈ E2(G(m)).

Theorem 3.4 ([5], Thm. 3.4). — Let G = U(2n) or U(2n+1). Let P = MN be
a parabolic subgroup of G. Suppose thatM ∼= GL(n1, E)× . . .×GL(nr, E)×G(m).
Let σ ∈ E2(M), with σ ∼= σ1 ⊗ . . . ⊗ σr ⊗ ρ. Let d be the number of inequivalent
σi, such that IndG(m+ni)

GLni ×G(m)(σi ⊗ ρ) reduces. Then R ∼= (Z/2Z)d.

We have Lemma 2.1 of [19]:

Lemma 3.5 ([19]). — Let π be an irreducible representation of U(m) and let ρ be
an irreducible cuspidal representation of a general linear group GL(p, F ). Suppose

(1) ρ 6= ∼ρ(−).
(2) ρo πcusp is irreducible.
(3) ρ× ρ′ and ∼ρ(−)× ρ′ are irreducible for any factor ρ′ of π.
(4) Neither ρ nor ∼ρ(−) is a factor of π.

Then ρo π is irreducible.

4. The representations of U(3)

4.1. The irreducible representations of U(3). Let P be the unique standard
proper parabolic subgroup of U(3), M the standard Levi subgroup and N the
unipotent radical corresponding to P . Then P = MN is the parabolic subgroup of
U(3) defined in Section 2 for m = k = n1 = 1. We have

M =
{(

x 0 0
0 k 0
0 0 x−1

)
, x ∈ E∗, k ∈ E1}, N = {

( 1 α β
0 1 α
0 0 1

)
, α, β ∈ E,αα = β + β

}
and

P = MN =
{(

x 0 0
0 k 0
0 0 x−1

)( 1 α β
0 1 α
0 0 1

)
=
(
x xα xβ
0 k kα
0 0 x−1

)
,
x ∈ E∗, k ∈ E1,

α, β ∈ E, αα = β + β

}
.
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For a smooth character λ ∈ Hom(M,C∗) there exist unique smooth characters
λ1 ∈ Hom(E∗,C∗) and λ′ ∈ Hom(E1,C∗) such that

λ
( ( x 0 0

0 k 0
0 0 x−1

) )
= λ1(x)λ′(xx−1k), ∀x ∈ E∗,∀k ∈ E1.

Remark 4.1. — (1) Every smooth character of E∗ can be written in the form
λ1(x) =| x |α1 χ1(x), with α1 ∈ R and χ1 a unitary character.

(2) λ′ : E1 → C∗ is smooth and E1 is a compact group, hence λ′ is unitary.
These are all characters of M . We extend λ from M to P , by taking λ | N = 1.
We induce parabolically from P to U(3) and obtain

π := IndU(3)
P (λ) = IndU(3)

P (λ1 ⊗ λ′) =: λ1 o λ′.
The complex vector space V of the representation π is defined as follows:

V :=
{
f : U(3)→ C : f smooth and f(mng) = δ

1/2
P (m)λ(m)f(g)

∀m ∈M, ∀n ∈ N, ∀g ∈ U(3)

}
.

Here δ1/2
P is the modulus character, and π acts on V by right translations.

Let α ∈ R∗+ and χ be a unitary character of E∗. Let λ′ be a character of E1. Let
λ =| |α χ⊗λ′ be a character of the Levi subgroupM and | |α χoλ′ the parabolically
induced representation to U(3). Then | |α χo λ′ has a unique irreducible quotient
denoted by Lg(| |α χo λ′), the Langlands quotient.

Let T := {
( x

1
x−1

)
, x ∈ F ∗} be the maximal split torus over F .

Let N(T ) be the normaliser and C(T ) the centraliser of T in U(3), respectively.
The Weyl group is W := N(T )/C(T ) ∼= Z/2Z.
By [10] the induced representation IndU(3)

P (λ) is irreducible except in the three
cases:

(1) λ1 =| |±1
E ,

(2) λ1 =| |±1/2
E χωE/F ,

(3) λ1 = χ1F∗ .
In the first case IndU(3)

P (λ) has exactly two constituents, the unitary character
ψ := λ′ ◦ det = Lg(λ1;λ′) and the square-integrable (hence unitary) subrepresen-
tation StU(3) ·ψ.

In the second case IndU(3)
P (λ) has exactly two constituents, a square-integrable

(hence unitary) representation π1,χωE/F and a non-tempered unitary representation
π2,χωE/F = Lg(λ1;λ′).

In the third case IndU(3)
P (λ) decomposes into the direct sum σ1,χ1F∗

⊕ σ2,χ1F∗
.

The two constituents σ1,χ1F∗
and σ2,χ1F∗

are tempered, hence unitary.

Remark 4.2. — π2,χωE/F is unitary: Let χωE/F ∈ XωE/F . χωE/Foλ′ is irreducible
and unitary, | |α χωE/F oλ′ is irreducible and unitary for α ∈ (0, 1/2), by Theorem
4.6, (1.3). By [14] the irreducible subquotients πχ1,χωE/F

and π2,χωE/F of | |1/2

χωE/F o λ′ are unitary. See Theorem 4.6.
Remark 4.3. — σ1,χ1F∗

and σ2,χ1F∗
are tempered: In the third case λ1 =: χ1F∗ ∈

X1F∗ . Since χ1F∗ is square-integrable, χ1F∗ o λ′ is tempered and so are its con-
stituents.
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We obtain the following

Corollary 4.4. — If λ1 o λ′ is reducible there are always two distinct irre-
ducible subquotients. They are unitary.

4.2. The irreducible unitary representations of U(3).

Proposition 4.5. — The following list exhausts all irreducible hermitian rep-
resentations of U(3) supported in its parabolic subgroup P . Let α > 0, and let χ
be a smooth unitary character of E∗.

(0) χo λ′, χ /∈ X1F∗ , σ1,χ1F∗
, σ2,χ1F∗

as introduced above, tempered,
(1) λ′(det) = Lg(| | 1;λ′), π2,χωE/F = Lg(| |1/2 χ;λ′), for χ ∈ XωE/F non-

tempered, unitary,
(2) λ′(det) StU(3), π1,χωE/F square-integrable,
(3) | |α 1o λ′, α 6= 1; | |α χo λ′, α 6= 1/2, χ ∈ XωE/F ; | |α χo λ′, χ ∈ X1F∗ .

Proof. — Representations of (0), (1) and (2) are unitary, hence hermitian.
If for α > 0, | |α χ o λ′ is reducible, all subquotients are hermitian and part of

the list.
For (3), let | |α χoλ′, α > 0, be irreducible. By [3], 3.1.2, | |α χoλ′ ∼=

∼
| |α χo λ′

iff w(| |α χ⊗ λ′) ∼=
∼

| |α χ⊗ λ′ for the non-trivial element w of W .

We have
∼

| |α χ⊗ λ′ =| |−α χ ⊗ λ′ = w(| |α χ ⊗ λ′) =| |−α χ−1(−) ⊗ λ′ ⇔ χ ∼=
χ−1(−), that is χ ∈ XNE/F . �

For α ∈ R∗+, let πα =| |α χ o λ′ be a representation of U(3) and V be the
corresponding vector space. We give, on the same vector space V , a family of
U(3)-invariant hermitian forms, parametrised by α ∈ R∗+:

〈 , 〉α : V × V → C, (f, h) 7→
∫

U(3,O)

A(w, λ)f(k)h(k)dk.

w is the non-trivial and the longest element of W , and A(w, λ) : | |α χo λ′ →| |−α
χ−1(−)oλ′ is the intertwining operator for | |α χoλ′ corresponding to w. O is the
ring of integers of E. For α ∈ R∗−, one can equivalently define such an intertwining
operator.

Let α ∈ R and χ be a smooth unitary character of E∗. Like before we set
λ = λ1 ⊗ λ′, where λ1 =| |α χ.

If IndU(3)
P (λ) reduces we have seen that all subquotients are unitary.

Theorem 4.6. — (1) IndU(3)
P (λ) is irreducible and unitary if and only if

(1.1) χ /∈ X1F∗ and α = 0,
(1.2) χ = 1 and α ∈]− 1, 0[∪]0, 1[,
(1.3) χ ∈ XωE/F and α ∈]− 1/2, 0[∪]0, 1/2[.

(2) IndU(3)
P (λ) is irreducible and non-unitary if and only if

(2.1) χ1 6= 1, χ1 /∈ XωE/F ∀α ∈ R∗.
(2.2) χ1 = 1 and α ∈]−∞,−1[∪]1,∞[,
(2.3) χ1 ∈ XχωE/F

and α ∈]−∞,−1/2[∪]1/2,∞[.
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Proof. — We use Remark 4.1 1.
(1.1)⇐) If α = 0, then λ = χ ⊗ λ′ is unitary, hence IndU(3)

P (λ) is unitary. The
representation IndU(3)

P (λ) is irreducible unless χ ∈ X1F∗ [10].
(1.2) and (1.3)⇐: For α = 0 and χ = 1 or χ ∈ XωE/F , IndU(3)

P (λ) is irreducible
and unitary, hence by Remark 3.1 IndU(3)

P (λ) is unitary for χ = 1 and α ∈]− 1, 1[
and for χ ∈ XωE/F and α ∈]− 1/2, 1/2[. The hermitian forms are given above.

If α 6= 0 and χ /∈ XNE/F (E∗), IndU(3)
P (λ) is irreducible and not hermitian and

hence not unitarisable.
It remains to show that IndU(3)

P (λ) is non-unitary if α ∈ R∗ and χ ∈ X1F∗ (if
α = 0 and χ ∈ X1F∗ then IndU(3)

P (λ) is reducible). Further it remains to show that
IndU(3)

P (λ) is non-unitary if χ = 1 and α ∈]−∞,−1[∪]1,∞[ and if χ ∈ XωE/F and
α ∈]−∞,−1/2[∪]1/2,∞[.

This will show (1)⇒ and (2)⇐; (2)⇒ is shown by (1)⇐.
We use the Lemma 3.3, here | |α ⊗ 1 ∈ Hom(M,C∗)n.r. and χ ⊗ λ′ is an

irreducible representation of M .
(1)⇒ and (2)⇐: IndU(3)

P (λ) is irreducible for χ = 1 and α ∈]1,∞[ (or α ∈
] −∞,−1[, or for χ ∈ XωE/F and α ∈] −∞,−1/2[∪]1/2,∞[, or for χ ∈ X1F∗ and
α ∈ R∗, respectively). If there existed α ∈]1,∞[ (or in one of the other intervals or
in R∗, respectively) such that | |α χ o λ′ is unitary, with χ chosen appropriately,
then by Remark 3.1 all representations | |α χo λ′ with α ∈]1,∞[ (or in one of the
other intervalls or in R∗) would be unitary, in contradiction to Lemma 3.3. �

The induced representations of U(4) over a p-adic field have been classified by
K. Konno [11].

5. The irreducible representations of U(5)

5.1. Levi decomposition for U(5). Recall the Levi decomposition P = MN ,
where P is a standard parabolic subgroup,M is the standard Levi subgroup corre-
sponding to P and N is the unipotent subgroup corresponding to P and to M .

The standard Levi subgroups of U(5) are the following three:

M0 := E∗ × E∗ × E1 (the Levi-group corresponding to the
minimal parabolic subgroup),

M1 := GL(2, E)× E1 and
M2 := E∗ × U(3) (the two Levi-groups corresponding to the

maximal parabolic subgroups).

We obtain the parabolic subgroups

P0 = M0N0 = {

 x ∗
y
k
y−1

0 x−1

 , x, y,∈ E∗, k ∈ E1, ∗ ∈ E} ∩ U(5),

P1 = M1N1 = {
( a ∗

k
0 a−1

)
, a ∈ GL(2, E), k ∈ E1, ∗ ∈ E} ∩ U(5), and

P2 = M2N2 = {
( x ∗

u
0 x−1

)
, x ∈ E∗, u ∈ U(3), ∗ ∈ E} ∩ U(5).
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5.2. Representations with cuspidal support in M0, fully-induced. The ir-
reducible representations of M0 are characters. Let λ1, λ2 ∈ Hom(E∗,C∗) and
λ′ ∈ Hom(E1,C∗) be smooth characters. One may write λi =| |αiE χi, i = 1, 2,
where αi ∈ R and χi is a unitary character of E∗. λ′ is unitary.

Then each character λ of M0 can be written as
λ(m) =| x |α1

E χ1(x) | y |α2
E χ2(y)λ′(xx−1yy−1k),

m =

 x 0
y
k
y−1

0 x−1

 , x, y ∈ E∗, k ∈ E1.

By λ := λ1 ⊗ λ2 ⊗ λ′ we denote the characters of M0 and by λ1 × λ2 o λ′ :=
IndU(5)

P (λ1 ⊗ λ2 ⊗ λ′) the induced representations to U(5).
We start with the case where λ1 = χ1 and λ2 = χ2 are unitary characters, i.e.

α1 = α2 = 0.

5.2.1. Irreducible subquotients of χ1 × χ2 o λ′. Let P0 be the minimal parabolic
subgroup of U(5) (the upper triangular matrices in U(5)) with Levi subgroup M0
and unipotent subgroup N0, such that P0 = M0N0).

Theorem 5.1. — Let χ1, χ2 be unitary characters of E∗ and let λ′ be a (uni-
tary) character of E1.

The induced representation χ1 × χ2 o λ′ is reducible if and only if there exists
i ∈ {1, 2} such that χi ∈ X1F∗ .

Proof. — By [9] Corollary 1, the number of inequivalent irreducible components
of IndU(5)

P0
(λ) equals the number of conjugacy classes in the R-group. We apply

the Theorem 3.4 with G = U(5), P = P0 the minimal parabolic subgroup and
M = M0 ∼= GL1(E)×GL1(E)×G(0) ∼= E∗ × E∗ × E1.

Then σ1 = χ1, σ2 = χ2, and ρ = λ′.
Recall that for a unitary character χ of E∗, χ o λ′ is reducible if and only if

χ ∈ X1F∗ . Then χo λ′ = σ1,χ ⊕ σ2,χ, where σ1,χ and σ2,χ are tempered.
By the Theorem 3.4, for λ = χ1 ⊗ χ2 ⊗ λ′ and W ∼= S2 × (Z/2Z)2 the integer d

may equal 0, 1 or 2.
(0) Let d = 0. χi o λ′, i ∈ {1, 2} is irreducible for i ∈ {1, 2}, and R ∼= {1},

χ1 × χ2 o λ′ is irreducible and unitary.
(1) Let d = 1. Then there exist i, j ∈ {1, 2}, i 6= j, such that χi ∈ X1F∗ and

χj /∈ X1F∗ or χi ∈ X1F∗ and χj ∼= χi. Hence R ∼= Z/2Z, and χ1 × χ2 o λ′
has two irreducible inequivalent constituents: χj o σ1,χi and χj o σ2,χi .
They are tempered and hence unitary.

(2) Let d = 2, χ1 and χ2 are two inequivalent characters and χi ∈ X1F∗ for
i = 1, 2.

R ∼= (Z/2Z)2, and χ1×χ2oχ′ has four irreducible inequivalent unitary constituents.
By [5, Theorem 4.3] they are tempered and elliptic. �

5.2.2. Irreducible subquotients of | |α1 χ1× | |α2 χ2 o λ′, α1, α2 > 0 and of | |α
χ1 × χ2 o λ′, α > 0. Let M0 ∼= E∗ × E∗ × E1 be the minimal Levi subgroup, and
let P0 = M0N0 be the corresponding minimal parabolic subgroup.

Let λ := λ1 ⊗ λ2 ⊗ λ′ =| |α1 χ1⊗ | |α2 χ2 ⊗ λ′ be a character of M0, where
α1, α2 ∈ R and χ1, χ2 are unitary characters of E∗.
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Let α1 > α2 > 0. If α2 > α1 we change parameters. The case α2 = 0 is treated
seperately.

Recall that XωE/F is the set of characters of E∗ whose restriction to F ∗ is the
character ωE/F , that is whose restriction to F ∗ is non-trivial on F ∗ but trivial on
NE/F (E∗). X1F∗ is the set of non-trivial characters of E∗ whose restriction to F ∗ is
trivial. XNE/F (E∗) = 1∪XωE/F ∪X1F∗ . The set XNE/F (E∗) contains all characters
χ of E∗ satisfying χ(x) = χ−1(x). They are unitary.

From now on, the lack of an entry at position ij in a matrix means that the
entry equals 0.

Theorem 5.2. — Let χ1, χ2 be unitary characters of E∗ and let λ′ be a char-
acter of E1. Let α1, α2 ∈ R∗+ such that α1 > α2. Then

| |α1 χ1× | |α2 χ2 o λ′

is reducible if and only if at least one of the following conditions holds:
(1) α1 − α2 = 1 and χ1 = χ2,
(2) α1 + α2 = 1 and χ1(x) = χ−1

2 (x),
(3) α1 = 1 and χ1 = 1 or α1 = 1/2 and χ1 ∈ XωE/F ,
(4) α2 = 1 and χ2 = 1 or α2 = 1/2 and χ2 ∈ XωE/F .

Proof. — Let λ :=| |α1 χ1⊗ | |α2 χ2 ⊗ λ′ be a character of M0, and let

A(w, λ) : IndU(5)
P0

(λ) =
| |α1 χ1× | |α2 χ2 o λ′

→ IndU(5)
P0

(wλ) =
| |−α1 χ−1

1 (−)× | |−α2 χ−1
2 (−)o λ′

be a standard long intertwining operator for the representation | |α1 χ1× | |α2

χ2 o λ′.

Remark 5.3. — w =
(

1
1

1
1

1

)
is the longest element of the Weyl group, and

for m ∈M0 it is

wλ(m) := λ(
(

1
1

1
1

1

) x
y
k
y−1

x−1

( 1
1

1
1

1

)
) = λ(

 x−1

y−1

k
y
x

).

Hence IndU(5)
P0

(wλ) equals | |−α1 χ−1
1 (−)× | |−α2 χ−1

2 (−)o λ′.
If A(w, λ) is either not injective or not surjective it follows that IndU(5)

P0
(λ) is

reducible. The decomposition of the long intertwining operator into short operators
shows for which α1, α2 and unitary characters χ1 and χ2 the long intertwining
operator is not an isomorphism.

Let w1 :=
(

0 1
1 0

1
0 1
1 0

)
and w2 :=

(
1

1
1

1
1

)
.

We have

w =
(

1
1

1
1

1

)
=
(

0 1
1 0

1
0 1
1 0

)(
1

1
1

1
1

)(
0 1
1 0

1
0 1
1 0

)(
1

1
1

1
1

)
= w1w2w1w2.
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The following diagram gives the decomposition of A(w, λ).

| |α1 χ1× | |α2 χ2 o λ′
∼=→ | |α1 χ1× | |α2 χ2 o λ′

A(w2, λ) ↓ w2
| |α1 χ1× | |−α2 χ−1

2 (−)o λ′
A(w, λ) ↓ w A(w1, w2λ) ↓ w1

| |−α2 χ−1
2 (−)× | |α1 χ1 o λ′

A(w2, w1w2λ) ↓ w2
| |−α2 χ−1

2 (−)× | |−α1 χ−1
1 (−)o λ′

A(w1, w2w1w2λ) ↓ w1

| |−α1 χ−1
1 (−)× | |−α2 χ−1

2 (−)o λ′
∼=→ | |−α1 χ−1

1 (−)× | |−α2 χ−1
2 (−)o λ′.

If A(w, λ) is not an isomorphism, then at least one of the operators A(w2λ),
A(w1, w2λ), A(w2, w1w2λ) or A(w1, w2w1w2λ) is not an isomorphism.
A(w1, λ) is no isomorphism if and only if the induced representation | |α2 χ2oλ′

is reducible. This is the case if and only if α2 = 1 and χ2 = 1 or α2 = 1/2 and
χ2 ∈ XωE/F .
A(w1, w2λ) is no isomorphism if and only if the corresponding representation

| |α1 χ1× | |−α2 χ−1
2 (−) is reducible if and only if α1 + α2 = 1 and χ1(x) = χ−1

2 (x)
for all x ∈ E∗.
A(w2, w1w2λ) is no isomorphism if and only if | |α1 χ1 o λ′ is reducible if and

only if α1 = 1 and χ1 = 1 or α1 = 1/2 and χ1 ∈ XωE/F .
A(w1, w2w1w2λ) is no isomorphism if and only if | |−α2 χ−1

2 (−)× | |−α1 χ−1
1 (−)

is reducible if and only if α1 − α2 = 1 and χ1 = χ2.
In all other cases the short intertwining operators are holomorphic and isomor-

phisms, hence A(w, λ) is an isomorphism and the representation | |α1 χ1× | |α2

χ2 o λ′ is irreducible.
On the other hand, if at least one of the short intertwining operators is no

isomorphism, | |α1 χ1× | |α2 χ2 o λ′ is reducible by induction in stages; in these
cases we determine the irreducible constituents in Theorems 5.5, 5.7, 5.9, 6.2, 6.3,
6.4 and 6.6. �

Let α1 > α2 = 0.

Theorem 5.4. — Let χ1, χ2 be unitary characters of E∗, let λ′ be a (unitary)
character of E1. Let α1 ∈ R∗+. The induced representation

| |α1 χ1 × χ2 o λ′

is reducible if and only if
(1) α1 = 1 and χ1 = χ2,
(2) α1 = 1 and χ1(x) = χ−1

2 (x ),
(3) α1 = 1 and χ1 = 1 or α1 = 1/2 and χ1 ∈ XωE/F ,
(4) χ2 ∈ X1F∗ .

Proof. — (1)⇒: We apply the Lemma 3.5 ([19], Lemma 2.1) with π ∼= χ2 o λ′

and ρ ∼= | |α1 χ1.
If none of the four cases in Theorem 5.4 holds we are in the position to apply

Lemma 3.5, hence | |α1 χ1 × χ2 o λ′ is irreducible.
⇐: If at least one of the four cases holds, clearly | |α1 χ1×χ2oλ′ is reducible. �
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In those cases where | |α1 χ1 × χ2 o λ′, α > 0, is reducible, the irreducible
constituents will be investigated in 5.5, 5.8, 5.10 and in 5.11.

5.3. Representations induced from M1 and M2, with cuspidal support in
M0. We consider representations induced from the maximal parabolic subgroups
with Levi groups M1 and M2, whose cuspidal support is in M0 and that are not
fully induced. We begin with M1 = GL(2, E)× E1.

5.3.1. Representations | |α χStGL2 oλ′ and | |α χ1GL2 o λ′, α > 0. Let α ∈ R∗+
and χ be a unitary character of E∗. We study | |α χStGL2 oλ′ that is a subrepre-
sentation of the induced representation | |α+1/2 χ× | |α−1/2 χo λ′, and its Aubert
dual | |α χ1GL2 o λ′.

Theorem 5.5. — Let α ∈ R∗+ and χ be a unitary character of E∗. The repre-
sentations | |α χ(det) StGL2 oλ′ and | |α χ(det)1GL2 o λ′ are irreducible, unless one
of the following cases holds:

(1) α = 1/2 and χ ∈ XNE/F (E∗),
(2) α = 3/2 and χ = 1,
(3) α = 1 and χ ∈ XωE/F .

Proof. — In R(U) we have

| |α+1/2 χ× | |α−1/2 χo λ′ =| |α χStGL2 oλ′+ | |α χ1GL2 o λ′.

| |α χStGL2 oλ′ and | |α χ1GL2 o λ′ are dual in the sense of Aubert and have the
same number of irreducible constituents. We give the proof for | |α χStGL2 oλ′ as
subrepresentation of | |α+1/2 χ× | |α−1/2 χo λ′.

Let λ :=| |α+1/2 χ⊗ | |α−1/2 χ⊗ λ′, and let

A(w′, λ) : | |α χStGL2 oλ′ →| |−α χ−1(det) StGL2 oλ′

be the long intertwining operator for the representation | |α χStGL2 oλ′, where w′
is the longest element of W respecting M1 ∼= GL(2, E)× E1.

We have w′ :=
(

1 0
0 1

1
1 0
0 1

)
=
(

1
1

1
1

1

)(
0 1
1 0

1
0 1
1 0

)(
1

1
1

1
1

)
= w2w1w2.

The decomposition of A(w′, λ) into short intertwining operators gives informa-
tion for which α > 0 and unitary characters χ of E∗ this operator is an isomorphism.
The following diagram shows the decomposition of A(w′, λ), where i1 and i2 are
inclusions that depend holomorphically on α.

| |α χ(det) StGL2 oλ′
i1
↪→ | |α+1/2 χ× | |α−1/2 χo λ′

A(w2, λ) ↓ w2
| |α+1/2 χ× | |−α+1/2 χ−1(−)o λ′

A(w′, λ) ↓ w′ A(w1, w2λ) ↓ w1
| |−α+1/2 χ−1(−)× | |α+1/2 χo λ′

A(w2, w1w2λ) ↓ w2

| |−α χ−1(det) StGL2 oλ′
i2
↪→ | |−α+1/2 χ−1(−)× | |−α−1/2 χ−1(−)o λ′

If α 6= 1/2, A(w2, λ) is no isomorphism if and only if | |α−1/2 χo λ′ reduces, if and
only if α = 3/2 and χ = 1 or α = 1 and χ ∈ XωE/F .

If α = 1/2 and χ ∈ X1F∗ , then χo λ′ reduces.
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A(w1, w2λ) is no isomorphism if and only if | |α+1/2 χ× | |−α+1/2 χ−1(−) reduces,
if and only if α = 1/2 and χ ∈ XNE/F (E∗).
A(w2, w1w2λ) is no isomorphism if and only if | |α+1/2 χoλ′ reduces if and only

if α = 1/2 and χ = 1.
In all other cases A(w2, λ), A(w1, w2λ) and A(w2, w1w2λ) are holomorphic and

isomorphisms and A(w′, λ) is also an isomorphism. Hence the representations | |α
χ(det) StGL2 oλ′ and | |α χ(det)1GL2 o λ′ are irreducible.

If one of the three cases in Theorem 1.5 holds, reducibility of | |α χ(det) StGL2 oλ′
and | |α χ(det)1GL2 o λ′ has to be investigated. This is done in 5.8, 6.2, 6.4, 6.5
and in 6.6. �

5.3.2. Representations χStGL2 oλ′ and χ1GL2 o λ′. Let 0 < α2 6 α1, α > 0. Let
χ1, χ2, χ and χ′ be unitary characters of E∗. Let λ′ be a unitary character of
E1. Let χ /∈ X1F∗ (hence χ o λ′ is irreducible by [10]). Let τ1 be a tempered
representation of GL(2, E), let τ2 be a tempered representation of U(3) and let τ
be a tempered representation of U(5).

The representations

| |α1 χ1× | |α2 χ2 o λ′, | |α χ1 × χo λ′, | |α τ1 o λ′, | |α χ′ o τ2 and τ

have a unique irreducible quotient, the Langlands quotient, denoted by

Lg(| |α1 χ1; | |α2 χ2 λ
′), Lg(| |α χ1;χo λ′), Lg(| |α τ1;λ′), Lg(| |α χ′; τ2) and τ,

respectively.

Proposition 5.6. — Let χ be a unitary character of E∗, let λ′ be a (unitary)
character of E1. The representations χStGL2 oλ′ and χ1GL2 o λ′ are reducible if
and only if χ ∈ XωE/F .

Let χ =: χωE/F ∈ XωE/F . Let π1,χωE/F be the unique irreducible square-
integrable subquotient of | |1/2 χωE/F o λ′ [10]. Then

χωE/F 1GL2 o λ′ = Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) + Lg(| |1/2 χωE/F ;π1,χωE/F ),

χωE/F StGL2 oλ′ = τ1 + τ2,

where τ1 and τ2 are tempered such that τ1 = ̂Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and
τ2 = ̂Lg(| |1/2 χωE/F ;π1,χωE/F ). All subquotients are unitary.

Proof. — We consider the Jacquet restriction of χ1GL2 o λ′ with respect to the
minimal parabolic subgroup [8]:

smin(χ(det)1GL2 o λ′) = | |−1/2 χ⊗ | |1/2 χ⊗ λ′

+ | |−1/2 χ−1(−)⊗ | |1/2 χ−1(−)⊗ λ′

+ | |−1/2 χ⊗ | |−1/2 χ−1(−)⊗ λ′

+ | |−1/2 χ−1(−)⊗ | |−1/2 χ⊗ λ′.

Hence all subquotients of χ1GL2 o λ′ are non-tempered.
χStGL2 oλ′ and χ1GL2 o λ′ are subquotients of | |1/2 χ× | |1/2 χo λ′.
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For w =
(

1
1

1
1

1

)
we have

w(| |1/2 χ⊗ | |−1/2 χ⊗ λ′) =| |1/2 χ⊗ | |1/2 χ−1(−)⊗ λ′,

and | |1/2 χ× | |−1/2 χoλ′ and | |1/2 χ× | |1/2 χ−1(−)oλ′ have the same irreducible
constituents. Therefore we consider the reducibility of | |1/2 χ× | |1/2 χ−1(−)o λ′.

If χ /∈ XωE/F , then Lg(| |1/2 χ; | |1/2 χ−1(−);λ′) is the only non-tempered
Langlands quotient supported in | |1/2 χ⊗ | |1/2 χ−1(−)⊗ λ′. Hence χ1GL2 o λ′ =
Lg(| |1/2 χ; | |1/2 χ−1(−);λ′) is irreducible. χStGL2 oλ′ is irreducible by the Aubert
duality, it is tempered.

Let χ =: χωE/F ∈ XωE/F .

Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and Lg(| |1/2 χωE/F ;π1,χωE/F )

are the only non-tempered Langlands quotients supported in

| |1/2 χωE/F⊗ | |
1/2 χωE/F ⊗ λ

′.

χωE/F StGL2 oλ′ is tempered and so are its subquotients. Hence

Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and Lg(| |1/2 χωE/F ;π1,χωE/F )

are the subquotients of χωE/F 1GL2 o λ′. By the Aubert duality χωE/F StGL2 oλ′
has the two irreducible subquotients

τ1 := ̂Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and τ2 := ̂Lg(| |1/2 χωE/F ;π1,χωE/F ).

We consider the restriction of χωE/F StGL2 oλ′ with respect to the parabolic
subgroup P1 :

sP1(χωE/F StGL2 oλ′) = χωE/F StGL2 ⊗λ′ + χωE/F StGL2 ⊗λ′

+ | |1/2 χωE/F× | |
1/2 χωE/F ⊗ λ

′.

χωE/F StGL2 oλ′ is unitary, hence τ1 ↪→ χωE/F StGL2oλ′ and τ2 ↪→ χωE/F StGL2oλ′.
By Frobenius reciprocity,

sP1(τ1)� χωE/F StGL2 ⊗λ′ and sP1(τ2)� χωE/F StGL2 ⊗λ′.

Now χωE/F StGL2 ⊗λ′ is irreducible and has multiplicity 2 in sP1(χωE/F StGL2 oλ′).
Hence τ1 and τ2 have multiplicities 1, and χωE/F StGL2 oλ′ is a representation of
length 2. By the Aubert duality

Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and Lg(| |1/2 χωE/F ;π1,χωE/F )

have multiplicities 1, and χωE/F 1GL2 o λ′ is of length 2.
χωE/F StGL2 oλ′ and χωE/F 1GL2 o λ′ are unitary, hence all subquotients are

unitary. �
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5.3.3. Representations | |α χ o τ and χ o τ , α > 0, τ irreducible non-cuspidal of
U(3), not fully-induced. We now look at representations induced from the maximal
parabolic subgroup P2, whose cuspidal support is in M0 and that are not fully
induced.

Recall that P2 = M2N2, where M2 ∼= E∗ × U(3) is a maximal standard Levi
subgroup and N2 the unipotent subgroup corresponding to P2 and M2.

Let χ be a unitary character of E∗.
Let β ∈ R+. Recall from 4.1 the irreducible subquotients of the induced represen-

tations to U(3) in the cases that | |β χoλ′ is reducible: λ′(det) StU(3), λ′(det)1U(3),
π1,χωE/F , π2,χωE/F , σ1,χ1F∗

, σ2,χ1F∗
. All irreducible subquotients are unitary.

Let α ∈ R∗+. We study the representations

| |α χo λ′(det) StU(3), | |α χo λ′(det)1U(3), | |α χo π1,χωE/F ,

| |α χo π2,χωE/F , | |α χo σ1,χ1F∗
, and | |α χo σ2,χ1F∗

.

Further we study representations

χo λ′(det) StU(3), χo λ′(det)1U(3), χo π1,χωE/F ,

χo π2,χωE/F , χo σ1,χ1F∗
and χo σ2,χ1F∗

.

5.3.3.1 Representations | |α χo λ′(det) StU(3) and | |α χo λ′(det)1U(3), α > 0.

Theorem 5.7. — Let α ∈ R∗+ and χ be a unitary character of E∗. The repre-
sentations | |α χoλ′(det) StU(3) and | |α χoλ′(det)1U(3) are irreducible unless one
of the following conditions holds:

(1) α = 2 and χ = 1,
(2) α = 1 and χ = 1,
(3) α = 1/2 and χ ∈ XωE/F .

Proof. — The proof is similar to the proof of Theorem 5.5. If (1), (2) or (3)
holds, then the reducibility of | |α χ o λ′(det) StU(3) and | |α χ o λ′(det)1U(3) has
to be investigated. It is done in 6.2 and in 6.6. �

5.3.3.2 Representations χoλ′(det) StU(3) and χoλ′(det)1U(3). Let χ1F∗ ∈ X1F∗ .
Recall that χ1F∗ o λ′ = σ1,χ1F∗

⊕ σ2,χ1F∗
, where σ1,χ1F∗

and σ2,χ1F∗
are tempered

[10].

Proposition 5.8. — Let χ be a unitary character of E∗, let λ′ be a (unitary)
character of E1. The representations χ o λ′(det) StU(3) and χ o λ′(det)1U(3) are
reducible if and only if χ = 1 or χ ∈ X1F∗ .

• Let χ = 1.
1oλ′(det)1U(3) =Lg(| | 1; 1oλ′)+Lg(| |1/2 StGL2 ;λ′) and 1oλ′(det) StU(3) =
τ3 + τ4, where τ3 and τ4 are tempered such that τ3 = ̂Lg(| | 1; 1o λ′) and
τ4 = ̂Lg(| |1/2 StGL2 ;λ′).

• Let χ =: χ1F∗ ∈ X1F∗ .
χ1F∗ o λ′(det)1U(3) = Lg(| | 1;σ1,χ1F∗

) + Lg(| | 1;σ2,χ1F∗
) and χ1F∗ o

λ′(det) StU(3) = τ5 + τ6, where τ5 and τ6 are tempered, such that τ5 =
̂Lg(| | 1;σ1,χ1F∗

) and τ6 = ̂Lg(| | 1;σ2;χ1F∗
).

All subquotients are unitary.
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Proof. — The proof follows similar lines to the proof of Proposition 5.6. �

5.3.3.3 Representations | |α χ o π1,χωE/F and | |α χ o π2,χωE/F , α > 0. Let
α ∈ R∗+ and let χ be a unitary character of E∗. Let χωE/F ∈ XωE/F , that is χωE/F
is a (unitary) character of E∗ whose restriction to F ∗ equals the character ωE/F .

Let π1,χωE/F be the unique square-integrable subquotient and let π2,χωE/F be
the unique irreducible non-tempered subquotient of | |1/2 χωE/F o λ′ [10].

Theorem 5.9. — Let α ∈ R∗+ and χ be a unitary character of E∗. The repre-
sentations | |α χo π1,χωE/F and | |α χo π2,χωE/F are irreducible unless

(1) α = 1/2 or α = 3/2 and χ = χωE/F ,
(2) α = 1 and χ = 1,
(3) α = 1/2 and χ ∈ XωE/F .

Proof. — The proof is similar to the proof of Theorem 5.5. If (1), (2) or (3) holds,
then reducibility of | |α χoπ1,χωE/F and | |α χoπ2,χωE/F needs to be investigated.
This is done in 5.6 and 6.3 (for | |1/2 χωE/F oπ1,χωE/F and | |1/2 χωE/F oπ2,χωE/F ),
in 6.4, 6.6 and in 6.9. �

5.3.3.4 Representations χ o π1,χωE/F and χ o π2,χωE/F . Let χωE/F ∈ XωE/F .
Let π1,χωE/F be the unique square-integrable subquotient and π2,χωE/F the unique
non-tempered irreducible subquotient of | |1/2 χωE/F o λ′. Let χ1F∗ ∈ X1F∗ .

Proposition 5.10. — Let χ be a unitary character of E∗ and let λ′ be a
(unitary) character of E1. The representations χo π1,χωE/F and χo π2,χωE/F are
reducible if and only if χ ∈ X1F∗ .

Let χ =: χ1F∗ ∈ X1F∗ . Then

χ1F∗ o π2,χωE/F = Lg(| |1/2 χωE/F ;σ1,χ1F∗
) + Lg(| |1/2 χωE/F ;σ2,χ1F∗

),
χ1F∗ o π1,χωE/F = τ7 + τ8,

where τ7 and τ8 are tempered representations with τ7 = ̂Lg(| |1/2 χωE/F ;σ1,χ1F∗
)

and τ8 = ̂Lg(| |1/2 χωE/F ;σ2,χ1F∗
).

All subquotients are unitary.

Proof. — The proof is similar to the proof of Proposition 5.6. �

5.3.3.5 Representations | |α χ o σ1,χ1F∗
and | |α χ o σ2,χ1F∗

, α > 0. Let
χ1F∗ ∈ X1F∗ .

Theorem 5.11. — Let χ be a unitary character of E∗. Let α ∈ R∗+. The
representations | |α χ o σ1,χ1F∗

and | |α χ o σ2,χ1F∗
are irreducible unless one of

the following cases holds:
(1) α = 1 and χ = χ1F∗ ,
(2) α = 1 and χ = 1,
(3) α = 1/2 and χ ∈ XωE/F .

Proof. — The proof is similar to the proof of Proposition 5.5. If (1), (2) or
(3) holds, then the reducibility of | |α χ o σ1,χ1F∗

and | |α χ o σ2,χ1F∗
has to be

investigated. It is done in 6.6, 6.7 and in 6.8. �
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5.3.3.6 Representations χ o σ1,χ1F∗
and χ o σ2,χ1F∗

, α > 0. Let χ be a unitary
character of E∗. Let χ1F∗ ∈ X1F∗ .

Remark 5.12. — By Theorem 5.1 the representations χoσ1,χ1F∗
and χoσ2,χ1F∗

are reducible if and only if χ ∈ X1F∗ such that χ � χ1F∗ .

6. ’Special’ Reducibility points of representations of U(5) with
cuspidal support in M0

We determine the irreducible subquotients of the representations whose reducibil-
ity has not been examined in Chapter 5.

Let χωE/F ∈ XωE/F . Let π1,χωE/F be the unique irreducible square-integrable
subquotient and let π2,χωE/F be the unique irreducible non-tempered subquotient
of | |1/2 χωE/F o λ′. Let χ1F∗ ∈ X1F∗ . Recall that χ1F∗ = σ1,χ1F∗

⊕ σ2,χ1F∗
, where

σ1,χ1F∗
and σ2,χ1F∗

are tempered [10].
In Theorem 5.5 the irreducible subquotients of the following representations are

left to be examined:

| |1/2 StGL2 oλ′, | |1/2 1GL2 o λ′, | |3/2 StGL2 oλ′,
| |3/2 1GL2 o λ′, | |1/2 χωE/F StGL2 oλ′, | |1/2 χωE/F 1GL2 o λ′,
| |1/2 χ1F∗ StGL2 oλ′, | |1/2 χ1F∗1GL2 o λ′, | | χωE/F StGL2 oλ′
| | χωE/F 1GL2 o λ′.

In Theorem 5.7 the irreducible subquotients of the following representations are
left to be examined:

| |2 1o λ′(det) StU(3), | |2 1o λ′(det)1U(3), | | 1o λ′(det) StU(3),
| | 1o λ′(det)1U(3), | |1/2 χωE/F o λ′(det) StU(3), | |1/2 χωE/F o λ′(det)1U(3).

Theorem 5.9 leaves the following representations to be examined:

| |1/2 χωE/F o π1,χωE/F , | |
1/2 χωE/F o π2,χωE/F , | |

3/2 χωE/F o π1,χωE/F ,

| |3/2 χωE/F o π2,χωE/F , | | 1o π1,χωE/F , | | 1o π2,χωE/F ,

| |1/2 χo π1,χωE/F , | |1/2 χo π2,χωE/F ,

for χ ∈ XωE/F , χ � χωE/F .
Theorem 5.11 leaves the following representations to be examined:

| | χ1F∗ o σ1,χ1F∗
, | | χ1F∗ o σ2,χ1F∗

, | | 1o σ1,χ1F∗
,

| | 1o σ2,χ1F∗
, | |1/2 χωE/F o σ1,χ1F∗

, | | χωE/F o σ2,χ1F∗
.

All representations are treated in this section. We determine whether the irreducible
subquotients are unitary.

6.1. | | 1 × 1 o λ′. In the Grothendieck group of the category of admissible repre-
sentations of finite length one has

| | 1×1oλ′ =| |1/2 StGL2 oλ′+ | |1/2 1GL2oλ′ = 1oλ′(det) StU(3) +1oλ′(det)1U(3).
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Theorem 6.1. —
| |1/2 StGL2 oλ′ = Lg(| |1/2 StGL2 ;λ′) + τ3,

| |1/2 1GL2 o λ′ = Lg(| | 1; 1o λ′) + τ4,

oλ′(det) StU(3) = τ3 + τ4,

1o λ′(det)1U(3) = Lg(| | 1; 1o λ′) + Lg(| |1/2 StGL2 ;λ′),

where τ3 = ̂Lg(| | 1; 1o λ′) and τ4 = ̂Lg(| |1/2 StGL2 ;λ′). Note that τ3 and τ4 are
tempered. All irreducible subquotients are unitary.

Proof. — We have seen in Proposition 5.8 that
1o λ′(det) StU(3) = τ3 + τ4,

1o λ′(det)1U(3) = Lg(| | 1; 1o λ′) + Lg(| |1/2 StGL2 ;λ′),

where τ3 = ̂Lg(| | 1; 1o λ′) and τ4 = ̂Lg(| |1/2 StGL2 ;λ′) are both tempered.
| |1/2 StGL2 oλ′ is a subrepresentation of | | 1×1oλ′, whereas | |1/2 1GL2oλ′ is a

quotient. Hence Lg(| | 1; 1oλ′) is a subquotient of | |1/2 1GL2 oλ′. | |1/2 StGL2 oλ′

is the Aubert dual of | |1/2 1GL2 o λ′, hence τ3 = ̂Lg(| | 1; 1o λ′) is a subquotient
of | |1/2 StGL2 oλ′. Now Lg(| |1/2 StGL2 ;λ′) is a subquotient of | |1/2 StGL2 oλ′,
hence τ4 = ̂Lg(| |1/2 StGL2 ;λ′) is a subquotient of | |1/2 1GL2 o λ′.

1o λ′(det) StU(3) and 1o λ′(det)1U(3) are unitary, hence all irreducible subquo-
tients are unitary. �

6.2. | |2 1× | | 1 o λ′. In the Grothendieck group of admissible representations of
finite length one has

| |2 1× | | 1o λ′ =| |3/2 StGL2 oλ′+ | |3/2 1GL2 o λ′

=| |2 1o λ′(det) StU(3) + | |2 1o λ′(det)1U(3).

Theorem 6.2. — The representation | |2 1× | | 1o λ′ is reducible and we have

| |2 1× | | 1o λ′ =λ′(det) StU(5) + Lg(| |3/2 StGL2 ;λ′)
+ λ′(det)1U(5) + Lg(| |2 1;λ′(det) StU(3)).

λ′(det) StU(5) and λ′(det)1U(5) are unitary,

Lg(| |3/2 StGL2 ;λ′) and Lg(| |2 1;λ′(det) StU(3))

are non-unitary.

Proof. — By [3], | |2 1× | | 1o λ′ is a representation of length 4.
λ′(det)1U(5) = Lg(| |2 1; | | 1;λ′), Lg(| |3/2 StGL2 ;λ′) and Lg(| |2 1;λ′(det) StU(3))

are all non-tempered Langlands quotients supported in | |2 1⊗ | | 1⊗ λ′. The sub-
representation λ′(det) StU(5) = ̂λ′(det)1U(5) is square-integrable.

By results of Casselman [2, page 915], λ′(det) StU(5) and its Aubert dual

λ′(det)1U(5) = Lg(| |2 1; | | 1;λ′)

are unitary, Lg(| |3/2 StGL2 ;λ′) and Lg(| |2 1;λ′(det) StU(3)) are not unitary. �
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6.3. | |1/2 χωE/F× | |1/2 χωE/F o λ′. Let χωE/F ∈ XωE/F . Let π1,χωE/F be
the unique irreducible square-integrable subquotient of | |1/2 χωE/F o λ′, and let
π2,χωE/F be the unique irreducible non-tempered subquotient of | |1/2 χωE/F o λ′

[10].
In the Grothendieck group of admissible representations of finite length one has

| |1/2 χωE/F× | |
1/2 χωE/F o λ

′ = χωE/F StGL2 oλ′ + χωE/F 1GL2 o λ′

=| |1/2 χωE/F o π1,χωE/F + | |1/2 χωE/F o π2,χωE/F .

Theorem 6.3. — The representation | |1/2 χωE/F× | |1/2 χωE/F oλ′ is reducible
and we have

| |1/2 χωE/F× | |
1/2 χωE/F o λ

′ = χωE/F StGL2 oλ′ + χωE/F 1GL2 o λ′

=| |1/2 χωE/F o π1,χωE/F + | |1/2 χωE/F o π2,χωE/F .

Moreover we have
χωE/F StGL2 oλ′ = τ1 + τ2,

χωE/F 1GL2 o λ′ = Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) + Lg(| |1/2 χωE/F ;π1,χωE/F ),

| |1/2 χωE/F o π1,χωE/F = Lg(| |1/2 χωE/F ;π1,χωE/F ) + τ1,

| |1/2 χωE/F o π2,χωE/F = Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) + τ2,

where τ1 and τ2 are tempered such that τ1 = ̂Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and
τ2 = ̂Lg(| |1/2 χωE/F ;π1,χωE/F ). All irreducible subquotients are unitary.

Proof. — In Proposition 5.6 we have seen that

χωE/F StGL2 oλ′ = τ1 + τ2,

χωE/F 1GL2 o λ′ = Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) + Lg(| |1/2 χωE/F ;π1,χωE/F ),

where τ1 and τ2 are tempered such that τ1 = ̂Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) and
τ2 = ̂Lg(| |1/2 χωE/F ;π1).

Lg(| |1/2 χωE/F ;π1,χωE/F ) is a subquotient of | |1/2 χωE/F o π1,χωE/F , π2,χωE/F
is a quotient of | |1/2 χωE/F o λ′ [Ke], hence | |1/2 χωE/F o π2,χωE/F is a quotient of
| |1/2 χωE/F× | |1/2 χωE/F o λ′.

Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) is the irreducible Langlands quotient of | |1/2

χωE/F× | |1/2 χωE/F o λ′, hence Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) is a quotient of
| |1/2 χωE/Foπ2,χωE/F . Hence τ1 = ̂Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′) is a subquotient

of | |1/2 χωE/F o π1,χωE/F and τ2 = ̂Lg(| |1/2 χωE/F ;π1,χωE/F ) is a subquotient of
| |1/2 χωE/F o π2,χωE/F .
χωE/F StGL2 oλ′ and χωE/F 1GL2 o λ′ are unitary, hence all irreducible subquo-

tients are unitary. �
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6.4. | |3/2 χωE/F× | |1/2 χωE/F o λ′.

Theorem 6.4. — Let χωE/F ∈ XωE/F . Let π1,χωE/F be the unique irreducible
square-integrable subquotient and let π2,χωE/F be the unique irreducible non-tem-
pered subquotient of | |1/2 χωE/F o λ′. The representation | |3/2 χωE/F× | |1/2
χωE/F o λ′ is reducible, and we have

| |3/2 χωE/F× | |
1/2 χωE/F o λ

′ =| | χωE/F StGL2 oλ′+ | | χωE/F 1GL2 o λ′

=| |3/2 χωE/F o π1,χωE/F + | |3/2 χωE/F o π2,χωE/F .

We have
| | χωE/F StGL2 oλ′ = Lg(| | χωE/F StGL2 ;λ′) + δ,

| | χωE/F 1GL2 o λ′ = Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′)

+ Lg(| |3/2 χωE/F ;π1,χωE/F ),

| |3/2 χωE/F o π1,χωE/F = Lg(| |3/2 χωE/F ;π1) + δ,

| |3/2 χωE/F o π2,χωE/F = Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′)

+ Lg(| | χωE/F StGL2 ;λ′),

where δ = ̂Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′) is square-integrable.

Lg(| | χωE/F StGL2 ;λ′) and Lg(| |3/2 χωE/F ;π1,χωE/F )

are not unitary.

Proof. — | |3/2 χωE/F× | |1/2 χωE/F o λ′ has only the following non-tempered
irreducible subquotients: Lg(| | χωE/F StGL2 ;λ′), Lg(| |3/2 χωE/F ;π1,χωE/F ) and
Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′).

Lg(| | χωE/F StGL2 ;λ′) is a subquotient of | | χωE/F StGL2 oλ′.
Lg(| |3/2 χωE/F ;π1,χωE/F ) is a subquotient of | |3/2 χωE/F o π1,χωE/F .
We consider the Jacquet restrictions of | | χωE/F StGL2 oλ′ and of | |3/2 χωE/F o

π1,χωE/F with respect to the minimal parabolic subgroup:

smin(| |χωE/F StGL2 oλ′) =

| |3/2 χωE/F⊗ | |
1/2 χωE/F ⊗ λ

′+ | |3/2 χωE/F⊗ | |
−1/2 χωE/F ⊗ λ

′

+ | |−1/2 χωE/F⊗ | |
−3/2 χωE/F ⊗ λ

′+ | |−1/2 χωE/F⊗ | |
3/2 χωE/F ⊗ λ

′.

smin(| |3/2χωE/F o π1,χωE/F ) =

| |3/2 χωE/F⊗ | |
1/2 χωE/F ⊗ λ

′+ | |−3/2 χωE/F⊗ | |
1/2 χωE/F ⊗ λ

′

+ | |1/2 χωE/F⊗ | |
3/2 χωE/F ⊗ λ

′+ | |1/2 χωE/F⊗ | |
−3/2 χωE/F ⊗ λ

′.

| |3/2 χωE/F⊗ | |1/2 χωE/F ⊗ λ′ is the only common irreducible subquotient in
the restrictions of | | χωE/F StGL2 oλ′ and of | |3/2 χωE/F o π1,χωE/F . Hence these
representations have exactly one subquotient in common, denoted by δ. By the
Casselman square-integrability criterion δ is square-integrable [3].
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We have
| | χωE/F StGL2 oλ′+ | | χωE/F 1GL2 o λ′ =

| |3/2 χωE/F o π1,χωE/F + | |3/2 χωE/F o π2,χωE/F .

Therefore Lg(| | χωE/F StGL2 ;λ′) is a subquotient of | |3/2 χωE/F o π2,χωE/F , and
Lg(| |3/2 χωE/F ;π1,χωE/F ) is a subquotient of | | χωE/F 1GL2 o λ′.
| | χωE/F 1GL2 is the Langlands quotient of | |3/2 χωE/F× | |1/2 χωE/F .
| | χωE/F 1GL2 ⊗ λ′ is a quotient of | |3/2 χωE/F× | |1/2 χωE/F ⊗ λ′.
Hence | | χωE/F 1GL2 o λ′ is a quotient of | |3/2 χωE/F× | |1/2 χωE/F o λ′.
Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′) is the unique irreducible quotient of | |3/2

χωE/F× | |1/2 χωE/F o λ′, in particular it is a quotient of | | χωE/F 1GL2 o λ′.
In the same manner Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′) is a quotient of | |3/2 χωE/F o
π2,χωE/F .

So far we have shown:
| | χωE/F StGL2 oλ′ = Lg(| | χωE/F StGL2 ;λ′) + δ +A1,

| | χωE/F 1GL2 o λ′ = Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′)

+ Lg(| |3/2 χωE/F ;π1,χωE/F ) +A2,

| |3/2 χωE/F o π1,χωE/F = Lg(| |3/2 χωE/F ;π1,χωE/F ) + δ +A3,

| |3/2 χωE/F o π2,χωE/F = Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′)

+ Lg(| | χωE/F StGL2 ;λ′) +A4,

where A1, A2, A3, A4 are sums of tempered representations. We will prove that
A1 = A2 = A3 = A4 = 0.

A tempered representation is the subquotient of a representation induced from a
square-integrable representation. Here, for each proper Levi subgroupMi, i = 0, 1, 2
of U(5), IndMi

M0
(| |3/2 χωE/F⊗ | |1/2 χωE/F ⊗ λ′) does not contain any square-

integrable subquotient. Hence all tempered subquotients of | |3/2 χωE/F× | |1/2
χωE/F o λ′ are square-integrable.

Assume there existed a square-integrable subquotient β of | | χωE/F 1GL2 o λ′.
We consider the Jacquet restrictions of | | χωE/F 1GL2 o λ′, β and β̂ with respect

to the minimal parabolic subgroup.
smin(| |χωE/F 1GL2 o λ′) =

| |1/2 χωE/F⊗ | |
3/2 χωE/F ⊗ λ

′+ | |1/2 χωE/F⊗ | |
−3/2 ⊗λ′

+ | |−3/2 χωE/F⊗ | |
−1/2 χωE/F ⊗ λ

′+ | |−3/2 χωE/F⊗ | |
1/2 χωE/F ⊗ λ

′,

hence by the Casselman square-integrability criterion [3]

smin(β) =| |1/2 χωE/F⊗ | |
3/2 χωE/F ⊗ λ

′.

By [1] Théorème 1.7, smin(β̂) =| |−1/2 χωE/F⊗ | |−3/2 χωE/F ⊗ λ′.
β̂ is an irreducible subquotient of | | χωE/F StGL2 oλ′. As its restriction is

negative and as Lg(| | χωE/F StGL2 ;λ′) is the only non-tempered subquotient of
| | χωE/F StGL2 oλ′, β̂ must equal Lg(| | χωE/F StGL2 oλ′).
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We have seen that
smin(| |χωE/F StGL2 oλ′) =

| |3/2 χωE/F⊗ | |
1/2 χωE/F ⊗ λ

′+ | |3/2 χωE/F⊗ | |
−1/2 ⊗λ′

+ | |−1/2 χωE/F⊗ | |
−3/2 χωE/F ⊗ λ

′+ | |−1/2 χωE/F⊗ | |
3/2 χωE/F ⊗ λ

′.

So smin(Lg(| | χωE/F StGL2 ;λ′)) must contain at least the two negative irreducible
subquotients | |−1/2 χωE/F⊗ | |−3/2 χωE/F ⊗λ′ and | |−1/2 χωE/F⊗ | |3/2 χωE/F ⊗λ′.
Hence β̂ 6= Lg(| | χωE/F StGL2 ;λ′).

We obtain that Lg(| | χωE/F StGL2 ;λ′) = ̂Lg(| |3/2 χωE/F ;π1,χωE/F ), and δ =
̂Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′).

δ = ̂Lg(| |3/2 χωE/F ; | |1/2 χωE/F ;λ′) is square-integrable, hence unitary.Lg(| |3/2

χωE/F ; | |1/2 χωE/F ;λ′) is the dual of a square-integrable representation. It should
be unitary, but we have no proof for it. See [6], where the proof for the unitaris-
ability of the Aubert dual of a strongly positive square-integrable representation is
given for orthogonal and symplectic groups. Applying Theorem 1.1 and Remark 4.7
of [7] to the representation | |3/2 χωE/Foπ1,χωE/F we see that Lg(| | χωE/F StGL2 ;λ′)
and Lg(| |3/2 χωE/F ;π1,χωE/F ) are non-unitary. �

6.5. | | χωE/F ×χωE/F oλ′. In the Grothendieck group of admissible representations
of finite length one has

| | χωE/F × χωE/F o λ
′ =| |1/2 χωE/F StGL2 oλ′+ | |1/2 χωE/F 1GL2 o λ′.

We have no proof that | |1/2 χωE/F StGL2 oλ′ and | |1/2 χωE/F 1GL2 o λ′ are
irreducible. See [18], Proposition 6.3, where a proof is given for symplectic and
special orthogonal groups and when the representation of the GL2p-part, p > 1, of
the inducing representation, is essentially square-integrable.

Remark 6.5. — If we assume that | |1/2 χωE/F StGL2 oλ′ and by the Aubert
duality | |1/2 χωE/F 1GL2 o λ′ are irreducible, then

| |1/2 χωE/F StGL2 oλ′ = Lg(| |1/2 χωE/F StGL2 ;λ′) and

| |1/2 χωE/F 1GL2 o λ′ = Lg(| | χωE/F ;χωE/F o λ
′),

and both subquotients are non-unitary.
Further we are able to prove that | |α χωE/F StGL2 oλ′ = Lg(| |α χωE/F StGL2 ;λ′)

and | |α χωE/F 1GL2 o λ′ = Lg(| |α1 χωE/F ; | |α2 χωE/F o λ′) are non-unitary for
0 < α < 1/2, 1/2 < α1 < 1, α2 = 1− α1. See Remarks 7.7 and 7.19.

6.6. | | χ1F∗ × χ1F∗ o λ′. We can not give a complete decomposition of

| | χ1F∗ × χ1F∗ o λ
′

into irreducible subquotients. We have the following result:
Let χ1F∗ ∈ X1F∗ . By [10] χ1F∗ o λ′ = σ1,χ1F∗

⊕ σ2,χ1F∗
, where σ1,χ1F∗

and
σ2,χ1F∗

are irreducible tempered. The representation | | χ1F∗×χ1F∗oλ′ is reducible
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and we have
| | χ1F∗ × χ1F∗ o λ

′ =| |1/2 χ1F∗ StGL2 oλ′+ | |1/2 χ1F∗ 1GL2 o λ′

=| | χ1F∗ o σ1,χ1F∗
+ | | χ1F∗ o σ2,χ1F∗

.

Moreover,

| |1/2 χ1F∗ StGL2 oλ′ = Lg(| |1/2 χ1F∗ StGL2 ;λ′) + δ +A1,

| |1/2 χ1F∗1GL2 o λ′ = Lg(| | χ1F∗ ;σ1,χ1F∗
) + Lg(| | χ1F∗ ;σ2,χ1F∗

) +A2,

| | χ1F∗ o σ1,χ1F∗
= Lg(| | χ1F∗ ;σ1,χ1F∗

) + δ +A2,

| | χ1F∗ o σ2,χ1F∗
= Lg(| | χ1F∗ ;σ2,χ1F∗

) + Lg(| |1/2 χ1F∗ StGL2 ;λ′) +A1,

where δ is square-integrable.

Lg(| |1/2 χ1F∗ StGL2 ;λ′), Lg(| | χ1F∗ ;σ1,χ1F∗
) and Lg(| | χ1F∗ ;σ2,χ1F∗

)

are unitary. A1 and A2 are either both equal to 0, or A1 is equal to δ or δ′, where
δ′ is square-integrable and δ 6= δ′, and A2 is either equal to Lg(| | χ1F∗ ;σ2,χ1F∗

) or
to Lg(| |1/2 χ1F∗ StGL2 ;λ′).

We now prove the assertion that Lg(| |1/2 χ1F∗ StGL2 ;λ′),Lg(| | χ1F∗ ;σ1,χ1F∗
)

and Lg(| | χ1F∗ ;σ2,χ1F∗
) are the only non-tempered irreducible subquotients of *

| | χ1F∗ × χ1F∗ o λ
′.

Lg(| |1/2 χ1F∗ StGL2 ;λ′) is a subquotient of | |1/2 χ1F∗ StGL2 oλ′. We consider the
Jacquet restriction of | |1/2 χ1F∗ StGL2 oλ′ with respect to the minimal parabolic
subgroup.

smin(| |1/2 χ1F∗ StGL2 oλ′) = | | χ1F∗ ⊗ χ1F∗ ⊗ λ
′+ | | χ1F∗ ⊗ χ1F∗ ⊗ λ

′

+ χ1F∗⊗ | |
−1 χ1F∗∗ ⊗ λ

′ + χ1F∗⊗ | | χ1F∗ ⊗ λ
′

= 2 | | χ1F∗ ⊗ χ1F∗ ⊗ λ
′ + χ1F∗⊗ | |

−1 χ1F∗ ⊗ λ
′

+ χ1F∗⊗ | | χ1F∗ ⊗ λ
′.

By the Casselman square-integrability criterion [3], Lg(| |1/2 χ1F∗ StGL2 ;λ′)
is the only non-tempered irreducible subquotient of | |1/2 χ1F∗ StGL2 oλ′. A
tempered representation is the subquotient of a representation induced from a
square-integrable representation. | |1/2 χ1F∗ StGL2 ⊗λ′ is not square-integrable,
hence any other subquotient of | |1/2 χ1F∗ StGL2 oλ′ must be square-integrable.
Therefore Lg(| | χ1F∗ ;σ1,χ1F∗

) and Lg(| | χ1F∗ ;σ2,χ1F∗
) are subquotients of | |1/2

χ1F∗1GL2 o λ′. Let δ be a square-integrable subquotient of | |1/2 χ1F∗ StGL2 oλ′.
| | χ1F∗ o σ1,χ1F∗

and | | χ1F∗ o σ2,χ1F∗
have the same Jacquet restrictions with

respect to the minimal parabolic subgroup:
smin(| | χ1F∗ o σ1,χ1F∗

) =smin(| | χ1F∗ o σ2,χ1F∗
)

= | | χ1F∗ ⊗ χ1F∗ ⊗ λ
′+ | |−1 χ1F∗ ⊗ χ1F∗ ⊗ λ

′

+ χ1F∗⊗ | | χ1F∗∗ ⊗ λ
′ + χ1F∗⊗ | |

−1 χ1F∗ ⊗ λ
′.

We chose σ1,χ1F∗
and σ2,χ1F∗

such that δ is a subquotient of | | χ1F∗ o σ1,χ1F∗

and Lg(| |1/2 χ1F∗ StGL2 ;λ′) is a subquotient of | | χ1F∗ o σ2,χ1F∗
.
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We have no contradiction that | |1/2 χ1F∗ StGL2 oλ′ contains a second irreducible
square-integrable subquotient δ′ that would be a subquotient of | | χ1F∗ o σ2,χ1F∗

,
and that | |1/2 χ1F∗1GL2 o λ′ either contains Lg(| | χ1F∗ ;σ2,χ1F∗

) with multiplicity
2 or Lg(| |1/2 χ1F∗ StGL2 oλ′). Lg(| | χ1F∗ ;σ2,χ1F∗

) and Lg(| |1/2 χ1F∗ StGL2 oλ′)
would then be subquotients of | | χ1F∗ o σ1,χ1F∗

.
Let 0 < α < 1. By Theorem 5.11 the representations | |α χ1F∗ o σ1,χ1F∗

and
| |α χ1F∗ o σ2,χ1F∗

are irreducible, they are equal to Lg(| |α χ1F∗ ;σ1,χ1F∗
) and to

Lg(| |α χ1F∗ ;σ2,χ1F∗
), respectively. By Theorem 7.23 (2) they are unitary. For α =

1, by [14] the irreducible subquotients of | | χ1F∗ oσ1,χ1F∗
and of | | χ1F∗ oσ2,χ1F∗

are unitary.

6.7. | | 1× | |1/2 χωE/F o λ′. Recall that λ′(det) StU(3) is the unique irreducible
square-integrable subquotient and that λ′(det)1U(3) is the unique irreducible non-
tempered subquotient of | | 1oλ′. Let χωE/F ∈ XωE/F . Let π1,χωE/F be the unique
irreducible square-integrable subquotient and let π2,χωE/F be the unique irreducible
non-tempered subquotient of | |1/2 χωE/F o λ′ [10].

Theorem 6.6. — The representation | | 1× | |1/2 χωE/F o λ′ is reducible, and
we have
| | 1× | |1/2 χωE/F o λ

′ =| |1/2 χωE/F o λ
′(det) StU(3) + | |1/2 χωE/F o λ

′(det)1U(3)

=| | 1o π1,χωE/F + | | 1o π2,χωE/F .

Moreover we have
| |1/2 χωE/F o λ

′(det) StU(3) = Lg(| |1/2 χωE/F ;λ′(det) StU(3)) + δ,

| |1/2 χωE/F o λ
′(det)1U(3) = Lg(| | 1; | |1/2 χωE/F ;λ′) + Lg(| | 1;π1,χωE/F ),

| | 1o π1,χωE/F = Lg(| | 1;π1,χωE/F ) + δ,

| | 1o π2,χωE/F = Lg(| | 1; | |1/2 χωE/F ;λ′) + Lg(| |1/2 χωE/F ;λ′(det) StU(3)),

where δ is square-integrable. δ = ̂Lg(| | 1; | |1/2 χωE/F ;λ′), and

Lg(| |1/2 χωE/F ;λ′(det) StU(3)) = ̂Lg(| | 1;π1,χωE/F ).

The representations
Lg(| |1/2 χωE/F ;λ′(det) StU(3)), Lg(| | 1;π1,χωE/F ), Lg(| | 1; | |1/2 χωE/F ;λ′) and δ

are all unitary.

Proof. — | | 1× | |1/2 χωE/F oλ′ has only the following irreducible non-tempered
subquotients:

Lg(| |1/2 χωE/F ;λ′(det) StU(3)), Lg(| | 1;π1,χωE/F ) and Lg(| | 1; | |1/2 χωE/F ;λ′).

Lg(| |1/2 χωE/F ;λ′(det) StU(3)) is a subquotient of | |1/2 χωE/F o λ′(det) StU(3).
We consider the Jacquet restriction of | |1/2 χωE/F o λ′(det) StU(3) with respect

to the minimal parabolic subgroup:
smin(| |1/2 χωE/F o λ

′(det) StU(3)) =| | 1⊗ | |1/2 χωE/F ⊗ λ
′

+ | |1/2 χωE/F⊗ | | 1⊗ λ
′+ | |−1/2 χωE/F⊗ | | 1⊗ λ

′+ | | 1⊗ | |−1/2 χωE/F ⊗ λ
′.
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By the Casselman square-integrability criterion [3],

smin(Lg(| |1/2 χωE/F ;λ′(det) StU(3)))

must contain the irreducible subquotient | |−1/2 χωE/F⊗ | | 1⊗ λ′. We have

smin(| | 1o π1,χωE/F ) = | | 1⊗ | |1/2 χωE/F ⊗ λ
′+ | |1/2 χωE/F⊗ | | 1⊗ λ

′

+ | |−1 1⊗ | |1/2 χωE/F ⊗ λ
′+ | |1/2 χωE/F⊗ | |

−1 1⊗ λ′,

and
smin(| | 1o π2,χωE/F ) = | | 1⊗ | |−1/2 χωE/F ⊗ λ

′+ | |−1/2 χωE/F⊗ | | 1⊗ λ
′

+ | |−1 1⊗ | |−1/2 χωE/F ⊗ λ
′+ | |−1/2 χωE/F⊗ | |

−1 1⊗ λ′.

The irreducible subquotient | |−1/2 χωE/F⊗ | | 1 ⊗ λ′ appears in smin(| | 1 o
π2,χωE/F ), not in smin(| | 1o π1,χωE/F ). Hence Lg(| |1/2 χωE/F ;λ′(det) StU(3))) is a
subquotient of | | 1o π2,χωE/F .

Lg(| | 1;π1,χωE/F ) is the unique irreducible quotient of | | 1o π1,χωE/F ,

smin(| |1/2 χωE/F o λ
′(det)1U(3)) =

| |1/2 χωE/F⊗ | |
−1 1⊗ λ′+ | |−1 1⊗ | |1/2 χωE/F ⊗ λ

′

+ | |−1/2 χωE/F⊗ | |
−1 1⊗ λ′+ | |−1 1⊗ | |−1/2 χωE/F ⊗ λ

′.

Looking at Jacquet modules, we see that Lg(| | 1;π1,χωE/F ) is a subquotient of
| |1/2 χωE/F o λ′(det)1U(3).
λ′(det)1U(3) is a quotient of | | 1 o λ′ [10]. Hence | |1/2 χωE/F o λ′(det)1U(3) is

a quotient of | | 1× | |1/2 χωE/F o λ′. π2,χωE/F is a quotient of | |1/2 χωE/F o λ′.
Hence | | 1o π2,χωE/F is also a quotient of | | 1× | |1/2 χωE/F o λ′.

Lg(| | 1; | |1/2 χωE/F ;λ′) is the unique irreducible quotient of | | 1× | |1/2 χωE/F o
λ′. Hence it is a quotient of | |1/2 χωE/F o λ′(det)1U(3) and of | | 1 o π2,χωE/F . It
is of multiplicity one.

Each irreducible subquotient in smin(| |1/2 χωE/F o λ′(det)1U(3)) is of mul-
tiplicity 1. Hence Lg(| | 1;π1,χωE/F ) is of multiplicity 1. We have seen that
smin(Lg(| |1/2 χωE/F ;λ′(det) StU(3))) contains | |−1/2 χωE/F⊗ | | 1 ⊗ λ′, with mul-
tiplicity 1. | |−1/2 χωE/F⊗ | | 1 ⊗ λ′ does not appear in smin(| |1/2 χωE/F o
λ′(det)1U(3))). Hence Lg(| |1/2 χωE/F ;λ′(det) StU(3)) equally has multiplicity 1.

By the Casselman square-integrability criterion [3] any subquotient of

| |1/2 χωE/F o λ
′(det) StU(3)

other than Lg(| |1/2 χωE/F ;λ′(det) StU(3)) is square-integrable.
| |1/2 χωE/F o λ′(det)1U(3) has the two irreducible subquotients

Lg(| | 1; | |1/2 χωE/F ;λ′) and Lg(| | 1;π1,χωE/F ).

By the Aubert duality | |1/2 χωE/F oλ′(det) StU(3) has exactly one square-integrable
irreducible subquotient, denoted by δ.
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Looking at Jacquet modules, we see that δ is a subquotient | | 1 o π1,χωE/F .

δ = ̂Lg(| | 1; | |1/2 χωE/F ;λ′), and

Lg(| |1/2 χωE/F ;λ′(det) StU(3)) = ̂Lg(| | 1;π1,χωE/F ).

1 × χωE/F o λ′ is irreducible by Theorem 5.1 and unitary. For 0 < α1 < 1, 0 <

α2 < 1/2, representations | |α1 1× | |α2 χωE/F o λ′ are irreducible by Theorem
5.2 and unitary by Theorem 7.10 (1). By [Mi], all irreducible subquotients of
| | 1× | |1/2 χωE/F o λ′ are unitary. �

6.8. | | 1 × χ1F∗ o λ′. Recall that λ′(det) StU(3) is the unique irreducible square-
integrable subquotient and that λ′(det)1U(3) is the unique irreducible non-tempered
subquotient of | | 1o λ′ ([10]). Let χ1F∗ ∈ X1F∗ .

Theorem 6.7. — The representation | | 1×χ1F∗ o λ′ is reducible and we have
| | 1× χ1F∗ o λ

′ = χ1F∗ o λ
′(det) StU(3) +χ1F∗ o λ

′(det)1U(3)

= | | 1o σ1,χ1F∗
+ | | 1o σ2,χ1F∗

.

Furthermore
χ1F∗ o λ

′(det) StU(3) = τ5 + τ6,

χ1F∗ o λ
′(det)1U(3) = Lg(| | 1;σ1,χ1F∗

) + Lg(| | 1;σ2,χ1F∗
),

| | 1o σ1,χ1F∗
= Lg(| | 1;σ1,χ1F∗

) + τ6,

| | 1o σ2,χ1F∗
= Lg(| | 1;σ2,χ1F∗

) + τ5,

where τ5 and τ6 are tempered with τ5 = ̂Lg(| | 1;σ1,χ1F∗
) and τ6 = ̂Lg(| | 1;σ2,χ1F∗

).
All irreducible subquotients are unitary.

Proof. — Lg(| | 1;σ1,χ1F∗
) and Lg(| | 1;σ2,χ1F∗

) are the only non-tempered
subquotients of | | 1× χ1F∗ o λ′.

Moreover, Lg(| | 1;σ1,χ1F∗
) is the unique irreducible quotient of | | 1 o σ1,χ1F∗

,
and Lg(| | 1;σ2,χ1F∗

) is the unique irreducible quotient of | | 1o σ2,χ1F∗
.

χ1F∗ o λ′(det) StU(3) is tempered, hence all irreducible subquotients of χ1F∗ o
λ′(det) StU(3) are tempered. Hence Lg(| | 1;σ1,χ1F∗

) and Lg(| | 1;σ2,χ1F∗
) are

subquotients of χ1F∗ o λ′(det)1U(3).
Let τ5 and τ6 be two tempered subquotients of χ1F∗ o λ′(det) StU(3), such that

τ5 is a subquotient of | | 1o σ2,χ1F∗
and τ6 is a subquotient of | | 1o σ1,χ1F∗

.
We now show that no other irreducible subquotients of | | 1 × χ1F∗ o λ′ exist.

Assume there exists a tempered subquotient τ7 of χ1F∗ o λ′(det) StU(3). Consider
the Jacquet restrictions of χ1F∗ oλ′(det) StU(3) and τi for i ∈ {5, 6, 7} with respect
to the minimal parabolic subgroup:

smin(χ1F∗ o λ
′(det) StU(3)) =χ1F∗⊗ | | 1⊗ λ

′+ | | 1⊗ χ1F∗ ⊗ λ
′

+ χ1F∗⊗ | | 1⊗ λ
′+ | | 1⊗ χ1F∗ ⊗ λ

′

=2 χ1F∗⊗ | | 1⊗ λ
′ + 2 | | 1⊗ χ1F∗ ⊗ λ

′.

Hence ∃ i ∈ {5, 6, 7} such that smin(τi) does not contain the irreducible subquo-
tient χ1F∗⊗ | | 1⊗λ′. The Casselman square-integrability criterion [3] implies that
τi is square-integrable. This can not be the case. Hence τ7 does not exist, and τ5
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and τ6 are of multiplicity 1. By the Aubert duality, χ1F∗ o λ′(det)1U(3) does not
have any subquotients other than Lg(| | 1;σ1,χ1F∗

) and Lg(| | 1;σ2,χ1F∗
), both of

multiplicity 1.
We obtain τ5 = ̂Lg(| | 1;σ1,χ1F∗

), and τ6 = ̂Lg(| | 1;σ2,χ1F∗
).

1oσ1,χ1F∗
and 1oσ2,χ1F∗

are irreducible by Theorem 5.1.1, and by [10] σ1,χ1F∗

and σ2,χ1F∗
are unitary. Hence 1oσ1,χ1F∗

and 1oσ2,χ1F∗
are unitary. For 0 < α <

1, | |α 1o σ1,χ1F∗
and | |α 1o σ2,χ1F∗

are irreducible by Theorem 5.11 and unitary
by Theorem 7.23 (2). By [14], all irreducible subquotients of | | 1 × χ1F∗ o λ′ are
unitary. �

6.9. | |1/2 χωE/F × χ1F∗ o λ′. Let χωE/F ∈ XωE/F . Let π1,χωE/F be the unique
square-integrable irreducible subquotient and let π2,χωE/F be the unique non-tem-
pered irreducible subquotient of | |1/2 χωE/F o λ′ ([10]). Let χ1F∗ ∈ X1F∗ .

Theorem 6.8. — The representation | |1/2 χωE/F × χ1F∗ o λ′ is reducible and
we have

| |1/2 χωE/F × χ1F∗ o λ
′ = χ1F∗ o π1,χωE/F + χ1F∗ o π2,χωE/F

= | |1/2 χωE/F o σ1,χ1F∗
+ | |1/2 χωE/F o σ2,χ1F∗

.

Furthermore
χ1F∗ o π1,χωE/F = τ7 + τ8,

χ1F∗ o π2,χωE/F = Lg(| |1/2 χωE/F ;σ1,χ1F∗
) + Lg(| |1/2 χωE/F ;σ2,χ1F∗

),

| |1/2 χωE/F o σ1,χ1F∗
= Lg(| |1/2 χωE/F ;σ1,χ1F∗

) + τ8,

| |1/2 χωE/F o σ2,χ1F∗
= Lg(| |1/2 χωE/F ;σ2,χ1F∗

) + τ7,

where τ7 and τ8 are tempered such that τ7 = ̂Lg(| |1/2 χωE/F ;σ1,χ1F∗
) and τ8 =

̂Lg(| |1/2 χωE/F ;σ2,χ1F∗
). All irreducible subquotients are unitary.

Proof. — Lg(| |1/2 χωE/F ;σ1,χ1F∗
) and Lg(| |1/2 χωE/F ;σ2,χ1F∗

) are the only
non-tempered subquotients of | |1/2 χωE/F × χ1F∗ o λ′.

Lg(| |1/2 χωE/F ;σ1,χ1F∗
) is the irreducible Langlands quotient of | |1/2 χωE/F o

σ1,χ1F∗
, Lg(| |1/2 χωE/F ;σ2,χ1F∗

) is the irreducible Langlands quotient of | |1/2
χωE/F o σ2,χ1F∗

.
χ1F∗oπ1,χωE/F is tempered. Hence all irreducible subquotients of χ1F∗oπ1,χωE/F

are tempered. Hence Lg(| |1/2 χωE/F ;σ1,χ1F∗
) and Lg(| |1/2 χωE/F ;σ2,χ1F∗

) are
subquotients of χ1F∗ o π2,χωE/F .

Let τ7 and τ8 be two tempered subquotients of χ1F∗ oπ1,χωE/F , such that τ7 is a
subquotient of | |1/2 χωE/Foσ2,χ1F∗

and τ8 is a subquotient of | |1/2 χωE/Foσ1,χ1F∗
.

We now show that no other irreducible subquotients of | |1/2 χωE/F × χ1F∗ o λ′
exist. Assume there exists a tempered subquotient τ9 of χ1F∗ oπ1,χωE/F . Consider
the Jacquet restrictions of χ1F∗ o π1,χωE/F and τi for i ∈ {7, 8, 9} with respect to
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the minimal parabolic subgroup:

smin(χ1F∗ o π1,χωE/F ) =χ1F∗⊗ | |
1/2 χωE/F ⊗ λ

′+ | |1/2 χωE/F ⊗ χ1F∗ ⊗ λ
′

+ χ1F∗⊗ | |
1/2 χωE/F ⊗ λ

′+ | |1/2 χωE/F ⊗ χ1F∗ ⊗ λ
′

=2 χ1F∗⊗ | |
1/2 χωE/F ⊗ λ

′ + 2 | |1/2 χωE/F ⊗ χ1F∗ ⊗ λ
′.

Hence ∃ i ∈ {7, 8, 9} such that smin(τi) does not contain the irreducible sub-
quotient χ1F∗⊗ | |1/2 χωE/F ⊗ λ′. The Casselman square-integrability criterion [3]
implies that τi is square-integrable. This can not be the case. Hence τ9 does not
exist, and τ7 and τ8 are of multiplicity 1. By the Aubert duality, χ1F∗ o π2,χωE/F
does not have any subquotients other than Lg(| |1/2 χωE/F ;σ1,χ1F∗

) and Lg(| |1/2
χωE/F ;σ2,χ1F∗

), both of multiplicity 1.

We obtain τ7 = ̂Lg(| |1/2 χωE/F ;σ1,χ1F∗
), and τ8 = ̂Lg(| |1/2 χωE/F ;σ2,χ1F∗

).
χωE/F o σ1,χ1F∗

and χωE/F o σ2,χ1F∗
are irreducible by Theorem 5.1.χωE/F and

by [10] σ1,χ1F∗
and σ2,χ1F∗

are unitary. Hence χωE/F oσ1,χ1F∗
and χωE/F oσ2,χ1F∗

are unitary. For 0 < α < 1/2, | |α χωE/F o σ1,χ1F∗
and | |α χωE/F o σ1,χ1F∗

are irreducible by Theorem 5.11 and unitary by Theorem 7.23 (3). By [14], all
irreducible subquotients of | |1/2 χωE/F × χ1F∗ o λ′ are unitary. �

6.10. | |1/2 χωE/F× | |1/2 χ′ωE/F o λ′. Let χωE/F , χ′ωE/F ∈ XωE/F be such that
χωE/F 6= χ′ωE/F . Let π1,χωE/F be the unique square-integrable subquotient and
let π2,χωE/F be the unique non-tempered irreducible subquotient of | |1/2 χωE/F o
λ′. Let π1,χω′

E/F

be the unique square-integrable irreducible subquotient and let

π2,χω′
E/F

be the unique non-tempered irreducible subquotient of | |1/2 χ′ωE/F o λ′

[10].

Theorem 6.9. — The representation | |1/2 χωE/F× | |1/2 χ′ωE/F o λ′ is re-
ducible. We have

| |1/2 χωE/F× | |
1/2 χ′ωE/F o λ

′ = | |1/2 χωE/F o π1,χ′ωE/F
+ | |1/2 χωE/F o π2,χ′ωE/F

= | |1/2 χ′ωE/F o π1,χωE/F + | |1/2 χ′ωE/F o π2,χωE/F .

Furthermore

| |1/2 χωE/F o π1,χ′ωE/F
= Lg(| |1/2 χωE/F ;π1,χ′ωE/F

) + δ,

| |1/2 χωE/F o π2,χ′ωE/F
= Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′)

+ Lg(| |1/2 χ′ωE/F ;π1,χωE/F ),

| |1/2 χ′ωE/F o π1,χωE/F = Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) + δ,

| |1/2 χ′ωE/F o π2,χωE/F = Lg(| |1/2 χωE/F ; | |1/2 χωE/F ;λ′)

+ Lg(| |1/2 χωE/F ;π′1,χωE/F ),
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where δ = ̂Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′) is square-integrable. Moreover, Lg(| |1/2

χωE/F ; | |1/2 χ′ωE/F ;λ′), Lg(| |1/2 χωE/F ;π1,χ′ωE/F
) and Lg(| |1/2 χ′ωE/F ;π1,χωE/F )

are unitary.

Proof. — Clearly Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′), Lg(| |1/2 χωE/F ;π′1,χωE/F )
and Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) are all the non-tempered irreducible subquotients of
| |1/2 χωE/F× | |1/2 χ′ωE/F o λ

′.
Lg(| |1/2 χωE/F ;π1,χ′ωE/F

) is a subquotient of | |1/2 χωE/F o π1,χ′ωE/F
.

Consider the Jacquet restrictions of

| |1/2 χωE/F o π1,χ′ωE/F
, | |1/2 χ′ωE/F o π1,χωE/F and | |1/2 χ′ωE/F o π2,χωE/F

with respect to the minimal parabolic subgroup:

smin(| |1/2χωE/F o π1,χ′ωE/F
) =

| |1/2 χωE/F⊗ | |
1/2 χ′ωE/F ⊗ λ

′+ | |1/2 χ′ωE/F⊗ | |
1/2 χωE/F ⊗ λ

′

+ | |−1/2 χωE/F⊗ | |
1/2 χ′ωE/F ⊗ λ

′+ | |1/2 χ′ωE/F⊗ | |
−1/2 χωE/F ⊗ λ

′.

As Lg(| |1/2 χωE/F ;π1,χ′ωE/F
) is non-tempered, smin(Lg(| |1/2 χωE/F ;π1,χ′ωE/F

))
must contain the irreducible subquotient | |−1/2 χωE/F⊗ | |1/2 χ′ωE/F ⊗ λ

′.

smin( | |1/2 χ′ωE/F o π1,χωE/F ) =

| |1/2 χ′ωE/F⊗ | |
1/2 χωE/F ⊗ λ

′+ | |1/2 χωE/F⊗ | |
1/2 χ′ωE/F ⊗ λ

′

+ | |−1/2 χ′ωE/F⊗ | |
1/2 χωE/F ⊗ λ

′+ | |1/2 χωE/F⊗ | |
−1/2 χ′ωE/F ⊗ λ

′, and

smin( | |1/2 χ′ωE/F o π2,χωE/F ) =

| |1/2 χ′ωE/F⊗ | |
−1/2 χωE/F ⊗ λ

′+ | |−1/2 χωE/F⊗ | |
1/2 χ′ωE/F ⊗ λ

′

+ | |−1/2 χ′ωE/F⊗ | |
−1/2 χωE/F ⊗ λ

′+ | |−1/2 χωE/F⊗ | |
−1/2 χ′ωE/F ⊗ λ

′.

The irreducible subquotient | |−1/2 χωE/F⊗ | |1/2 χ′ωE/F ⊗ λ′ does appear in
smin(| |1/2 χ′ωE/F o π2,χωE/F ), but not in smin(| |1/2 χ′ωE/F o π1,χωE/F ). Hence
Lg(| |1/2 χωE/F ;π1,χ′ωE/F

) is also a subquotient of | |1/2 χ′ωE/F o π2,χωE/F .
Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) is a subquotient of | |1/2 χ′ωE/F o π1,χωE/F . In the

same manner as above we find that Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) is also a subquotient
of | |1/2 χωE/F o π2,χ′ωE/F

.
π2,χωE/F is a quotient of | |1/2 χωE/F o λ′. Hence | |1/2 χ′ωE/F o π2,χωE/F is

a quotient of | |1/2 χωE/F× | |1/2 χ′ωE/F o λ′. π2,χ′ωE/F
is a quotient of | |1/2

χ′ωE/F o λ′, hence | |1/2 χωE/F o π2,χ′ωE/F
is a quotient of | |1/2 χωE/F× | |1/2

χ′ωE/F o λ′. Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′) is the unique irreducible quotient of
| |1/2 χωE/F× | |1/2 χ′ωE/F oλ

′. Hence Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′) is a quotient
of | |1/2 χ′ωE/F o π2,χωE/F and of | |1/2 χωE/F o π2,χ′ωE/F

.
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A tempered representation is the subquotient of a representation induced from
a square-integrable representation of a parabolic subgroup. Here, for i = 0, 1, 2,
IndMi

M0
(| |1/2 χωE/F⊗ | |1/2 χ′ωE/F ⊗ λ′) does not contain any square-integrable

subquotient. Hence any irreducible subquotient of | |1/2 χωE/F× | |1/2 χ′ωE/F o λ′

other than Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′), Lg(| |1/2 χωE/F ;π′1,χωE/F ) and Lg(| |1/2

χ′ωE/F ;π1,χωE/F ) must be square-integrable.
smin(| |1/2 χωE/F o π1,χ′ωE/F

) contains only one negative subquotient, | |−1/2

χωE/F⊗ | |1/2 χ′ωE/F⊗λ
′. Hence Lg(| |1/2 χωE/F ;π1,χ′ωE/F

) is the only non-tempered
irreducible subquotient of | |1/2 χωE/F o π1,χ′ωE/F

.
Let δ denote a square-integrable irreducible subquotient of | |1/2 χωE/Foπ1,χ′ωE/F

.
Looking at Jacquet modules we find that δ is also a subquotient of | |1/2 χ′ωE/F o
π1,χωE/F .

So far we have seen:

| |1/2 χωE/F o π1,χ′ωE/F
= Lg(| |1/2 χωE/F ;π1,χ′ωE/F

) + δ +A1,

| |1/2 χωE/F o π2,χ′ωE/F
= Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′)

+ Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) +A2,

| |1/2 χ′ωE/F o π1,χωE/F = Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) + δ +A3,

| |1/2 χ′ωE/F o π2,χωE/F = Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′)

+ Lg(| |1/2 χωE/F ;π1,χ′ωE/F
) +A4,

where A1, A2, A3 and A4 are sums of tempered representations. We will now show
that A1, A2, A3 and A4 are equal to 0.
smin(| |1/2 χωE/F o π2,χ′ωE/F

) does not contain any non-negative subquotients.
Hence by the Casselman square-integrability criterion [3], all irreducible subquo-
tients of | |1/2 χωE/F o π2,χ′ωE/F

are non-tempered. Since each subquotient in
smin(| |1/2 χωE/F oπ2,χ′ωE/F

) is of multiplicity one, Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′)
and Lg(| |1/2 χ′ωE/F ;π1,χωE/F ) are of multiplicity one in | |1/2 χωE/F o π2,χ′ωE/F

.
The irreducible subquotient | |−1/2 χωE/F⊗ | |1/2 χ′ωE/F ⊗ λ′ in smin(Lg(| |1/2

χωE/F ;π1,χ′ωE/F
)) does not appear in smin(| |1/2 χωE/F oπ2,χ′ωE/F

). Hence Lg(| |1/2

χωE/F ;π1,χ′ωE/F
) is no subquotient of | |1/2 χωE/F o π2,χ′ωE/F

.
Equivalently we obtain that all irreducible subquotients of | |1/2 χ′ωE/F oπ2,χωE/F

are non-tempered, Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′) and Lg(| |1/2 χωE/F ;π1,χ′ωE/F
)

are of multiplicity one and Lg(| |1/2 χωE/F ;π1,χ′ωE/F
) is no subquotient of | |1/2

χ′ωE/F oπ2,χωE/F . By the Aubert duality, | |1/2 χωE/F oπ1,χ′ωE/F
and | |1/2 χ′ωE/F o

π1,χωE/F do not have any other subquotients.



UNITARY REPRESENTATIONS OF P-ADIC U(5) 125

We obtain that δ = ̂Lg(| |1/2 χωE/F ; | |1/2 χ′ωE/F ;λ′) and

Lg(| |1/2 χωE/F ;π1,χ′ωE/F
) = ̂Lg(| |1/2 χ′ωE/F ;π1,χωE/F ).

χωE/F ×χ′ωE/F oλ
′ is irreducible by Theorem 5.1 and unitary. For 0 < α1, α2 <

1/2, | |α1 χωE/F× | |α2 χ′ωE/F o λ′ is irreducible by Theorem 5.2 and unitary by
Theorem 7.13 (1). By [14], all irreducible subquotients of | |1/2 χωE/F× | |1/2
χ′ωE/F o λ

′ are unitary. �

7. Irreducible unitary representations of U(5), in terms of
Langlands quotients

7.1. Representations with cuspidal support in M0, fully-induced. For any
χωE/F ∈ XωE/F , let π1,χωE/F be the unique irreducible square-integrable subquo-
tient of | |1/2 χωE/F o λ′. Let χ1F∗ ∈ X1F∗ . Recall that χ1F∗ = σ1,χ1F∗

⊕ σ2,χ1F∗
,

where σ1,χ1F∗
and σ2,χ1F∗

are tempered [10].

Proposition 7.1. — Let 0 < α2 6 α1, α > 0. Let χ1, χ2 and χ be unitary
characters of E∗. The following list exhausts all irreducible hermitian representa-
tions of U(5) with cuspidal support in M0:

(0) tempered representations of U(5),
(1) Lg(| |α1 χ1; | |α2 χ2;λ′) where χ1, χ2 ∈ XNE/F (E∗) or α1 = α2 and χ1(x) =

χ−1
2 (x) ∀x ∈ E∗,

(2) Lg(| |α χ1;χ2 o λ′) where χ1 ∈ XNE/F (E∗) and χ2 /∈ X1F∗ ,
(3) Lg(| |α χStGL2 ;λ′) where χ ∈ XNE/F (E∗),
(4) Lg(| |α χ ; λ′ (det) StU(3)), Lg(| |α χ ; π1,χωE/F ), Lg(| |α χ ; σ1,χ1F∗

) and
Lg(| |α χ;σ2,χ1F∗

), where χ ∈ XNE/F (E∗).

Outline of the proof: 0. Tempered representations are unitary, hence hermitian.
1.-4. Let λi, for i = 0, 1, 2, be representations of the Levi subgroups M0,M1 and

M2. By [3],
∼

IndU(5)
Mi

(λi) ∼= IndU(5)
Mi

(λi), for i = 0, 1, 2, is equivalent to the existence

of w ∈ W such that
∼
λi = wλi for i = 0, 1, 2. This holds also for the Langlands

quotients, and the proof is immediate. �

7.1.1. Irreducible subquotients of χ1 × χ2 o λ′. Let χ1, χ2 be unitary characters of
E∗.

• All irreducible subquotients of χ1 × χ2 o λ′ are tempered, hence unitary.
• Lg(| |α1 χ1; | |α2 χ2;λ′), 0 < α2 6 α1, χ1 /∈ XNE/F (E∗) or χ2 /∈ XNE/F (E∗).

Theorem 7.2. — Let χ1, χ2 be unitary characters of E∗ with χ1 /∈ XNE/F (E∗)
or χ2 /∈ XNE/F (E∗).

(1) Let 0 < α2 6 α1. Let α1 6= α2 or ∃x ∈ E∗ s. t.χ1(x) 6= χ−1
2 (x). Lg(| |α1

χ1; | |α2 χ2;λ′) is non-unitary.
(2) Let 0 < α1 = α2 and χ1(x) = χ−1

2 (x) ∀x ∈ E∗. Then Lg(| |α1 χ1; | |α2

χ2;λ′) is unitary for 0 < α1 = α2 6 1/2, and Lg(| |α1 χ1; | |α2 χ2;λ′) is
non-unitary for α > 1/2.
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Proof. —
(1) Let α1 6= α2 or there exists x ∈ E∗ such that χ1(x) 6= χ−1

2 (x). The
representations | |α1 χ1× | |α2 χ2 o λ′ are not hermitian, by [3] 3.1.2.
Lg(| |α1 χ1; | |α2 χ2;λ′) is not hermitian, hence not unitary.

(2) Let α1 = α2 and χ1(x) = χ−1
2 (x) for all x ∈ E∗. Representations | |α1

χ1× | |α2 χ2 o λ′ are hermitian. Let α1 = α2 < 1/2 and χ1(x) = χ−1
2 (x)

for all x ∈ E∗. Representations | |α1 χ1× | |α2 χ2 o λ′ are irreducible by
Theorem 5.2 and equal to their Langlands quotients Lg(| |α1 χ1; | |α2 χ2;λ′).
χ1×χ2oλ′ is irreducible by Theorem 5.1 and unitary. For α1 = α2 < 1/2,
representations Lg(| |α1 χ1; | |α2 χ2;λ′) form a continuous 1-parameter
family of irreducible hermitian representations that we realize on the same
vector space V (for a detailed version of this argument in a similar case
see the proof of Theorem 7.4). By Remark 3.1, Lg(| |α1 χ1; | |α2 χ2;λ′) is
unitary for α1 = α2 < 1/2. For α1 = α2 = 1/2 and χ1(x) = χ−1

2 (x) for
all x ∈ E∗, | |1/2 χ1× | |1/2 χ2 o λ′ is reducible by Theorem 5.2. By [14],
Lg(| |1/2 χ1; | |1/2 χ2;λ′) is unitary.

Let α1 = α2 > 1/2 and χ1(x) = χ−1
2 (x) for all x ∈ E∗. Representations

| |α1 χ1× | |α2 χ2 o λ′ are irreducible by Theorem 5.2 and equal to their
Langlands quotients Lg(| |α1 χ1; | |α2 χ2;λ′). By Remark 3.1 and Lemma
3.3 Lg(| |α1 χ1; | |α2 χ2;λ′) is non-unitary for α1 = α2 > 1/2. �

7.1.2. Lg(| |α χ1;χ2 o λ′), α > 0, χ1 /∈ XNE/F (E∗) or χ2 /∈ XNE/F (E∗). Let
χ1F∗ ∈ X1F∗ . Recall that XNE/F (E∗) = 1 ∪XωE/F ∪X1F∗ .

Theorem 7.3. — (1) Let α > 0. Let χ1 /∈ XNE/F (E∗) and χ2 /∈ X1F∗ .
Then Lg(| |α χ1;χ2 o λ′) is non-unitary.

(2) Let α > 0. Let χ1 /∈ XNE/F (E∗). Then Lg(| |α χ1;σ1,χ1F∗
) and Lg(| |α

χ1;σ2,χ1F∗
) are non-unitary.

(3) Let α > 0. Let χ1 ∈ XNE/F (E∗) and χ2 /∈ XNE/F (E∗).
(3.1) Let χ1 = 1. Let 0 < α 6 1. Lg(| |α 1;χ2 o λ′) is unitary.

Let α > 1. Lg(| |α 1;χ2 o λ′) is non-unitary.
(3.2) Let χ1 ∈ XωE/F . Let 0 < α 6 1/2. Lg(| |α χωE/F ;χ2 o λ′) is unitary.

Let α > 1/2. Lg(| |α χωE/F ;χ2 o λ′) is non-unitary.
(3.3) Let χ1 ∈ X1F∗ . Let α > 0. Lg(| |α χ1F∗ ;χ2 o λ′) is non-unitary.

Proof. —
(1) For α > 0, representations | |α χ1×χ2oλ′ are not hermitian. By [3] 3.1.2,

Lg(| |α χ1;χ2 o λ′) is not hermitian, hence not unitary.
(2) For α > 0, | |α χ1 o σ1,χ1F∗

and | |α χ1 o σ2,χ1F∗
are not hermitian. By [3]

Lg(| |α χ1;σ1,χ1F∗
) and Lg(| |α χ1;σ2,χ1F∗

) are not hermitian and hence
non-unitary.

(3) (3.1) 1×χ2oλ′ is irreducible by Theorem 5.1 and unitary. For 0 < α < 1,
representations | |α 1 × χ2 o λ′ are irreducible by Theorem 5.4 and
equal to their Langlands quotient Lg(| |α 1;χ2 o λ′). By Remark 3.1
these Langlands quotients are unitary. For α = 1, | | 1 × χ2 o λ′

reduces for the first time, by Theorem 5.4. By [14] Lg(| | 1;χ2oλ′) is
unitary. For α > 1, representations | |α 1×χ2 o λ′ are irreducible by
Theorem 5.4 and equal to their Langlands quotient Lg(| |α 1;χ2oλ′).
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By Remark 3.1 and Lemma 3.3 these Langlands quotients are non-
unitary.

(3.2) χωE/F×χ2oλ′ is irreducibly by Theorem 5.1 and unitary. For 0 < α <

1/2, representations | |α χωE/F × χ2 o λ′ are irreducible by Theorem
5.4 and equal to their Langlands quotient Lg(| |α χωE/F ;χ2 o λ′).
By Remark 3.1 these Langlands quotients are unitary. For α = 1/2,
| |1/2 χωE/F × χ2 o λ′ reduces for the first time, by Theorem 5.4. By
[14] Lg(| |1/2 χωE/F ;χ2 o λ′) is unitary. For α > 1/2, representations
| |α χωE/F × χ2 o λ′ are irreducible by Theorem 5.4 and equal to
their Langlands quotient Lg(| |α χωE/F ;χ2oλ′). By Remark 3.1 and
Lemma 3.3 these Langlands quotients are non-unitary.

(3.3) For α > 0, representations | |α χ1F∗ × χ2 o λ′ are irreducible by
Theorem 5.4 and equal to their Langlands quotient Lg(| |α χ1F∗ ;χ2o
λ′). By Remark 3.1 and Lemma 3.3 these Langlands quotients are
non-unitary. �

We now take χ1, χ2 ∈ XNE/F (E∗).

7.1.3. Lg(| |α1 1; | |α2 1;λ′), 0 < α2 6 α1, Lg(| |α 1; 1o λ′), α > 0.

Theorem 7.4. — (1) Let 0 < α2 6 α1 6 1 and α1 + α2 6 1. Then
Lg(| |α1 1; | |α2 1;λ′) is unitary.

(2) Let 0 < α2 6 α1, α1 + α2 > 1, (α1, α2) 6= (2, 1). If α1 = 1, then let
α2 /∈ (0, 1]. Then Lg(| |α1 1; | |α2 1;λ′) is non-unitary.
(2.1) Lg(| |2 1; | | 1;λ′) = 1U(5) is unitary.

(3) For 0 < α 6 1, Lg(| |α 1; 1o λ′) is unitary.
(4) For α > 1,Lg(| |α 1; 1o λ′) is non-unitary.

Proof. —
(1) 1× 1oλ′ is irreducible by Theorem 5.1 and unitary. Let 0 < α2 6 α1. For

α1 +α2 < 1, representations | |α1 1× | |α2 1oλ′ are irreducible by Theorem
5.2, hence equal to Lg(| |α1 1; | |α2 1;λ′).

We will now construct a continuous one-parameter family of hermitian
representations. Let 0 < α2 6 α1 be such that α1 + α2 6 1. Let πα1,α2

denote the two-parameter family of hermitian representations | |α1 1× | |α2

1o λ′. Let Vα1,α2 be the vector space of πα1,α2 .
Recall the Levi decomposition P0 = M0N0, where P0 is the minimal

parabolic subgroup of U(5), M0 = {

 x 0
y
k
y−1

0 x−1

, x, y ∈ E∗, k ∈ E1}

is the minimal Levi subgroup and N0 the unipotent radical of P0.
Let (π, V ) be the extension to P0 of the representation 1⊗ 1⊗ λ′ of M0.

Let δP0 denote the modulus character of P0, and put

V0,0 = {f : G→ V : f is smooth and f(pg) = δP0(p)π(p)f(g)∀g ∈ G},
Vα1,α2 = {h : G→ V : h is smooth and for all g ∈ G

h(pg) = δP0(p) | x |α1 | y |α2 π(p)h(g)},



128 C. Schoemann

where p ∈ P0, p =

 x − ∗
y |
k

| y−1

0 − x−1

 , x, y ∈ E∗, k ∈ E1, ∗ ∈ E. Let

O denote the ring of integers of E. | |: E∗ → F ∗ is unramified, hence
(x, y) 7→| x |α1 | y |α2 for x, y ∈ E∗ is trivial on E1 × E1 ∼= O∗ × O∗.
Let K := U(O); this is a maximal compact subgroup of G. We have
G = KP0. Let f ∈ V0,0. There exists a unique extension of f|K : G → V
to a function h ∈ Vα1,α2 , so f|K = h|K . This induces an isomorphism
Tα1,α2 : V0,0

∼→ Vα1,α2 . Via the composition with Tα1,α2 we consider all
representations πα1,α2 in V0,0.

Let w ∈W be the longest element of the Weyl group. Let

A(w, λ) :| |α1 1× | |α2 1o λ′ →| |−α1 1× | |−α2 1o λ′

be the standard long intertwining operator.
On V0,0 we define a set of non-degenerate hermitian forms 〈 , 〉α1,α2 by

〈f, h〉α1,α2 =
∫
U(O)

A(w, λ)f(k)h(k)dk, f, h ∈ V0,0,

such that 〈 , 〉α1,α2 is invariant by T−1
α1,α2

πα1,α2Tα1,α2 .
Fix α1 and α2 such that α1 + α2 = 1. Let πt = πtα1,tα2 , for t ∈ [0, 1],

denote a continuous one-parameter family of hermitian representations. Let
Vt be the vector space of πt. Via the isomorphism Tt : V0

∼→ Vt, we consider
all representations πt in V0, as before.

Choose a real polynomial p(t), such that A(t) = p(t)A(w, λ) is holomor-
phic and non-zero for t ∈ [0, 1]. So for the one-parameter family of repre-
sentations πt one obtains, on the same space V0, a set of non-degenerate
hermitian forms 〈 , 〉t given by

〈f, h〉t =
∫
U(O)

A(t)f(k)h(k)dk, f, h ∈ V0,

such that 〈 , 〉t is invariant under T−1
t πtTt.

〈 , 〉0 is positive definite, hence by Remark 3.1 〈 , 〉t is positive definite
until | |tα1 1× | |tα2 oλ′ reduces for the first time, for t = 1. By [14], for
t = 1, the irreducible subquotients of | |α1 1× | |α2 1oλ′ are unitary. Hence
for 0 < α2 6 α1 6 1, α1 + α2 6 1, the Langlands quotients Lg(| |α1 1; | |α2

1;λ′) are unitary.
(2) and 2.1. | |2 1× | | 1oλ′ is reducible.λ′(det) StU(3) is the unique irreducible

square-integrable subquotient of | | 1oλ′ [10]. By [2, p.915] the subquotient
| |3/2 1GL2 o λ′ is reducible and has the subquotients 1U(5) = Lg(| |2
1; | | 1;λ′) and Lg(| |2 1;λ′(det) StU(3)). 1U(5) = Lg(| |2 1; | | 1;λ′) is
unitary, Lg(| |2 1;λ′(det) StU(3)) is non-unitary ([2]). For 1/2 < α < 3/2,
representations | |α 1GL2 o λ′ are irreducible by Theorem 5.5, they form
a continuous one-parameter family of irreducible hermitian representations
on the space Vα. Like before we identify the vector spaces Vα for 1/2 <
α < 3/2. For α = 3/2, the irreducible subquotient Lg(| |2 1;λ′(det) StU(3))
of | |3/2 1GL2 o λ′ is not unitary [2]. Hence, by [14] and by Remark 3.1,
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| |α 1GL2 o λ′ = Lg(| |α1 1; | |α2 1;λ′) is non-unitary for 1/2 < α < 3/2,
that is for 1 < α1 < 2, α1 − α2 = 1.

By [2, p.915] the subquotient | |2 1 o λ′(det)1U(3) of the representation
| |2 1× | | 1 o λ′ is reducible. It has the subquotients 1U(5) = Lg(| |2
1; | | 1;λ′) and Lg(| |3/2 StGL2 ;λ′). 1U(5) is unitary, Lg(| |3/2 StGL2 ;λ′) is
non-unitary [2].

Let 1 < α < 2. Representations | |α 1 o λ′(det)1U(3) are irreducible by
Theorem 5.7, they form a continuous one-parameter family of irreducible
hermitian representations on the space Vα. Similar as before we identify
Vα for 1 < α < 2. The irreducible subquotient Lg(| |3/2 StGL2 ;λ′) of
| |2 1 o λ′(det)1U(3) is non-unitary [2]. Hence by [14] and by Remark 3.1
representations | |α 1o λ′(det)1U(3) = Lg(| |α1 1; | |1 1;λ′) are non-unitary
for 1 = α2 < α1 = α < 2.

Let 1 < α1 < 2, 0 < α2 < 1, α1 − α2 < 1. | |α1 1× | |α2 1 o λ′

is irreducible by Theorem 5.2 and equal to its own Langlands quotient
Lg(| |α1 1; | |α2 1;λ′). Fix 0 < α2 < 1 and let 1 < α1 6 α2 + 1. Let πα1

denote the continuous one-parameter family of hermitian representations
| |α1 1× | |α2 1 o λ′ on the same vector space V . For α1 = α2 + 1
irreducible subquotients of the representations | |α1 1× | |α2 1oλ′ are non-
unitary, as seen in the previous paragraph. By [14] and by Remark 3.1 the
Langlands quotients Lg(| |α1 1; | |α2 1;λ′) are non-unitary. (II in Figure 7.1
on page 130)

Let α1 > 2, α1−α2 = 1. Lg(| |α1 1; | |α2 1;λ′) is non-unitary by Remark
3.1 and Lemma 3.3. For α1 > 2, α2 = 1, Lg(| |α1 1; | |α2 1;λ′) is non-unitary
by the same argument.

The same holds for Lg(| |α1 1; | |α2 1;λ′), where α1 > 1, 0 < α2 < 1,
α1 − α2 > 1, for 1 < α2 6 α1, α1 − α2 < 1 and for α1 > 2, α1 − α2 > 1
(III, IV, V in Figure 7.1 on page 130).

Let α1 = 1, α2 ∈ (0, 1]. We have no proof that Lg(| | 1; | |α2 1;λ′) is
non-unitary.

(3) 1 × 1 × λ′ is irreducible by Theorem 5.1 and unitary. For 0 < α < 1,
| |α 1×1oλ′ is irreducible by Theorem 5.4 and equal to its own Langlands
quotient Lg(| |α 1; 1oλ′). By Remark 3.1 these representations are unitary.
For α = 1, | | 1× 1o λ′ reduces for the first time, hence Lg(| | 1; 1o λ′) is
unitary [14].

(4) For α > 1, | |α 1× 1o λ′ = Lg(| |α 1; 1o λ′) is irreducible by Theorem 5.4
and by Remark 3.1 and Lemma 3.3 non-unitary. �

7.1.4. Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′), 0 < α2 6 α1, Lg(| |α χωE/F ;χωE/F o λ′),
α > 0, χωE/F ∈ XωE/F . Let χωE/F ∈ XωE/F .

Theorem 7.5. — (1) Let 0 < α2 6 α1 6 1/2. Then Lg(| |α1 χωE/F ; | |α2

χωE/F ;λ′) is unitary.
(2) Let α1 > 1/2, α2 6 α1, (α1, α2) 6= (3/2, 1/2). If 0 < α2 < 1/2, then let

α1 /∈ (1/2, 1− α2]. Then Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′) is non-unitary.
(3) Let 0 < α 6 1/2. Then Lg(| |α χωE/F ;χωE/F o λ′) is unitary.
(4) Let α > 1. Then Lg(| |α χωE/F ;χωE/F o λ′) is non-unitary.
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Figure 1

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.1. Let α1, α2 > 0, Figure 1 shows lines and points of
reducibility of the representation | |α1 1× | |α2 1 o λ′ and the
unitary dual. Let 0 < α2 6 α1. Lg(| |α1 1; | |α2 1;λ′) is unitary for
0 < α2 6 α1 < 1, α1 + α2 6 1 and for α1 = 2, α2 = 1. Except for
α1 = 1, 0 < α2 6 1, it is non-unitary. Lg(| |α 1; 1 o λ′) is unitary
for 0 < α 6 1 and non-unitary for α > 1.

Proof. —
(1) χωE/F × χωE/F o λ′ is irreducible by Theorem 5.1 and unitary. For 0 <

α2 6 α1 < 1/2, | |α1 χωE/F× | |α2 χωE/F o λ′ is irreducible by Theorem
5.2 and equal to its Langlands quotient Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′).
Let α1 = 1/2 and fix 0 < α2 6 1/2. For t ∈ [0, 1], let π(t1/2,tα2) =: πt
denote the continuous one-parameter family of hermitian representations
| |t1/2 χωE/F× | |tα2 χωE/F o λ′. For t ∈ [0, 1) these representations are
equal to their own Langlands quotient Lg(| |t1/2 χωE/F ; | |tα2 χωE/F ;λ′) and
by Remark 3.1 unitary. For t = 1 the representations πt reduce for the first
time. By [14] Lg(| |1/2 χωE/F ; | |α2 χωE/F ;λ′) is unitary.

(2) Let 1 < α1 < 3/2 and let α1 − α2 = 1. Then | |α1 χωE/F× | |α2 χωE/F o λ′

is reducible by Theorem 5.2. The subquotients | |
α1+α2

2 χωE/F 1GL2 oλ′ are
irreducible by Theorem 5.5. They form a continuous 1-parameter family of
irreducible hermitian representations, that similar as before, we realize on
the same vector space V.

Let α1 = 3/2, α2 = 1/2. Then

| |
3/2+1/2

2 χωE/F 1GL2 o λ′ =| | χωE/F 1GL2 o λ′

reduces by Theorem 6.4. Let π1,χωE/F be the unique square-integrable
subquotient of | |1/2 χωE/F o λ′ [10]. By Theorem 1.1 and Remark 4.7 in
[7] the irreducible subquotient Lg(| |3/2 χωE/F ;π1,χωE/F ) of | | χωE/F 1GL2o

λ′ is non-unitary. By [14] and Remark 3.1 the representations | |
α1+α2

2

χωE/F 1GL2 o λ′, for 1 < α1 < 3/2 and α1 − α2 = 1, that are equal to
Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′), for 1 < α1 < 3/2 and α1 − α2 = 1, are
non-unitary.
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Let 1/2 < α1 < 3/2, α2 = 1/2. By Theorem 5.2 the representa-
tions | |α1 χωE/F× | |1/2 χωE/F o λ′ are reducible. Let π2,χωE/F be the
unique irreducible non-tempered subquotient of | |1/2 χωE/F o λ′ [10]. For
1/2 < α1 < 3/2, the representations | |α1 χωE/F o π2,χωE/F are irreducible
by Theorem 5.9 and equal to the Langlands quotient Lg(| |α1 χωE/F ; | |1/2
χωE/F ;λ′). They form a 1-parameter family of irreducible hermitian rep-
resentations, that we realise on the same vector space V . For α1 = 3/2,
| |3/2 χωE/F o π2,χωE/F reduces by Theorem 6.4, and by Theorem 1.1 and
Remark 4.7 in [7] its irreducible subquotient Lg(| | χωE/F StGL2 ;λ′) is non-
unitary. By [14] and Remark 3.1

| |α1 χωE/F o π2 = Lg(| |α1 χωE/F ; | |1/2 χωE/F ;λ′)

is non-unitary for 1/2 < α1 < 3/2.
Representations | |α1 χωE/F× | |α2 χωE/F oλ′ in II,III,IV,V of Figure 7.2

on page 132 are irreducible by Theorem 5.2 and equal to their own Lang-
lands quotient Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′). The Langlands quotients
Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′) in II are non-unitary by [14] and Remark
3.1. Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′) in III, IV and V are non-unitary by
Remark 3.1 and Lemma 3.3.

(3) χωE/F × χωE/F o λ′ is irreducible by Theorem 5.1 and unitary. For 0 <

α < 1/2, | |α χωE/F × χωE/F o λ′ is irreducible by Theorem 5.4 and equal
to its Langlands quotient Lg(| |α χωE/F ;χωE/F o λ′). By Remark 3.1 these
Langlands quotients are unitary.

For α = 1/2, | |1/2 χωE/F × χωE/F o λ′ reduces for the first time (5.4).
By [14] Lg(| |1/2 χωE/F ;χωE/F o λ′) is unitary.

(4) For α > 1, | |α χωE/F ×χωE/F oλ′ is irreducible by Theorem 5.4 and equal
to its Langlands quotient Lg(| |α χωE/F ;χωE/F ;λ′). By Remark 3.1 and
Lemma 3.3 these Langlands quotients are non-unitary. �

Remark 7.6. — Unfortunately we do not have a proof that the representation
Lg(| |3/2 χωE/F× | |1/2 χωE/F o λ′) is unitary. It is the Aubert dual of a square-
integrable representation and is expected to be unitary, see Theorem 6.4. See [6],
where the proof is given for orthogonal and symplectic groups.

Remark 7.7. — In the Grothendieck group of the category of admissible repre-
sentations of finite length one has

| | χωE/F × χωE/F o λ
′ =| |1/2 χωE/F StGL2 oλ′+ | |1/2 χωE/F 1GL2 o λ′.

If we assume that | |1/2 χωE/F StGL2 oλ′ and | |1/2 χωE/F 1GL2 o λ′ are irreducible
(see Remark 6.5), we are able to prove that Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′) is non-
unitary for 1/2 < α1 < 1, α2 6 1 − α1, and that Lg(| |α χωE/F ;χωE/F ;λ′) is
non-unitary for 1/2 < α 6 1.

Let 1/2 < α1 < 1, α2 = 1−α1. The representations | |α1 χωE/F× | |α2 χωE/F oλ′

are reducible by Theorem 5.2, and the subquotient | |
α1−α2

2 χωE/F 1GL2 o λ′ is
irreducible by Theorem 5.5. It is equal to Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′). By
assumption | |1/2 χωE/F 1GL2 o λ′ is irreducible, it is equal to Lg(| | χωE/F ;χωE/F o
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λ′). Hence we can extend the argument 2 in the proof of Theorem 7.5: Lg(| |α1

χωE/F ; | |α2 χωE/F ;λ′) is non-unitary for 1/2 < α1 < 1 and α2 = 1 − α1 and for
1 < α1 < 3/2, α2 = α1 − 1, and Lg(| | χωE/F ;χωE/F o λ′) is non-unitary.

Let 1/2 < α1 < 1, α2 < 1 − α1. By Theorem 5.2 the representations | |α1

χωE/F× | |α2 χωE/F oλ′ are irreducible, they are equal to their Langlands quotient
Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′) (I in Figure 7.2, page 132). By [14] and by Remark
3.1 these Langlands quotients are non-unitary.

Let 1/2 < α < 1. By Theorem 5.4 representations | |α χωE/F × χωE/F o λ′ are
irreducible, they are equal to their Langlands quotient Lg(| |α χωE/F ;χωE/F o λ′).
| | χωE/F × χωE/F o λ′ is reducible by Theorem 5.4, Lg(| | χωE/F × χωE/F ;λ′)
is non-unitary by the foregoing argument. By [14] and by Remark 3.1 Lg(| |α
χωE/F ;χωE/F o λ′) is non-unitary for 1/2 < α < 1.

α1

α2

1/2

1/2

1

1

3/2

3/2

• •····· · ··

···· ··

··

Figure 2

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

I II III

IV

V

Figure 7.2. Let α1, α2 > 0, let χωE/F ∈ XωE/F . Figure 2
shows lines and points of reducibility of the representation | |α1

χωE/F× | |α2 χωE/F o λ′ and the unitary dual. Let 0 < α2 6 α1.
Lg(| |α1 χωE/F ; | |α2 χωE/F ;λ′) is unitary for 0 < α2 6 α1 6 1/2.
Except for 1/2 < α1 < 1, 0 < α2 6 1 − α1 and for α1 = 3/2,
α2 = 1/2, it is non-unitary. Lg(| |α χωE/F ;χωE/F o λ′) is unitary
for 0 < α 6 1/2. For α > 1 it is non-unitary.

7.1.5. Lg(| |α1 χ1F∗ ; | |α2 χ1F∗ ;λ′), 0 < α2 6 α1.

Theorem 7.8. — Let χ1F∗ ∈ X1F∗ .
(1) Let 0 < α2 6 α1, α1 + α2 > 1. Then Lg(| |α1 χ1F∗ ; | |α2 χ1F∗ ;λ′) is

non-unitary.
(2) Let 0 < α2 6 α1, α1 +α2 = 1. Then Lg(| |α1 χ1F∗ ; | |α2 χ1F∗ ;λ′) is unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.3 on
page 133. �

Remark 7.9. — Let 0 < α2 6 α1, α1 + α2 < 1. We do not have a proof that
Lg(| |α1 χ1F∗ ; | |α2 χ1F∗ ;λ′) is non-unitary.
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Figure 3

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.3. Let α1, α2 > 0, let χ1F∗ ∈ X1F∗ . Figure 3 shows
lines and points of reducibility of the representation | |α1 χ1F∗ ×
| |α2χ1F∗ o λ′ and the unitary dual. Let 0 < α2 6 α1. Then
Lg(| |α1 χ1F∗ ; | |α2 χ1F∗ ;λ′) is unitary for α1 + α2 = 1. It is
non-unitary for α1 + α2 > 1.

In the following Theorems 7.10, 7.11 and 7.12, when speaking of the Langlands
quotient, we will exceptionally allow that α1 < α2 for ease of notation.

7.1.6. Lg(| |α1 1; | |α2 χωE/F ;λ′), α1, α2 > 0, Lg(| |α 1;χωE/F o λ′), Lg(| |α
χωE/F ; 1 o λ′), α > 0, χωE/F ∈ XωE/F . Let χωE/F ∈ XωE/F . Let π1,χωE/F de-
note the unique square-integrable subquotient and let π2,χωE/F denote the unique
non-tempered subquotient of | |1/2 χωE/F o λ′.

Theorem 7.10. — Let χωE/F ∈ XωE/F .
(1) Let 0 < α1 6 1, 0 < α2 6 1/2. Lg(| |α1 1; | |α2 χωE/F ;λ′) is unitary.
(2) Let α1 > 1, α2 > 0, or let 0 < α1 6 1, α2 > 1/2. Lg(| |α1 1; | |α2 χωE/F ;λ′)

is non-unitary.
(3) Let 0 < α 6 1. Lg(| |α 1;χωE/F o λ′) is unitary.
(4) Let α > 1. Lg(| |α 1;χωE/F o λ′) is non-unitary.
(5) Let α 6 1/2. Lg(| |α χωE/F ; 1o λ′) is unitary.
(6) Let α > 1/2. Lg(| |α χωE/F ; 1o λ′) is non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.4 on
page 134. �

7.1.7. Lg(| |α1 1; | |α2 χ1F∗ ;λ′), α1, α2 > 0, Lg(| |α χ1F∗ ; 1 o λ′), α > 0, χ1F∗ ∈
X1F∗ . Let χ1F∗ ∈ X1F∗ ,

Theorem 7.11. — (1) Let α1, α2 > 0. Lg(| |α1 1; | |α2 χ1F∗ ;λ′) is non-
unitary.

(2) Let α > 0. Lg(| |α χ1F∗ ; 1o λ′) is non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.5 on
page 134. �



134 C. Schoemann

α1

α2

1/2

1/2

1

1

•· · ····

··

··

Figure 4

− reducible; irreducible subquotients non-unitary
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Figure 7.4. Let α1, α2 > 0, let χωE/F ∈ XωE/F . Figure 4 shows
lines and points of reducibility of the representation | |α1 1× | |α2

χωE/F o λ′ and the unitary dual. Lg(| |α1 1; | |α2 χωE/F ;λ′) is
unitary for 0 < α1 6 1, 0 < α2 6 1/2. Otherwise it is non-unitary.
Lg(| |α 1;χωE/F oλ′) is unitary for 0 < α 6 1, Lg(| |α χωE/F ; 1oλ′)
is unitary for 0 < α 6 1/2. Otherwise these Langlands-quotients
are non-unitary.
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− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.5. Let α1, α2 > 0, let χ1F∗ ∈ X1F∗ . Figure 5 shows
lines and points of reducibility of the representation | |α1 1× | |α2

χ1F∗ o λ′ and the unitary dual. Lg(| |α1 1; | |α2 χ1F∗ ;λ′) is non-
unitary for all α1, α2 > 0. Lg(| |α χ1F∗ ; 1 o λ′) is non-unitary for
all α > 0.

7.1.8. Lg(| |α1 χωE/F ; | |α2 χ1F∗ ;λ′), α1, α2 > 0, Lg(| |α χ1F∗ ;χωE/F o λ′), α > 0,
χωE/F ∈ XωE/F , χ1F∗ ∈ X1F∗ . Let χωE/F ∈ XωE/F , let χ1F∗ ∈ X1F∗ .

Theorem 7.12. — (1) Let α1, α2 > 0. Lg(| |α1 χωE/F ; | |α2 χ1F∗ ;λ′) is
non-unitary.

(2) Let α > 0. Lg(| |α χ1F∗ ;χωE/F o λ′) is non-unitary.
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Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.6 on
page 135. �

α1

α2

1/2

1/2

1

1

•· · ···· ··

··

Figure 6

− reducible; irreducible subquotients non-unitary
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· irreducible non-unitary subquotient
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Figure 7.6. Let α1, α2 > 0, let χωE/F ∈ XωE/F , χ1F∗ ∈ X1F∗ .
Figure 6 shows lines and points of reducibility of the represen-
tation | |α1 χωE/F× | |α2 χ1F∗ o λ′ and the unitary dual.
Lg(| |α1 χωE/F ; | |α2χ1F∗ ;λ′) is non-unitary for all α1, α2 > 0.
Lg(| |α χ1F∗ ;χωE/F o λ′) is non-unitary for all α > 0.

7.1.9. Lg(| |α1 χωE/F ,1; | |α2 χωE/F ,2;λ′), 0 < α2 6 α1, Lg(| |α χωE/F ,1;χωE/F ,2 o
λ′), α > 0, χωE/F ,1, χωE/F ,2 ∈ XωE/F , χωE/F ,1 � χωE/F ,2.

Theorem 7.13. — Let χωE/F ,1, χωE/F ,2 ∈ XωE/F , such that χωE/F ,1 � χωE/F ,2.

(1) Let 0 < α2 6 α1 6 1/2. Lg(| |α1 χωE/F ,1; | |α2 χωE/F ,2;λ′) is unitary.
(2) Let α1 > 1/2, 0 < α2 6 α1. Lg(| |α1 χωE/F ,1; | |α2 χωE/F ,2 o λ′) is non-

unitary.
(3) Let 0 < α 6 1/2. Lg(| |α χωE/F ,1;χωE/F ,2 o λ′) is unitary.
(4) Let α > 1/2. Lg(| |α χωE/F ,1;χωE/F ,2 o λ′) is non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.7 on
page 136. �

7.1.10. Lg(| |α1 χ1F∗ ,1; | |α2 χ1F∗ ,2;λ′), 0 < α2 6 α1. Let χ1F∗ ,1, χ1F∗ ,2 ∈ X1F∗ ,
such that χ1F∗ � χ2F∗ .

Theorem 7.14. — Let α1, α2 > 0. Then Lg(| |α1 χ1F∗ ,1; | |α2 χ1F∗ ,2;λ′) is
non-unitary.

Proof. — The proof is similar to the proof of Theorem 7.4. See Figure 7.8 on
page 136. �



136 C. Schoemann

α1

α2

1/2

1/2

1

1

•· · ··

··

··

Figure 7

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

I II

III

Figure 7.7. Let α1, α2 > 0, let χωE/F ,1, χωE/F ,2 ∈ XωE/F , be
such that χωE/F ,1 � χωE/F ,2. Figure 7 shows lines and points of
reducibility of the representation | |α1 χωE/F ,1× | |α2 χωE/F ,2 o λ′

and the unitary dual. Lg(| |α1 χωE/F ,1; | |α2 χωE/F ,2;λ′) is unitary
for 0 < α2 6 α1 6 1/2. Otherwise it is non-unitary. Lg(| |α
χωE/F ,1;χωE/F ,2 o λ′) is unitary for 0 < α 6 1/2. Otherwise it is
non-unitary.

α1

α2

•· · ·· ··

··

Figure 8

− reducible; irreducible subquotients non-unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.8. Let α1, α2 > 0, let χ1F∗ ,1, χ1F∗ ,2 ∈ X1F∗ be such that
χ1F∗ ,1 � χ1F∗ ,2. Figure 8 shows lines and points of reducibility of
the representation | |α1 χ1F∗ ,1× | |α2 χ1F∗ ,2 o λ′ and the unitary
dual. Lg(| |α1 χ1F∗ ,1; | |α2 χ1F∗ ,2;λ′) is non-unitary for 0 < α2 6
α1.

7.2. Representations induced from M1, with cuspidal support in M0, not
fully-induced.

7.2.1. Irreducible subquotients of χStGL2 oλ′. Let χ be a unitary character of E∗.
As χStGL2 oλ′ is tempered unitary, all irreducible subquotients of χStGL2 oλ′

are tempered and unitary.
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Remark 7.15. — By Proposition 5.6 χStGL2 oλ′ is reducible if and only if χ =:
χωE/F ∈ XωE/F . χωE/F StGL2 oλ′ has two tempered subquotients.

7.2.2. Lg(| |α χStGL2 ;λ′), α > 0.

Theorem 7.16. — Let χ be a unitary character of E∗ such that χ /∈ XNE/F (E∗).
Lg(| |α χStGL2 ;λ′) is non-unitary for all α > 0.

Proof. — If χ /∈ XNE/F (E∗), the representations Lg(| |α χStGL2 ;λ′) are not
hermitian. �

Theorem 7.17. — (1) Let 0 < α 6 1/2. Lg(| |α StGL2 ;λ′) is unitary.
(2) Let α > 1/2. Lg(| |α StGL2 ;λ′) is non-unitary.

Proof. —
(1) Let 0 < α < 1/2. The representations | |α StGL2 oλ′ are irreducible

by Theorem 5.5. They form a continuous one-parameter family of ir-
reducible hermitian representations, that, similar as in Theorem 7.4, we
realize on the same vector space V . StGL2 oλ′ is irreducible by Proposi-
tion 5.6 and tempered, hence unitary. By Remark 3.1 the representations
| |α StGL2 oλ′ = Lg(| |α StGL2 ;λ′) are unitary for 0 < α < 1/2. By
Theorem 5.5 | |1/2 StGL2 oλ′ is reducible. By [14] Lg(| |1/2 StGL2 ;λ′) is
unitary.

(2) Let 1/2 < α < 3/2. The representations | |α StGL2 oλ′ are irreducible
by Theorem 5.5 and equal to their Langlands quotient Lg(| |α StGL2 ;λ′).
They form a continuous 1-parameter family of irreducible hermitian rep-
resentations, that we realize on the same vector space V . For α = 3/2,
Lg(| |3/2 StGL2 ;λ′) is a subquotient of the representation | |2 1× | |1 1o λ′
(Theorem 6.2). By results of Casselmann [2], page 915, it is non-unitary.
By [14] and Remark 3.1 Lg(| |α StGL2 ;λ′) is not unitary for 1/2 < α < 3/2.

The representations Lg(| |α StGL2 ;λ′), α > 3/2, form a continuous 1-
parameter family of irreducible hermitian representations. If there existed
α > 3/2 such that Lg(| |α StGL2 ;λ′) was unitary, then by Remark 3.1
Lg(| |α StGL2 ;λ′) would be unitary for all α > 3/2, in contradiction to
Lemma 3.3. (Figure 7.9, page 138). �

Theorem 7.18. — Let χωE/F ∈ XωE/F . Let α > 1/2. Lg(| |α χωE/F StGL2 ;λ′)
is non-unitary.

Proof. — Let 1/2 < α < 1. | |α χωE/F StGL2 oλ′ is irreducible by Theorem
5.5 and equal to its own Langlands quotient Lg(| |α χωE/F StGL2 ;λ′). For α = 1,
by Theorem 6.4 | | χωE/F StGL2 oλ′ is reducible, by Remark 4.7 in [7], Lg(| |
χωE/F StGL2 ;λ′) is non-unitary. By [14] and Remark 3.1 Lg(| |α χωE/F StGL2 ;λ′) is
not unitary for 1/2 < α < 1.

Let α > 1. | |α χωE/F StGL2 oλ′ is irreducible by Theorem 5.5 and equal to its
own Langlands quotient Lg(| |α χωE/F StGL2 ;λ′). If there existed α > 1 such that
Lg(| |α χωE/F StGL2 ;λ′) was unitary, then by Remark 3.1 Lg(| |α χωE/F StGL2 ;λ′)
would be unitary for all α > 1, in contradiction to Lemma 3.3. (Figure 7.10,
page 138) �
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Figure 7.9. Let α1, α2 > 0. Figure 9 shows lines and points
of reducibility of the representation | |α1 1× | |α2 1 o λ′. For
0 < α 6 1/2, Lg(| |α StGL2 oλ′) is unitary, for α > 1/2 it is
non-unitary.
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1/2

1/2

1

1
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• •····· · ··

·· ··
Lg(| |α χωE/F StGL2 ;λ′)

Figure 10

− reducible; irreducible subquotients non-unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.10. Let α1, α2 > 0, let χωE/F ∈ XωE/F . Figure 10
shows lines and points of reducibility of the representation | |α1

χωE/F × | |α2χωE/F o λ′. Let α > 1/2. Lg(| |α χωE/F StGL2 ;λ′) is
non-unitary.

Remark 7.19. — Let 0 < α < 1/2. Then | |α χωE/F StGL2 oλ′ is irreducible by
Theorem 5.5 and equal to its own Langlands quotient Lg(| |α χωE/F StGL2 ;λ′).
If we assume that | |1/2 χωE/F StGL2 oλ′ is irreducible and equal to Lg(| |1/2
χωE/F StGL2 ;λ′), see Remark 6.5, then we can extend the argument that Lg(| |α
χωE/F StGL2 ;λ′) is non-unitary to α > 0.

Theorem 7.20. — Let χ1F∗ ∈ X1F∗ .
Let 0 < α 6 1/2. Then Lg(| |α χ1F∗ StGL2 ;λ′) is unitary.
Let α > 1/2. Then Lg(| |α χ1F∗ StGL2 ;λ′) is non-unitary.
Proof. — The proof is similar to the proof of Theorem 7.17. See Figure 7.11 on

page 139. �
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Figure 7.11. Let α1, α2 > 0, let χ1F∗ ∈ X1F∗ . Figure 11 shows
lines and points of reducibility of the representation | |α1 χ1F∗ ×
| |α2χ1F∗ o λ′. For 0 < α 6 1/2, Lg(| |α χ1F∗ StGL2 ;λ′) is unitary,
for α > 1/2 it is non-unitary.

7.3. Representations induced from M2, with cuspidal support in M0, not
fully-induced.

7.3.1. Irreducible subquotients of χo τ , τ tempered non-cuspidal of U(3), not fully-
induced. Recall that λ′(det) StU(3) is the unique square-integrable subquotient of
| | 1 o λ′ [10]. Let χωE/F ∈ XωE/F . Let π1,χωE/F denote the unique square-
integrable irreducible subquotient of | |1/2 χωE/F o λ′. Let χ1F∗ ∈ X1F∗ . We have
χ1F∗ o λ′ = σ1,χ1F∗

⊕ σ2,χ1F∗
, where σ1,χ1F∗

and σ2,χ1F∗
are irreducible tempered

[10].
λ′(det) StU(3), π1,χωE/F , σ1,χ1F∗

and σ2,χ1F∗
are all non-cuspidal tempered rep-

resentations of U(3) that are not fully induced [10].
Let χ be a unitary character of E∗. The representations χ o λ′(det) StU(3),

χo π1,χωE/F , χo σ1,χ1F∗
and χo σ2,χ1F∗

are tempered, hence unitary. Hence all
their irreducible subquotients are tempered, hence unitary.

Remark 7.21. — By Proposition 5.8 χo λ′(det) StU(3) is reducible if and only if
χ = 1 or χ ∈ X1F∗ . By Proposition 5.10 χ o π1,χωE/F is reducible if and only if
χ ∈ X1F∗ . By Theorem 5.1 χ o σ1,χ1F∗

and χ o σ2,χ1F∗
are reducible if and only

if χ ∈ X1F∗ but χ � χ1F∗ .
Let χ1F∗ ∈ X1F∗ . 1 o λ′(det) StU(3), χ1F∗ o λ′(det) StU(3), χ1F∗ o π1,χωE/F ,

χ o σ1,χ1F∗
and χ o σ2,χ1F∗

, where χ ∈ X1F∗ but χ � χ1F∗ , have two tempered
subquotients (Propositions 5.8, 5.10 and Theorem 5.1).

7.3.2. Lg(| |α χ; τ), α > 0, τ tempered non-cuspidal of U(3), not fully-induced.
Recall that λ′(det) StU(3) is the unique square-integrable subquotient of | | 1 o
λ′ [10]. Let χωE/F ∈ XωE/F . Let π1,χωE/F denote the unique square-integrable
irreducible subquotient of | |1/2 χωE/F oλ′. Let χ1F∗ ∈ X1F∗ . We have χ1F∗ oλ′ =
σ1,χ1F∗

⊕ σ2,χ1F∗
, where σ1,χ1F∗

and σ2,χ1F∗
are irreducible tempered [10].

λ′(det) StU(3), π1,χωE/F , σ1,χ1F∗
and σ2,χ1F∗

are all non-cuspidal tempered rep-
resentations of U(3) that are not fully induced [10].
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Theorem 7.22. — Let χ /∈ XNE/F (E∗). Let α > 0. Lg(| |α χ;λ′(det) StU(3)),
Lg(| |α χ, π1,χωE/F ), Lg(| |α χ;σ1,χ1F∗

) and Lg(| |α χ;σ2,χ1F∗
) are non-unitary.

Proof. — The representations Lg(| |α χ ; λ′(det) StU(3)), Lg(| |α χ ; π1,χ1F∗
),

Lg(| |α χ;σ1,χ1F∗
) and Lg(| |α χ;σ2,χ1F∗

) are not hermitian, hence not unitary. �
Let χ ∈ XNE/F (E∗) = 1 ∪XωE/F ∪X1F∗ .
Let χωE/F , χ′ωE/F ∈ XωE/F , such that χ′ωE/F 6= χωE/F , and let χ1F∗ , χ′1F∗ ∈

X1F∗ , such that χ′1F∗ 6= χ1F∗ .

Theorem 7.23. — (1) Let α > 1. Lg(| |α 1;λ′(det) StU(3)) is non-unitary.
(2) Let 0 < α 6 1. Lg(| |α 1;π1,χωE/F ), Lg(| |α 1;σ1,χ1F∗

), Lg(| |α 1;σ2,χ1F∗
),

Lg(| |α χ1F∗ ;σ1,χ1F∗
) and Lg(| |α χ1F∗ ;σ2,χ1F∗

) are unitary.
(3) Let α > 1. Lg(| |α 1;π1,χωE/F ), Lg(| |α 1;σ1,χ1F∗

), Lg(| |α 1;σ2,χ1F∗
),

Lg(| |α χ1F∗ ;σ1,χ1F∗
) and Lg(| |α χ1F∗ ;σ2,χ1F∗

) are non-unitary.
(4) Let 0 < α 6 1/2. Lg(| |α χωE/F ;λ′(det) StU(3)), Lg(| |α χωE/F ;π1,χωE/F ),

Lg(| |α χ′ωE/F ;π1,χωE/F ), Lg(| |α χωE/F ;σ1,χ1F∗
) and Lg(| |α χωE/F ;σ2,χ1F∗

)
are unitary.

(5) Let α > 1/2. Then Lg(| |α χωE/F ;λ′(det) StU(3)), Lg(| |α χωE/F ;π1,χωE/F ),
Lg(| |α χ′ωE/F ;π1,χωE/F ), Lg(| |α χωE/F ;σ1,χ1F∗

) and Lg(| |α χωE/F ;σ2,χ1F∗
)

are non-unitary.
(6) Let α > 0. Lg(| |α χ1F∗ ;λ′(det) StU(3)), Lg(| |α χ1F∗ ;π1,χωE/F ), Lg(| |α

χ′1F∗ ;σ1,χ1F∗
), and Lg(| |α χ′1F∗ ;σ2,χ1F∗

) are non-unitary.

Proof. —
(1) Let 1 < α < 2. By Theorem 5.7 | |α 1 o λ′(det) StU(3) is irreducible

and equal to its Langlands quotient Lg(| |α 1;λ′(det) StU(3)). By [2] the
representation | |2 1 o λ′(det) StU(3) is reducible. By the same author
Lg(| |2 1;λ′(det) StU(3)) is non-unitary. By [14] and Remark 3.1 Lg(| |α
1;λ′(det) StU(3)) is non-unitary for 1 < α < 2.

Let α > 2. | |α 1 o λ′(det) StU(3) is irreducible by Theorem 5.7 and
equal to its Langlands quotient Lg(| |α 1;λ′(det) StU(3)). By Remark 3.1
and Lemma 3.3, Lg(| |α 1;λ′(det) StU(3)) is non-unitary for α > 2.

Let 0 < α 6 1. We have no proof that Lg(| |α 1;λ′(det) StU(3)) is
non-unitary. (Figure 7.12, page 142).

(2) The representations 1 o π1,χωE/F are irreducible by Proposition 5.10, rep-
resentations 1o σ1,χ1F∗

, 1o σ2,χ1F∗
, χ1F∗ o σ1,χ1F∗

and χ1F∗ o σ2,χ1F∗
are

irreducible by Theorem 5.1. All representations are unitary. For 0 < α < 1,
representations | |α 1o π1,χωE/F are irreducible by Theorem 5.9, represen-
tations | |α 1o σ1,χ1F∗

, | |α 1o σ2,χ1F∗
, | |α χ1F∗ o σ1,χ1F∗

and | |α χ1F∗ o
σ2,χ1F∗

are irreducible by Theorem 5.11. The representations are equal
to their own Langlands quotients Lg(| |α 1;π1,χωE/F ), Lg(| |α 1;σ1,χ1F∗

),
Lg(| |α 1;σ2,χ1F∗

), Lg(| |α χ1F∗ ;σ1,χ1F∗
) and Lg(| |α χ1F∗ ;σ2,χ1F∗

), re-
spectively. By Remark 3.1 these Langlands quotients are unitary. For
α = 1, | | 1 o π1,χωE/F , | | 1 o σ1,χ1F∗

, | | 1 o σ2,χ1F∗
, | | χ1F∗ o σ1,χ1F∗

and | | χ1F∗ o σ2,χ1F∗
reduce for the first time (Theorems 5.9 and 5.11).
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By [14] Lg(| | 1;π1,χωE/F ), Lg(| | 1;σ1,χ1F∗
), Lg(| | 1;σ2,χ1F∗

), Lg(| |α

χ1F∗ ;σ1,χ1F∗
) and Lg(| |α χ1F∗ ;σ2,χ1F∗

) are unitary.
(3) For α > 1, representations | |α 1oπ1,χωE/F , | |

α 1oσ1,χ1F∗
, | |α 1oσ2,χ1F∗

,
| |α χ1F∗ o σ1,χ1F∗

and | |α χ1F∗ o σ2,χ1F∗
are irreducible (Theorems

5.9 and 5.11) and equal to their Langlands quotients Lg(| |α 1;π1,χωE/F ),
Lg(| |α 1;σ1,χ1F∗

), Lg(| |α 1;σ2,χ1F∗
), Lg(| |α χ1F∗ ;σ1,χ1F∗

) and Lg(| |α
χ1F∗ , σ2,χ1F∗

), respectively. By Remark 3.1 and Lemma 3.3 these Lang-
lands quotients are non-unitary.

(4) Representations χωE/F oλ′(det) StU(3), χωE/F oπ1,χωE/F , χ
′
ωE/F

oπ1,χωE/F ,
χωE/F o σ1,χ1F∗

and χωE/F o σ2,χ1F∗
are irreducible (Propositions 5.8,

5.10 and Theorem 5.1) and unitary. For 0 < α < 1/2, representations
| |α χωE/F o λ′(det) StU(3), | |α χωE/F o π1,χωE/F , | |

α χ′ωE/F o π1,χωE/F ,
| |α χωE/F o σ1,χ1F∗

and | |α χωE/F o σ2,χ1F∗
are irreducible (Theo-

rems 5.7, 5.9 and 5.11) and equal to their Langlands quotients Lg(| |α
χωE/F ;λ′(det) StU(3)), Lg(| |α χωE/F ;π1,χωE/F ), Lg(| |α χ′ωE/F ;π1,χωE/F ),
Lg(| |α χωE/F ;σ1,χ1F∗

) and Lg(| |α χωE/F ;σ2,χ1F∗
), respectively. By Re-

mark 3.1 these Langlands quotients are unitary. For α = 1/2, | |1/2
χωE/F o λ′(det) StU(3), | |1/2 χωE/F o π1,χωE/F , | |

1/2 χ′ωE/F o π1,χωE/F ,
| |1/2 χωE/F o σ1,χ1F∗

and | |1/2 χωE/F o σ2,χ1F∗
reduce for the first time

(Theorems 5.7, 5.9 and 5.11). Lg(| |1/2 χωE/F ;λ′(det) StU(3)), Lg(| |1/2

χωE/F ;π1,χωE/F ), Lg(| |1/2 χ′ωE/F ;π1,χωE/F ), Lg(| |1/2 χωE/F ;σ1,χ1F∗
) and

Lg(| |1/2 χωE/F ;σ2,χ1F∗
) are unitary by [14].

(5) For α > 1/2, representations | |α χωE/F o λ′(det) StU(3), | |α χωE/F o
π1,χωE/F , | |

α χ′ωE/F oπ1,χωE/F , | |
α χωE/F oσ1,χ1F∗

and | |α χωE/F oσ2,χ1F∗

are irreducible (Theorems 5.7, 5.9 and 5.11) and equal to their Langlands
quotients Lg(| |α χωE/F ;λ′(det) StU(3)), Lg(| |α χωE/F ;π1,χωE/F ), Lg(| |α

χ′ωE/F ;π1,χωE/F ), Lg(| |α χωE/F ;σ1,χ1F∗
) and Lg(| |α χωE/F ;σ2,χ1F∗

), re-
spectively. By Remark 3.1 and Lemma 3.3 these Langlands quotients are
non-unitary.

(6) Let α > 0. The representations | |α χ1F∗ o λ′(det) StU(3), | |α χ1F∗ o
π1,χωE/F , | |

α χ′1F∗ o σ1,χ1F∗
and | |α χ′1F∗ o σ2,χ1F∗

are irreducible (The-
orems 5.7, 5.9 and 5.11) and equal to their Langlands quotients Lg(| |α
χ1F∗ ;λ′(det) StU(3)), Lg(| |α χ1F∗ ;π1,χωE/F ), Lg(| |α χ′1F∗ ;σ1,χ1F∗

) and
Lg(| |α χ′1F∗ ;σ2,χ1F∗

). By Remark 3.1 and Lemma 3.3 these Langlands
quotients are non-unitary. �

7.4. Representations with cuspidal support in M1. Recall M1 ∼= GL(2, E)×
E1.

7.4.1. Lg(| |α π;λ′), α > 0, π a cuspidal unitary representation of GL2(E). Let
π be a cuspidal unitary representation of GL2(E). Let α > 0. Assume it exists
g ∈ GL(2, E) such that π(g) 6= π((gt)−1). Then the induced representations πo λ′
and | |α π o λ′ are irreducible.π o λ′ is unitary, | |α π o λ′ is not hermitian for all
α > 0, hence not unitary.
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Lg(| |α 1;λ′(det) StU(3))

Figure 12

− reducible; irreducible subquotients non-unitary
· irreducible non-unitary subquotient

Figure 7.12. Let α1, α2 > 0. Figure 12 shows lines and points of
reducibility of the representation | |α1 1× | |α2 1 o λ′. For α > 1,
Lg(| |α 1o λ′(det) StU(3)) is non-unitary.
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Lg(| |α χωE/F ;π1,χωE/F

)

Figure 13

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible unitary subquotient

Figure 7.13. Let α1, α2 > 0, let χωE/F ∈ XωE/F . Figure 13 shows
lines and points of reducibility of the representation | |α1 χωE/F ×
| |α2χωE/F oλ′. Let π1,χωE/F be the unique square-integrable sub-
quotient of | |1/2 χωE/F o λ′. Then Lg(| |α χωE/F ;π1,χωE/F ) is
unitary for 0 < α 6 1/2. It is non-unitary for α > 1/2.

Assume π(g) = π((gt)−1) for all g ∈ GL2(E). Then π is obtained by base change
lift from U(2) to GL(2, E), that is by endoscopic liftings from endoscopic data of
U(2) to data of GL2(E) [16].

Let G := U(2) and
∼
G = ResE/F G = GL(2, E).

Let χωE/F ∈ XωE/F . Let LG be the L-group of G. Recall that σ is defined to

be the non-trivial element of Gal(E,F ). Let ∼σ denote the F -automorphism of
∼
G

associated to σ by the F -structure of
∼
G. Let Γ denote the absolute Galois group

of E, let WF and WE denote the Weil groups of F and E, respectively. Let ρG
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α1

α2

1

1

2

2

•· · ···· ··
Lg(| |α χ1F∗ , σ1,χ1F∗

), Lg(| |α χ1F∗ , σ2,χ1F∗
)

Figure 14

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.14. Let α1, α2 > 0, let χ1F∗ ∈ X1F∗ . Figure 14 shows
lines and points of reducibility of the representation | |α1 χ1F∗ ×
| |α2χ1F∗ o λ′. Let α > 0. Then Lg(| |α χ1F∗ , σ1,χ1F∗

) and Lg(| |α
χ1F∗ , σ2,χ1F∗

) are unitary for 0 < α 6 1 and non-unitary for α > 1.

α1

α2

1/2

1/2

1

1

•· · ····

··

··

··

Figure 15

Lg(| |α χωE/F ;λ′(det) StU(3))

Lg(| |α 1;π1,χωE/F
)

− reducible; irreducible subquotients non-unitary
− reducible; irreducible subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.15. Let α1, α2 > 0, let χωE/F ∈ XωE/F . Figure 15 shows
lines and points of reducibility of the representation | |α1 1× | |α2

χωE/F o λ′. Lg(| |α 1;π1,χωE/F ) is unitary for 0 < α 6 1. It is
non-unitary for α > 1. Lg(| |α χωE/F ;λ′(det) StU(3)) is unitary for
0 < α 6 1/2. It is non-unitary for α > 1/2.

denote an L-action of Γ on G and let ρ∼
G

denote an L-action of Γ on
∼
G. One fixes

ωσ ∈WF \WE .

Lemma 7.24 ([16], 4.7). — Up to isomorphism, the base change problem for
U(2) consists of the endoscopic liftings from endoscopic data (G, LG, 1, ξ) and
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α1

α2

1

1
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2

•· · ···· ··

··

Lg(| |α χ1F∗ ;λ′(det) StU(3))

Lg(| |α 1;σ1,χ1F∗
), Lg(| |α 1;σ2,χ1F∗

)

Figure 16

− reducible; subquotients non-unitary
− reducible; subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.16. Let α1, α2 > 0, let χ1F∗ ∈ X1F∗ . Figure 16 shows
lines and points of reducibility of the representation | |α1 1× | |α2

χ1F∗ oλ′. Lg(| |α 1;σ1,χ1F∗
) and Lg(| |α 1;σ2,χ1F∗

) are unitary for
0 < α 6 1 and non-unitary for α > 1. Lg(| |α χ1F∗ ;λ′(det) StU(3))
is non-unitary ∀α > 0.

α1

α2

1/2

1/2

1

1

•· · ···· ··

··

Lg(| |α χ1F∗ , π1,χωE/F
)

Lg(| |α χωE/F ;σ1,χ1F∗
), Lg(| |α χωE/F ;σ2,χ1F∗

)

Figure 17

− reducible; subquotients non-unitary
− reducible; subquotients unitary
· irreducible non-unitary subquotient
· irreducible unitary subquotient

Figure 7.17. Let α1, α2 > 0, let χωE/F ∈ XωE/F and χ1F∗ ∈
X1F∗ . Figure 17 shows lines and points of reducibility of the rep-
resentation | |α1 χωE/F× | |α2 χ1F∗ o λ′. Lg(| |α χωE/F ;σ1,χ1F∗

)
and Lg(| |α χωE/F ;σ2,χ1F∗

) are unitary for 0 < α 6 1/2 and non-
unitary for α > 1/2. Lg(| |α χ1F∗ , π1,χωE/F ) is non-unitary for all
α > 0.

(G, LG, 1, ξχωE/F ) for (
∼
G,∼σ, 1) to

∼
G. Here

ξ : LG � g oρG ω 7→ (g, g)oρ∼
G
ω ∈ L

∼
G

ξχωE/F : LG � g oρG ω 7→

(gχωE/F (ω),gχωE/F (ω))oρ∼
G
ω∈L

∼
G if ω∈WE

(g,−g)oρ∼
G
ωσ∈L

∼
G if ω=ωσ

.

ξ is called standard base change and ξχωE/F is called twisted base change ([11]).
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Let Πtemp(G) be the set of equivalence classes of irreducible admissible tempered
representations of G. Let Πtemp(

∼
G) be the set of equivalence classes of irreducible

admissible tempered representations of
∼
G. Let Π be a tempered L-packet of G,

then ξ(Π), ξχωE/F (Π) ∈ Πtemp(
∼
G).

As before let π be a cuspidal unitary representation of GL(2, E). If π(g) =
π((gt)−1) for all g ∈ GL(2, E), then π = ξχωE/F (Π) or π = ξ(Π) ([16, 4.2]).

Let π be a cuspidal unitary representation of GL2(E).
(1) If π = ξχωE/F (Π), then π o λ′ is reducible ([11, 4.2]; [4, 6.2]). π o λ′ =

τ1(π) + τ2(π), where τ1(π) and τ2(π) are irreducible tempered.
| |α π o λ′ is irreducible and never unitarisable for α > 0 ([4, 6.3]).

(2) If π = ξ(Π), then π o λ′ is irreducible ( [11, 4.2]; [4, 6.2]).
By results of Goldberg ([4, 6.3]) one has:

(a) | |α π o λ′ is irreducible and unitarisable for 0 < α < 1/2.
(b) | |1/2 π o λ′ is reducible. One has | |1/2 π o λ′ = σ + Lg(| |1/2 π;λ′),

where σ is a generic, non-supercuspidal and square-integrable subrep-
resentation, and Lg(| |1/2 π;λ′) is unitary.

(c) | |α π o λ′ is irreducible and never unitarisable for α > 1/2
We obtain the following.

Theorem 7.25. — Let π = ξχωE/F (Π), let α > 0. Then
• Lg(| |α π;λ′) is non-unitary.
• π o λ′ = τ1(π) + τ2(π), where τ1(π) and τ2(π) are irreducible tempered.

Let π = ξ(Π).
• Let 0 < α < 1/2. Lg(| |α π, λ′) is unitary.
• Let α = 1/2. Lg(| |1/2 π, λ′) is unitary.
• Let α > 1/2. Lg(| |α π, λ′) is non-unitary.
• π o λ′ is irreducible and unitary.
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