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We study the behavior of the electromagnetic field in a biological cell modeled by a
medium surrounded by a thin layer and embedded in an ambient medium. We derive
approximate transmission conditions in order to replace the membrane by these condi-
tions on the boundary of the interior domain. Our approach is essentially geometric and
based on a suitable change of variables in the thin layer. Few notions of differential calcu-
lus are given in order to obtain the first-order conditions in a simple way, and numerical
simulations validate the theoretical results. Asymptotic transmission conditions at any
order are given in the last section of the paper. This paper extends to the time-harmonic
Maxwell equations the previous works presented in [30, 33, 31, 6].
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1. Introduction and Motivations

The electromagnetic modeling of biological cells has become extremely important
since several years, in particular in the biomedical research area. In the simple
models [17, 19], the biological cell is a domain with a thin layer composed of a
conducting cytoplasm surrounded by a thin insulating membrane. When exposed
to an electric field, a potential difference is induced across the cell membrane. This
transmembrane potential (TMP) may be of sufficient magnitude to be biologically
significant. In particular, if it overcomes a threshold value, complex phenomena
such as electropermeabilization or electroporation may occur [37, 38, 25, 24]. The
electrostatic pressure becomes so high that the thin membrane is locally destruc-
tured: some exterior molecules might be internalized inside the cell. This process
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holds great promises particularly in oncology and gene therapy, to deliver drug
molecules in cancer treatment. This is the reason why an accurate knowledge of the
distribution of the electromagnetic field in the biological cell is necessary. Several
papers in the bioelectromagnetic research area deal with numerical electromag-
netic modeling of biological cells [26, 36, 34]. Actually the main difficulties of the
numerical computations lie in the thinness of the membrane (the relative thickness
of the membrane is one thousandth of the cell size) and in the high contrast of
the electromagnetic parameters of the different cell constituents. We present here
an asymptotic method to replace the thin membrane by appropriate transmission
conditions on the boundary of the cytoplasm.

In previous papers [30, 33, 31, 6], an asymptotic analysis is proposed to com-
pute the electric potential in domains with thin layer, using the electroquasistatic
approximation.® However, it is not clear whether the magnetic effects of the field
may be neglected. This is the reason why we present in this paper an asymptotic
analysis for the time-harmonic Maxwell equations in a domain with thin layer. Our
analysis is close to those performed in [30, 33, 31]. Roughly speaking, it is based
on a suitable change of variables in the membrane in order to write the explicit
dependence of the studied differential operator in terms of small parameter (the
thinness of the membrane). The novelty of the paper lies in the use of differential
form formalism, which seems to be the good formalism to treat Maxwell’s equations
in the time-harmonic regime according to Flanders [18], Warnick et al. [39, 40] and
Lassas et al. [20, 21]. The convenience of this formalism allows us to consider the
Helmholtz equation and the Maxwell equations in a similar fashion.

Throughout this paper, we consider a material composed of an interior domain
surrounded by a thin membrane. This material, representing a biological cell, is
embedded in an ambient medium submitted to an electric current density. We
study the asymptotic behavior of the electromagnetic field in the three domains
(the ambient medium, the thin layer and the cytoplasm) as the thickness of the
membrane tending to zero. We derive appropriate transmission conditions at first
order on the boundary of the cytoplasm in order to remove the thin layer from the
problem. Actually, the influence of the membrane is approached by these transmis-
sion conditions. To justify our asymptotic expansion, we provide piecewise estimates
of the error between the exact solution and the approximate solution.

The paper is structured as follows. In Sec. 2, we present the studied problem in
the differential calculus formalism and we state the main results of the paper. We
then provide in Sec. 3 numerical simulations that validate the theoretical results.
In particular, we demonstrate that for biological cells, the membrane behavior dra-
matically changes with respect to the frequency. More precisely, we show that if
the “thin layer” model presented here is valid for quite large frequencies, a “very

2The electroquasistatic approximation consists in considering that the electric field comes from a
potential: E = —VV. In this approximation, the curl part of the electric field vanishes and the
magnetic field is neglected.
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resistive thin layer” model, as described in [32], has to be studied for low frequen-
cies. Section 4 is devoted to the geometry: we perform our change of variables and
write the problem in the so-called local coordinates. In Sec. 5, we derive formally
our asymptotic expansion, which is rigorously proved in Sec. 6. In Sec. 7, we give
recurrence formulas to obtain the asymptotic expansion at any order. The Appendix
is devoted to explicit formulas used to derive the conditions.

2. Maxwell’s Equations Using Differential Forms

In the following we present the conventions of differential calculus formalism used
throughout this paper. We refer the reader to Schwarz [35] and Flanders [18] for
complete surveys of the differential calculus.

Notation 2.1. Let p equal 2 or 3 and let k£ be an integer smaller than p. For a
compact, connected and oriented Riemannian manifold of dimension p, (M,g), of
R? we denote by Q¥(M) the space of k-forms defined on M.

The exterior product between two differential forms w and 7 is denoted by w A 7.
The inner product on Q¥(M) is denoted by (-, >Qk
The Hodge star operator is denoted by *.

The interior product of a differential form w with a smooth vector field Y is
written int(Y )w.
e The L2%-scalar product of two k-differential forms u and v is defined by

(u,v) 20k (a1 :/ (u, T)qr dvolps
M
and || - || 2 (ar) denotes the induced norm.

The exterior differential and codifferential operators are respectively denoted by
d, §. The Laplace-Beltrami operator A is defined by A = —dd — dd.

L2QF(M) is the space of the square integrable k-forms of M while for s € R,
H*QF(M) is the usual Sobolev space of k-forms. Let HQF(d, M) and HQF (5, M)
denote

HQM(d, M) = {w € L*Q*(M):dw € L*QF (M)}, (2.1)
HQF(5, M) = {w € L*Q*(M) : dw € L*Q* (M)}, (2.2)
that are Hilbert spaces when associated with their respective norms
lwll zar @,m) = llwll L2ar (ary + |dw]| L2om+1(ary
lwll zax 5,00y = llwll 20k (ar) + |0w]] L20%-1 (a1)-

We also denote by HQ¥(d,d, M) the space HQ*(d, M) N HQF (5, M) equipped with
the norm

lwll zaxd,6,0) = Wl L20x(ary + [dwllL2qr1(ary + (0wl L20x -1 (ary -
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H*(M) and L?(M) denotes the respective spaces H*Q(M) and L2Q°(M). Observe
that for & = 0 (i.e. for functions), the space HQ°(d,d, M) is exactly the usual
Sobolev space H(M), while HQ!(d, §, M) cannot be identified to (H(M))3.

2.1. Statement of the problem

Let I' be a compact oriented surface of R? without boundary. Consider the smooth
connected bounded domain O, enclosed by I'; O, is surrounded by a thin layer OF
with constant thickness €. This material with thin layer is embedded in an ambient
smooth connected domain OF with compact oriented boundary. We denote by O
the e-independent domain defined by

O=0:U0;U0..

Moreover, we denote by I'. the boundary of O, U O%, (see Fig. 1). Let pc, ptm and pe
be three positive constants and let ge, gc and ¢y be three complex numbers. Define
the two piecewise functions p and ¢ on O by

Me, in Og, Ge, in 027
Ve €O, u@) =1 jm n05 YreO, ql@)={qm in0O5,
te, in O, Ge, in Oc.

The function p is the dimensionless permeability of O while the function ¢ denotes
its dimensionless complex permittivity.”

Let dp > 0 be such that for each point ¢ of I', the normal lines of I' passing
through ¢, with center at ¢ and length 2d are disjoints. In the following, we assume
that e € (0,dp). We denote by O% the set of points x € OF at distance greater than
dy of I'. We assume that the current density J is imposed to the ambient medium, J

(Mm7 qm)

Fig. 1. Geometry of the model.

bUsing the notations of the electrical engineering community, ¢ = w? (E — ig), where w is the
frequency, € the permittivity and o the conductivity of the domain [3].
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being compactly supported in O%. Throughout the paper the following hypothesis
holds.

Hypothesis 2.2. (i) There exist ¢1, ¢z > 0 such that for all z € O,
a1 < =S(q(x)) <2, 0<R(g(x)) <ca. (2.3)
(ii) The source current density J is a 1-form that satisfies
supp(J) € 0%, Je L*QYO), 6J=0, inO.

Maxwell’s equations describe the behavior of the electromagnetic field in O.
Denote by E and H the 1-forms representing respectively the electric and the mag-
netic fields in O in time-harmonic regime. Denote by Ny the normal vector field of
00 outwardly directed from O. In the following, the normal vector field and the cor-
responding normal 1-form are identified. Maxwell’s equations in the time-harmonic
regime read [20, 21, 39, 4] (with iZ = —1)

dE =i* (uH), dH=—ix(¢E+7J), in O, (2.4a)
Noo NE|po =0, on 00. (2.4b)

Using the idempotence of x in R?, we may infer the vector wave equation on E
*d(%*dﬂi) —gE=1J, inO, Noo ANE|go =0, on 90.
Since u is a scalar function® of O, we infer
§ (%dE) —qE=J, in0O, NpoAElpo =0, on d0O. (2.5)

Problem (2.5) is the so-called vector wave equation in the time-harmonic regime [3].
Observe the power of the differential form formalism. In Eq. (2.5) suppose now that
E and J are functions. Since the coderivative applied to the functions identically
vanishes, Eq. (2.5) is nothing but the well-known Helmholtz equation:

—div (lVIE) —gE=J, in0O, Elpo=0, ondO,
"

therefore using differential forms enables us to link the Helmholtz equation and the
vector wave equations in one formalism.

Remark 2.3. Denote E in Euclidean coordinates by F,dx + E,dy + E.dz and
similarly for H and J. Problem (2.4) and problem (2.5) write now

curl E = ipH, curlH = —i(¢E+J), in O, Noo X Elgpo = O, on 00,

°If u is a tensor, the previous equation (2.5) becomes §(xp~! x dE) — gE = J.
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and

1
curl (— curlE) —qE=1], inO, Noo X Elgo =0, on 90,
1

which is the tensorial formulation of the vector wave equation in the time-harmonic
regime.

The aim of this paper is to derive transmission conditions equivalent to OF,
in order to avoid its meshing. Hereafter, it is demonstrated that writing these
conditions with differential forms enables us to consider similarly the Helmholtz
equation and the vector wave equations. For the sake of clarity, and since the case
of functions is much simpler, we only provide the detailed proofs of the results for
1-forms (i.e. for the vector wave equation), and we let the reader verify that the
corresponding results hold for the Helmholtz equation.

2.2. Regularized variational formulation

Our functional space X(q) is defined as
X(q) = {u € HQY(d, 0), é(qu) € L*(0), Noo A ulpo = 0},
associated with its graph norm
ullx(q) = llullmar@,0) + [16(qu)|[L2(0)-

Define the sesquilinear form a, in X(q) adapted to a regularized variational formu-
lation of the problem (2.5) by

ealuso) = [ (@ dm)aa -+ (0gu), 6@ ~ gl T ) vl
Using inequalities (2.3), the following lemma holds.
Lemma 2.4. There exist a constant co > 0 and « € C such that for all € € (0,dy),
R(aaq(u,u)) > co||u||§((q). (2.6)
For all € € (0,dp), we consider the variational problem: find E € X(q) such that
Vue X(q), aqEu)= /O <J,ﬂ>ﬂl dvole . (2.7)
Using Hypothesis 2.2 the following theorem holds.

Theorem 2.5. (Equivalent problems) Let Hypothesis 2.2 hold.

(i) There is at most one solution E € X(q) to problem (2.7).
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(ii) The solution E satisfies (2.5) in a weak sense
O0dE — ugE =17, in O U O, UO:, Ngo ANE|so =0,
with the divergence condition
d(¢E) =0,in O (2.8)
and the following equalities® hold for ¥ € {T',T.}

|:lint(N5/’)dE:| =0, [N{;ﬁ AN E]y =0, [q int(Ny)E]y =0. (2.9)
H 7

(iii) If (E,H) € (L*QY(0))? is a solution to problem (2.4), then E € X(q) satis-
fies (2.5). Conversely, if E € X(q) satisfies (2.5) then the couple of 1-forms
(E, —(i/p) x dE) belongs to (L2QY(0))? and satisfies problem (2.4).

Remark 2.6. For the Helmholtz equation, the appropriate space is H'(0O). Since
df = 0 for any function f, Eq. (2.7) is exactly the variational formulation of (2.5)
applied to O-form. Therefore the Lax—Milgram lemma ensures straightforwardly the
equivalences of the above theorem, replacing 1-forms by 0-forms.

Proof. Unlike Remark 2.6, when dealing with 1-forms, Eq. (2.7) is not the varia-
tional formulation of Eq. (2.5), hence the theorem is not obvious. Its proof is based
on an idea of Costabel et al.

(i) According to estimate (2.6), a straightforward application of the well-known
Lax—Milgram theorem leads to the existence and uniqueness of the solution E to
the regularized variational problem (2.7).

(ii) The proof is precisely worked out in full details in [7, 8] in a very slightly different
configuration. We just give here the sketch of the proof. The first transmission
condition of (2.9) comes easily from the Green formula (see Schwarz [35]) and since
E € X(q), then N AE and ¢gint(N.»)E are continuous across . € {I',T'. }.

It remains to prove that E satisfies d(¢E) = 0. Denote by HA(O) the space
of functions ¢ € H}(O) such that §(gd¢) belongs to L?(O). Integrations by parts
imply

Vo€ HAO), ay(E,dg) — /O (6(qE), 5(qd0) T B)ew dvolo.

Since 3(q) < —c;1 < 0, the function 6(gd¢) + ¢ runs through the whole L?(O) space
as ¢ runs through HA(O). Moreover, since §(J) vanishes we have

/ <Ja%>ﬂl dvolp = 07
O

from which we infer that §(¢E) identically vanishes in L?(0) according to (2.7).
Therefore the solution E of problem (2.7) solves problem (2.5).

dFor an oriented surface . without boundary and for a differential form u defined in a neigh-
borhood of . we denote by [u] s the jump across .. N denotes the normal of . outwardly
directed from the domain enclosed by .¥ to the exterior.
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(iii) If (E, H) solves problem (2.4) we straightforwardly infer (2.5), since * is idem-
potent and since y is a scalar function. Conversely, defining H by

H=— «dE,
W
we infer that (E,H) solves problem (2.4). O

Denote by O, the domain O, = O\O,. Define ji and § by

pe, in O, ¢, in O,

Vo e O, ﬂ(m):{ Ve, (j(x):{

e, in O, Ge, in Ok.

Let E° € X(§) be the “background” solution defined by
Vu € X(q), ad(EOa u) = / <J7E>Ql dvolo,
o
which means in a weak sense
Lo ~ 0 . 0
6 ﬁdE —q¢E’=J,in O, Nsyo AE"|s0 = 0. (2.10)
We have the following regularity result.

Proposition 2.7. Let Hypothesis 2.2 hold. Moreover, let s > 0 and J belong to
H*QYO%). Then the 1-form E° exists and is unique in X(§). Moreover, denoting
by ESY and E&C its respective restrictions to Oc and O, we have

E** € H*Q'(0.), E° € H*Q'(O.).

Proof. The 1-form E° satisfies (2.10). The proof of the existence and the unique-
ness of E? in X(§) is very similar to the one performed in Theorem 2.5, by replacing
X(q) by X(q) and a, by ag. Since 6] vanishes, we infer §(GE°) = 0 and therefore
E° satisfies

—AER® — igE’ =J, in O, U O, Nao AE%|50 =0,

with transmission conditions

[NF N dEO][‘ =0, [(jint(Np)EO]p =0,

1
[fint(Np)dEo} =0, [6(GE")]r=0.

H r
The same calculations as performed in Proposition 2.1 of Costabel et al. [8] imply
that the set of the above transmission and boundary conditions covers® the Lapla-
cian in O, and in O, in the sense of Definition 1.5 on p. 125 of Lions and

¢According to the Appendix of the paper of Li and Vogelius [22] the regularity of E® may also
be obtained by using a reflection to reduce the problem to an elliptic system with complementing
boundary conditions in the sense of Agmon et al. [1, 2].
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Magenes [23]. Therefore we infer the piecewise elliptic regularity of E°, which ends
the proof of the lemma. O

The following estimates, which ensure that E is the zeroth order approximation
of E, hold.

Proposition 2.8. Under Hypothesis 2.2, there exists C > 0 such that for any small
parameter £ € (0,dp)

IEllxq) <C, (2.11)
IE — E%|| e (a,0) < CVe. (2.12)

Proof. Using (2.6), estimates (2.11) are obvious since I(q) < —c¢; < 0. Now
prove (2.12). We first mention that E° belongs to H2Q!(w) for w € {Oe, O},
according to Proposition 2.7; hence E° € L>*Q!(w) and dE® € L>°Q?(w). Denoting
by U =E — E° we infer

1 — _
/ ;<dU, dU>Q2 — q(U, U>Ql dVOlo
(@]
_ 1 _
— / (B, T)gn dvolos — — [ (dE®, d0)g: dvolo -
O

3 Hm Jo,

Therefore using (2.11) and using the assumption (2.3) on ¢, we infer

AU 202 (0) + (Ul 2201 (0) < CVe. o

2.3. Main result

Consider the inclusion J : I' — O, and J* its pull-back J* : Q*(0) — QF(T), for
k € {0,1,2,3}. Denote by dr and dr the exterior differential and the codifferential
operators defined on QF(T"). Define S and T by*

S = (gm — ¢o)T*(E°) + (uim - i) Srdr (J*(E®)), (2.13)

(2.14)

1= (o o) Al G + (i = ) ine () ()

dm Ge r

The explicit expressions of S and T in local coordinates are given in Sec. 6. Let E!
be the 1-forms defined by

SdE! —ﬂ(jEl =0, inOUQO, Noo /\E1|ao =0,
fFor a sufficiently smooth k-form ¢ defined in O, we denote by ¢|r its restriction to I'. In addition,

if ¢ is regular in O, and O, but not in O, we denote by ¢|p+ (respectively ¢|p—) the restriction
to I" of ¢ from the domain O, (respectively O).
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with the following transmission conditions on I'

1 1
—int(Np)dE!|p+ — —int(Np)dE! |- =S, (2.15)
e 223

Nr AE'Yr+ — Np AR = Np AT. (2.16)

The aim of this paper is to prove the following theorem.

Theorem 2.9. Under Hypothesis 2.2, if moreover the current density J belongs to
H3QY(Od), there exist £9 > 0 and a constant C, independent of ¢ such that

Ve e (0,e0), [E— (E®+eE")|nar(aso0,) < Ce?,

and for any domain w compactly embedded in Oe, there exist e > 0 and a constant
Cw > 0 independent of € such that

Vee (0,65), |E— (E®+ 5E1)||H91(d,5’w) < Coe’.

Remark 2.10. It is possible to give a precise behavior of E in a neighborhood of
T by defining a 1-form in the thin membrane (see Theorem 6.3).

In this paper we choose to deal with differential forms, in accordance with
Flanders [18]. This point of view has the convenience of considering both electric
and magnetic fields as 1-forms, i.e. they are physically similar in accordance with
electrical engineering considerations [3]. We point out a few arguments to enlighten
the convenience of the differential calculus formalism.

(i) Anisotropy. For the sake of simplicity, we deal here with isotropic materials,
although the anisotropic case may be interesting for applications. In this case, p
and ¢ are matrices and the vector wave equation becomes

S((xpp™H)dE) —gE =J,in O Nyo AE|go = 0, on 00,
and the following transmission conditions hold on . € {I',T'.}
[iInt(No)(kp ™t xdE)].» =0, [No AE]y =0.

To obtain the approximate transmission conditions equivalent to the thin layer,
L% in local coordinates, with the help of the
explicit formulas given in the Appendix. The calculations are more tedious but we
are confident that the reader has all the tools to perform the analysis.

we just have to write the tensor xu

(ii) Non-constant thickness. We consider here a thin layer with constant thickness.
As mentioned in Sec. 1 a high electric field may destabilize the cell membrane,
possibly leading to the apparition of pores. Hence the thickness of the membrane is
no longer constant with respect to the tangential variable. As performed in [31], the
change of variables would lead to additional terms in the transmission conditions.
These terms would come from the fact that the coefficients g;3 of the matrix (g;;)
given in Sec. 4 by (4.1) do not vanish. The derivation of the asymptotics would
be more tedious but, once again, we are confident that all the tools are given
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in this paper to perform the calculation. In the case of a rough thin layer, the
present analysis may not be applied. We have to introduce appropriate correctors
as performed in [6].

(iil) Link with the Helmholtz equation. As previously mentioned, Eqs. (2.5) are well-
defined if E and J are functions, since operators d and § are defined for k-forms
and the exterior product between a 1-form and a function is also well-defined.
Moreover, since § acting on functions is zero, the operator —dd coincides with
Laplace—Beltrami operator A. In addition, the above differential forms S and T are
well-defined even if E° is a function, and in this case we have

1 1
S = (gm — ¢)E°|r + (u_ — —) Srdr (E°)|p,

m e

T = Em e int(Np) (dEY)) .
I

C
since the interior product int(Nr) acting on functions is zero. Writing our asymp-
totic transmission conditions for functions in tensor calculus formalism, we infer
that the function w solution to

1
-V (;Vu) —qu=7, inQO, uloo = 0,

is approached by u® + eu! where (u*),— 1 satisfy
—Au* — pgu* = 6kj,  in O U O, uF|p0 = 0,

with the following transmission conditions

1 m—
[UO]F =0, |:ﬁanu0:| =0, ulll'”r - ulll"* = %8nu0|1"*7
r

C

ianulhw - ian'ulh*— = (qm — qe)u0|p — (L — i) Apuoh‘.
He He Hm  He

This approximation is rigorously proved in [29] (see Egs. (4) on p. 4 of [29]). There-
fore the differential calculus provides transmission conditions that are valid for the
Helmholtz equation and the Maxwell equations. It is also possible to derive our
asymptotics by tensor calculus considerations, as used in linear elasticity of thin
shells [9, 15, 16]. This approach is worked out in full details in the thesis [28] of the
second author and in [5, 10].

Remark 2.11. (The tensor calculus formulation) Since we are confident that our
result might be useful for bioelectromagnetic computations, and since the electri-
cal engineering community may feel uncomfortable with the differential calculus
formalism, we translate our result with the help of the “usual” differential opera-
tors. Denote by Vp and Vr- the respective gradient and divergence operators on
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I'. Define Rotr and rotr by
VfeC™(T), Rotrf=(Vrf)xNp,
Ve (C=(I))*, rotrf=Vr-(fx Np).
Then (EF)z—o1 (seen as vector field) satisfies the following equations
curl curl BF — pgRF = 5§J, in OcUQO;, Nyo x Ek|ao =0,

with the following transmission conditions on I"

1 1
Nr x E%|r+ = Np x E%|p—, —(Np x curl E®)|p+ = —(Np x curl E®)|p—, (2.17)
I I

e c
1 1 1 1 0
NFXE|F+XNF=NFXE|F7XNF+(]C q——q— VF(E |1—~7-N1'*)

m e
4 Hm = He (curl E® % Np)p-

. L (2.18)
—(curl E* x Np)|ps = M—(curlIEl x Np)|p- + (gm — ge)(Np x E° x Np)|p

He c

1 1
+ (— - —> ROtF I'Ot[‘(NF X EO X NF)|F~
Hm  He

Remark 2.12. (The impedance boundary condition of Engquist—-Nédélec [14]) Let
J be supported in O, (and be divergence-free) and suppose that OF is a perfectly
conducting domain. Therefore g¢ = +00 and pe = 0. A homogeneous Dirichlet
condition is then imposed on I',

NFE X Eh’*E =0.

We are now in the same configuration as the problem studied by Engquist and
Nédélec [14], p. 18. According to (2.17) and (2.18), writing the condition satisfied
by E° + cE! and neglecting the terms of order £2, we infer the following boundary
condition for the first-order approximation E, of the field

Np x Eg|p- x Np = —¢ (qq—cvp (Ea|r- - Nr) + ‘;—m(cuﬂEa x NF)|F_>.
m C

According to Maxwell’s equations, curl E = iucH and curl H = —ig E. Therefore
gE - Nr = icurlH - Np. The definition of V- (see, for example, Eq. (2.22) p. 5
of [14]) leads to®

Ve (H x Np) = curlH- Ny = —igE - Np, (2.19)

8Using differential forms and since dN = 0, equality (8.1) implies

1 1
int(Np)E® [p— = —;int(Np)é(*HO) = —gép(int(N) * HO|1), which is exactly equality (2.19).
C C
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and the impedance boundary condition follows

) 1
Nr x Ea|p— x Npr = —ie (q—Vp(Vp . (Ha X NF)) —+ /Lm(Ha X NF)|F—>~
Observe that this is the impedance boundary condition given in [14] p. 19, since
they took the normal interior to their domain ., hence n = —Nr.

3. Numerical Simulations

We have tested the model when I' is a sphere of radius 0.04. The outside bound-
ary of O is a sphere of radius 0.08. We impose a Silver-Muller condition on this
outer boundary. Hexahedral mesh has been used for experiments, as presented in
Fig. 2. The current source is a Gaussian source polarized along z-coordinate and
centered around the point (0, 0, 0.06). The exact solution is computed numerically
on a similar mesh, where a thin layer made of hexahedra is inserted between the
two domains. Edge finite elements of fourth order (Nedelec’s first family) are used
with curved elements in order to correctly approximate the geometry. We have
observed that the numerical error between fourth-order and fifth-order is below
0.1%. According to [17], we chose the biological electrical parameters:

em =10, £, =¢e. = 80, om =107% 0. =0.=0.5, (3.1)

and the frequency is equal to 1.2 GHz. The numerical values of Ey and E; are
displayed in Fig. 3. We have displayed the convergence of the model in Fig. 4.
Observe that the numerical convergence rate, which is of order €2, coincides with
the theory for small values of € only. This is in accordance with the assumption

Fig. 2. Hexahedral mesh used for experiments.
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Fig. 4. Relative error between the model and the exact solution.

“e goes to zero” to be imposed, since at the crossingpoint of Fig. 4, € equal 0.001
which is not small compared with the sphere radius of 0.04.

In addition, the frequency range for which the thin layer model is valid has been
studied. Actually, observe that in (3.1), the cell membrane conductivity is very low
compared with the outer and inner conductivities, while the permittivity of the
three domains are quite similar, compared with the membrane thickness. More-
over, for large frequency, the displacement currents are dominant, meaning that
the permittivities have to be mainly considered. Therefore, for large frequencies,
the cell is a soft contrast material with a thin layer, and the theoretical results
presented in this paper hold. However, if the frequency dramatically decreases, the
conduction currents dominate. In this case, the conductivities have to be used,
and since the membrane conductivity is very low, the cell is then a high contrast
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Fig. 5. Relative error between the model and the exact solution versus frequency.

medium with a thin layer: two small parameters are then involved in the equation,
and the asymptotic analysis presented here is no longer valid. This phenomenon
is illustrated in Fig. 5, where we have checked the accuracy of the model versus
the frequency when e is chosen constant, and equal to 0.0002: above 100 MHz,
the approximate transmission conditions precisely replace the membrane but below
10 MHz, the conditions are no longer valid and another analysis has to be per-
formed. Observe that above 2.10% Hz both errors increase: this is due to the fact
that the membrane thickness € remains constant while the wavelength decreases.

4. Geometry

Let Y1 be the tubular open neighborhood of T' composed by the points at distance
dy of T'. In the following, it will be convenient to write the involved differential form
E in local coordinates in the tubular neighborhood ¥t of I'. We denote by #° and
¢ the respective intersections 7 N OF and #p N O..

4.1. Parametrization of T’

Let x = (x1,22) be a system of local coordinates on I' = {¢)(x1)}. By abuse of
notations, we denote by xt € T' the point of T' equal to t(xt). In the (z1,z2)-
coordinates, we denote by Nr the outward vector normal to I" defined by

No — 01 N\ Oap
1019 A 020 ||

and we define by ® the following map
V(xt,z3) €L xR,  ®@(xr,23) = ¥(x7) + 23N (xT).
Notation 4.1. In the following d; stands for d,, for j = 1,2,3. Moreover, we use

the summation indices convention a;b; = Z¢:1,2,3 a;b;. Observe that according to
our change of variables, xt denotes the tangential variables and x3 is the normal
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direction. In order to stress the difference between xt and xz3, the Greek letters a
and 8 (and possibly 7, ¢, K and ) denote the indices in {1,2}, while the letters
i,7,k denote the indices in {1,2,3}. Eventually it is convenient to introduce the
Levi-Civita symbol ;5 defined by

+1, if {4, 4, k} is an even permutation of {1,2, 3},
€k = § —1, if {4, 7, k} is an odd permutation of {1,2,3},

0, if any two labels are the same.

According to the definition of dy, the tubular neighborhood ¥t of I' may be
parametrized by

Yo = {®(x1,23), (xT,23) €' X (—do,dp)}

The (x1,z3)-system of coordinates is the so-called local coordinates of ¥. The
Euclidean metric of ¥4 written in (xT,x3)-coordinates is given by the following
matrix (gij)i’jzl’g’g

g1 giz O
(9i)ij=123= | g12 g2 O[> (4.1)
0 0 1

where the coefficient gog equals gog = (0o P, 93 ®). Here (-, -) denotes the Euclidean
scalar product of R®. Denote by (g%/) the inverse matrix of (g;;), and by g the deter-
minant of (g;;). The coefficients g,3 might be written with the help of the coeffi-
cients of the first, the second and of the third fundamental forms of I" in the basis
(011, 021)) (see Do Carmo [11])

Gap(xT,23) = go5(xT) — 223bas(XT) + T5Cap (XT).
The mean curvature .7 of I' equals

w1 95(,/9)

2 \/g r3=0 .

(4.2)

4.2. The transmission conditions in local coordinates

In the (xT,x3)-coordinates, write E = E;dz*. Nr is the outward normal field of T,
which is identified to the 1-form dz>. Applying straightforward the formulas of the
Appendix we infer

Nr AE = E,dz3dz®, int(Np)E = E3, int(Np)dE = (03E, — 0 F3)dz®.
Hence transmission conditions (2.9) write for h € {0,e}
1
[Ea]:rgzh - 07 ;(83Ea - 8aE3) = Oa [q E3]:L’3:h =0. (43)

x;;:h
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4.3. Rescaling in the thin layer
Denote by E7 and by Ef the respective restrictions of Ej; to 7 and to 7. In OF,
we perform the rescaling x5 = en, n € (0,1), and we denote by ET, by gi; and by
g™ the following functions

gjrn (xTa 77) = Ej (XTv 677)7

V77 € (071)7 QE(XTW) :gij(xTaETI), for Za] = 17233'

g™ (xt,n) = g(xr,€n),
Observe that ggs(xT,n) = ggﬁ(xT) — 2enbas(xT) + €2ncap(xT), hence for [ € N,
9l gns = O(e'), while dl,gm. = O(1). Denote by

§dE = a"(x1,n)dz’, in O
Applying formula (8.5) with the metric given by (4.1), and performing the rescaling
x3 = en, we infer,

1

1 9%, O ( 92,
m __ 2 em m A n akK m
ay = —5—2({9775)\ + g (({977({9)\53 + Gaﬁgemg\/ng? (\/g_m> 87]53)

QTL 1 m 8”] gg‘/{ m
e e (00 (m0up) - 2 () onep). (4
” 3¢g—m< Var ) e Vg ) )

m 1 g‘l/ m gmL m
az = gﬁaﬂzsﬁmzsan (g—ﬁangﬁ> + €ap3€in3la (—/g—maﬁg3 ) : (4.5)

The divergence-free condition 0E™ = 0 with equality (8.3) can then be written as:

1 1 0 1 9ns
—O0pEM 4+ —— TL(VgMED + €npz€on —8a< 5{">=0- 4.6
2 In<s g 5( gm)E; B3€uk3 o g (4.6)

The transmission conditions (4.3) in 23 = £ become

1 1 1
L (O5Ey — 7Byt = — (—&75;" - a@’) , (4.7a)
He HMm \ € =1
Ex|gg=et = EX |n=1. (4.7b)
The transmission conditions (4.3) in 23 = 0 are:
! (185"‘ 88"’) 1(8E OrE3)| (4.8a)
—\z — OxE; =— - 5=0—» .8a
i \ 271X T o e (O3B = OxEs)las=0
EX'ln=0 = Exlzy=0-> (4.8b)

and the transmission conditions for the normal components E3 are

QeE3|13:5+ = ng:rﬂn:lv ng:T|77=0 = QCE3|:1:3:0*- (49)
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5. Ansatz and Formal Expansion

We now set our Ansatz. We look for solutions written as formal series in e
Elo: = E*°|o: + eE*|os + -+, in O, (5.1a)
Elo, = E“? + eE< + .-+ in O, (5.1b)

and in the cylinder I x (0, 1),

Elog o ®(x,en) = E™0(x7,m) + €E™ (x,1) + - -+, (5.1c)

where the 1-forms (E&™),cy, and (ES™),cn are defined in e-independent domains.
We emphasize that the sequence (E®"),,cy is defined in (O%,)Y even if its associated
series does not approach E in the thin layer.

Remark 5.1. The 1-forms (€™"),cn are profiles defined in the cylinder I x (0, 1);
note the difference with the 1-forms (E©"),cy and (E®™),en. These profiles are the
key-point of the following asymptotic expansion.

In 71, for n € N, we denote by
E®" = E" (xr,23)da’, B9 = E" (xr,@3)da
EMM = &M (x1,n)dxt, n=x3/e.

Our aim is to identify the first two terms of the sequences and to estimate the
remainder term. Suppose that for n € N, the forms (E}")x=12,3 are as regular as
necessary. Using formal Taylor expansion, we infer for [ = 0, 1

8;E27n|13:6+ = 8§E‘Z’n|13:0+ + 5838;E27n|:r3:0+ e (5'2)
It is convenient to define E™ for n € N by
E" =E*", in O, E*" =E%", in O.

We are now ready to derive formally our asymptotics. Replace the coeffi-
cients (5;1)]»:1’...’3 and (Ej)j=1,...3 in Eqgs. (4.4)-(4.6) and in transmission con-
ditions (4.7)—(4.9) by their respective formal expansion (5.1), and use the formal
Taylor expansion (5.2). Observe that for any n € N, we necessarily have

OAE™ — agE"™ = 64 J, in O U O, Noo NE™|s0 =0, on 00. (5.3a)
Observe that dE™ =0, in OcU Ok, (5.3b)

since J = 0. It remains to build the appropriate transmission conditions by iden-
tifying the terms with the same power of ¢.
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5.1. Order O

The term of order —2 in (4.4) vanishes hence 8,21531’0 = 0. From the divergence-free
condition (4.6) we infer 8,E5"° = 0. Equality (4.7a) implies 9,E™° = 0. Therefore
the coefficients Sjr-"’o depend only on xrt. From (4.7b), (4.8b) and (4.9) we infer for
n=20,1

OFES |oy—0+ = OFES |oyo0- (5.4a)
4B EY’ om0t = 4O ES | ny=o-- (5.4D)

5.2. Order 1

Since 9,E™° and the terms of order —1 in (4.4) vanish, we infer

2em,1
0,4 =0. (5.5)
Hence 9,EM™! is constant with respect to 7. Therefore, according to (4.7a)
L (@550 — 0, )]0t = — (B FE0 — 0, F5Y) (5.6
E 3a T Valyg $3:0+_E( 3a T Valyg |13:07' . )

According to (5.3), (5.4) and (5.6) the 1-forms E*? and ES° satisfy the elliptic
problem (2.10). According to (4.8b) and (4.9), we infer

EMO(xt,n) = ES%(xT,0), (5.7a)
EM0(xr, 1) = j—°E§’0<xT,o>. (5.7b)

Therefore the terms of order 0 are entirely determined. According to (4.8a),
using (5.7) and since 9,EM™! does not depend on 7 according to (5.5), we infer

0yEM (x7,7) = j—caaEg’%:o- + Z—"waaE;O — 0B mo- - (5.8)

C

The transmission conditions follow
e, 1 re,0 _ m,1 m,1
Ea |13:0+ +33Ea |m3:0+ = 8n5a +€a |77:0
and
m,1 o c,1
ga |77:0 - Ea |x3=0—~
Therefore we infer
e, 1 c,1 . m,1 re,0
Ea |9163=0Jr - Ea |x3=0* - a77goz - 83E(x |x3=0+'

Using (5.8) and according to (5.4) and (5.6) we infer

P q q 0
EZ’1|$3=0+ - E;’1|$3:0_ - (q_c - _C> 8aE§ |x3=0—

m e

IO - 0B o (9)

C
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The divergence-free condition leads to

1 90
ml _ . KB 1e,0
87153 - \/g—oeaﬁiiebndaa <\/g—0EL )

where /7 is given by (4.2). Transmission condition (4.9) implies

F2A B o, (5:00)

$3=07

GBS gm0t + @035 0ot = qmOnES" + G By pu—o- - (5.11)

According to (2.10) EY satisfy the divergence-free condition hence

0
958 1oc,0
K Ef’ >

1
- ﬁeaﬂli’fm?) Oa <\/g—0

and similarly for E&° by replacing ES° by ESY. From (5.10)(5.12), we infer

= 3B |pamo- — 25 |pumo-, (5.12)

13:07

m

04E3"" = 03 B5° | pymp + 2 (ﬁ - 1) E5lpy=0-- (5.13)

Moreover, using (5.4) in (5.12) we infer
003 E5° om0+ = Ge03E5 " [oym0- — 27(ge — 46) E5 |uymo-

and therefore (5.11) with equality (4.2) implies

_ 1 .
1 c,1 e,0
B3 =0+ = GBS |ay=0- = (4m — ¢e) —=—=—= 03(V/9E3") (5.14)
x3 z3 g|m3:0 o
5.3. Order 2
Since 9,E™° = 0, we identify the terms in €% in (4.4) to infer
0 o m
D2ETM? = D,00EM! + enpaenng 2 (—9“ ) a, &
nea n 3 a LR \/g—o c \/g—m =0 n=p
+(o. [ “Laemo) - % (@> D5ETY ) b + fimGmy/gOET?
g0 B - ), 3 A
(5.15)

Since the right-hand side of the previous equality does not depend on 7, we have

xrs3 =0+ -

1 . .
— (83E§’1 — 8)\E§’1)
He

1
— (83E§\’1 — 8)\E§’1)
c

13:07

1 m,2 m,1 1 ~e.0 ~e.0
- (92652 ~ or0ne) - - (0855 1smo0v — 30555 Lm0 )-

e
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Since §dE®0 — pegeE®0 = 0, explicit formulas of the Appendix imply

2 11e,0 _ re,0 re,0 X Jar re,0
OB gm0+ = [MeQe\/ﬁEj + 030\ E5 +€a/336maﬁ33 (%) O3B

X 1 re,0 Jar re,0
teapsems® (o, (—8aE’ ) ) (_) o )}
» 3\@( N \vg)

According to the transmission condition at the order 0, the following equalities hold

xr3 =0+

1 I r- 1 m m [ m
—(NES" = 05" pymor = u—(0A53 0= 0,0 =0+ ES lng=or = EXlu=0,
e m

hence we infer the following transmission conditions

1 ~ ~ 1
u—(aBEi’l — O\ES) — M—(@gEf\’l — O\ESY)
e C
~ 1 1 Ira 1 ~e 0
= (qm — 4 )Ee’0| =0+ + <_ - _> €ap3€Lr3 —aﬁ <_8LE:7 )
A fim  fle NNV a0t
(5.16)

Therefore E! satisfies (5.3) for n = 1 with the transmission conditions (5.9)—(5.16)
written in local coordinates. Equalities (5.8)—(5.13) lead to

EV(xT,m) = nOnENt + B a0y E3 (xTom) = 10pE8 + ;]—°E§’1|m3:0_.
m
Remark 5.2. The coefficients at order 1 are now uniquely determined. Since
01T =0 = 0uF o = L PO = OB im0
C

9,E™? is uniquely determined by (5.15), namely

OnEN? = nORET? + 0a 3 =0 — ‘;—m(aaEg’l — BESY) py—o-- (5.17)

C

Remark 5.3. Transmission condition (5.14) might be obtained straightforward
from (5.3), (5.9) and (5.16). Writing 6dE®!' = a5'dz’ and 6dES! = aS'dz’ we infer

c,1 1 (gﬁn 1 c,1
ag” = —=€q 3@/{38& - = (83EC’ - aLE" ) )
3 \/g B \/E L 3
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and similarly for dg’l by replacing E! by Eel, According to (5.16) we have

1 1 dm — 4 98 7
_a§71|m3:0+ — —@§’1|13:0* = Mﬁa[ﬁemiiaa (ﬁEf’l

e He V9 V9

The divergence-free property of E=? applied in z3 = 0% implies

xr3 :0+

1 el 1 c,1 1 re,0
— 03 | gt — — a3 |paco- = —(gm — g¢) ——=0 ES —0+-
LLe 3 |$3 0 L 3 |x3 0 ( m e) m 3(\/§ 3 )|x3 0
Moreover, we have
1 ~ 1
_a§71|x3:0+ + qu§,1|$3=0+ = _a§’1|x3=0* + qCE§71|$3=07 = 07
He He

therefore, we infer

. 1 .
1 c,1 e,0
(IeE;’ | —o+ — g B3 | =0- — (q - Qe) 83(\/§E3’ )
o e " g|$3=0 7

xr3 :0+

which is exactly condition (5.14).

6. Justification of the Expansion

Let us rewrite the equations satisfied by the first two terms of the asymptotic
expansion of E in terms of differential forms. Denote by S and T the following
forms

~ 1 1 I 1 ~.0 N
S={(gm— qe)E¥°|,._ —|—<———>e €3 =0 (—8Ee’m_ dz?,
(( e) A | 3=01 Lim lle af3€k3 \/g B \/g Ay | 3=0+

T = ((q— - %> O ES |pyo + Hm—He (93 o0 — 8aE§’0)|m3_0_> dz®.
dm Ge H

C

The reader easily verifies that the definitions (2.13) and (2.14) coincide with the
above expressions of S and T. The 1-form E° satisfies (2.10) in a weak sense and
E! satisfy (5.3) with the following transmission conditions on I' according to (5.9)—
(5.14)

1 . 1
—int(Np)dE®! |4 — —int(Np)dES! |- =S, (6.1a)
He Hc

Np AE®Y e — Np AESY - = Np AT, (6.1Db)

Observe® that according to (5.14)

1 .
08 = —(dm — ge) —===05(v/9E5") : (6.2)

g|753=0 23=0"%
hSince geint(Np)ES! |y = int(Np)((1/pe)ddES|4) using (8.1) since dNp = 0 we infer

int(Np)((1/pe)SAES 1) = —8((1/pe )int(Np)dES1 |4 ), and similarly for ES:1. Therefore accord-

ing to (6.1a) we infer ge int(Np)E®! |y —gcint(Np)ES |~ = —6S, hence (6.2) according to (5.14).
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In the cylinder " x (0, 1), the 1-form £™° equals

gm70 _ E;,0|x3=07dx01 + &E§,0|x3:07dx37 (63)

Gm
dz®
13:0_
da®.
T3 =0-

while the 1-form €™ equals

£t = {E§’1|x3=0 1 (q"—°8aE§’° + B (0, 50 - aaE§’°>)

m C

+ {j—cEg’Hzg_o_ +7 (agEg’O + 2. (q—m = 1) E§’0>

dc

(6.4)

6.1. Regularity results
We now present the regularity of the 1-forms E° and E!.

Proposition 6.1. Let Hypothesis 2.2 hold. Moreover, let s > 0 and J belong to
HFQY(Od0). Then the 1-forms E° and E! exist and are unique. Moreover, the
following regularity results hold

E*C € H3QM(0,), E“° € H* Q' (0,),
E®! € H>0Y(0,.), ES' e H*HQY(O,).
Proof. All the assertions concerning E° are proved in the above Proposition 2.7.

Since E*0 and E° belong respectively to H3t5Q(0,) and H3t5Q(O,), the forms
S and T belong to the following Sobolev spaces

Se HY/*HQNT), Te HY*HQ\(T).

Moreover, according to (6.2), dS € H3/25(T). Let C € H*t*Q'(O,) such that

Nr AC|r = Np AT, ¢ int(Np)Clpr = 68,

5C - 0, il’l OCv 1 .
/u—|nt(NF)dC|F - Sy 5(qCC|F) = 0'

Observe that §dC — jicq.C belongs to H*Q(O.). Denote by U the following 1-form
U=E"* in0O, U=E"“-C, iO.
Then U satisfies
0dU — peqeU = 0, in O,
0dU — peq U = —6dC + peqcC, in O,
Noo AUlgo =0,
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with the following homogeneous transmission conditions on I"

[Nr AU =0, {%int(Np)dU} =0, [gint(Nr)Ulr = 0.
r

Arguing as in Proposition 2.7, we infer Proposition 6.1. O

The next proposition gives the regularity of the 1-form £™°%, €™ and £™2. Its
proof easily comes from Proposition 6.1 and from the explicit expressions of the
components of €™ for n =0, 1,2, given in Sec. 5.

Proposition 6.2. Let Hypothesis 2.2 hold. Moreover, let s > 0 and suppose that J
belongs to H1T*Q1(0%). By abuse of notations,! we define E™? using (5.17) by

z3/e
Em? = / OpE™2dn dz™.
0

Denote by C*Q([0,1], H>/?ts—"QYT)) is the space of the 1-forms, which
are smooth in the normal variable 1, and which belong to H®/**s="QYT) at
given n € [0,1]. Then for n = 0,1,2, the profile terms belong to E™" €
C>Q([0,1], H5/?+s—mQU(T)).

6.2. Convergence

Suppose that Hypothesis 2.2 holds, and let the source current density J belong to
H3QY(Od), with 6] = 0. It is convenient to define

ES  =E®0 + B! in o, ES =E“Y 4RS! in O,

app app

2
V(xT,23) €T x (0,¢), EZ,,0®(xT,73) = Ze”é’m’”(xT,xg/s),

n=0
and let E,pp, equal to B, in OF, EZ,, in O, and to EJ | in Of,. According to the

construction of the coefficients (€™"™),=0,1,2 and using Proposition 6.2, there exists
a 1-form G € C*Q([0,1], H/2QY(T)), such that
OdET,, — UmgmEqy, = eGod®™ 1 in OF,

app

and for an e-independent constant C' > 0,

sup ||G(,n)lgr2iy < C,  sup [[6G(, )|l gsr2ry < C.
nel0,1] n€l0,1]

Define W by W = E—E,,;, and denote by W¢, W™ and W€ the respective restrictions
of W to 0%, O, and Oc. In local coordinates, W¢ = Wedz!, W™ = Wndz! and
We = WEdz'. Theorem 2.9 is a straightforward corollary of the following result.

Theorem 6.3. There exists an e-independent constant C' > 0 such that

Wl o (a,5.05) + VEIW™ (| o1 (@,6,02) + W ot a,6,0.) < Ce>

iSince £™2 vanishes in x3 = 0, it is not the third coefficient of the profile in T x (0, 1).
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Proof. The 1-form W satisfies
AW — pugW = €lp:G, in O UOL U O, Noo AW 0 =0, on 90,
with the following transmission conditions for .7 € {T'.,T'}

[No AN W]y = —[No A Eappl.~, (6.5a)

[%;nt(]vy)dw] = Bint(Ny)dIEapp] R (6.5b)

Let ES,, = E;*PPdz’. According to Proposition 6.1, ES € H*Q'(O,). Hence there
exist f, € HY/?(T) and g; € H3/?(T) such that

(03 ES™PP — 9, ES™PP)|, . = Z L OL (B3 EE™PP — 9y ES™P)|1u o+ + €2,
1=0,1

E;’applx:;:é. = E;:,app|x3=0+ + 583E;’app|x3:0+ + 529j.
Moreover there exists an e-independent constant C' > 0 such that
|falmiem < Cs gjlasra < C. (6.6)

After simple calculations involving the explicit expressions of (€™™),=0 1,2 in local
coordinates, transmission conditions (6.5) are written as

1 1 g2

— (D5 WE — D W) gy = — (D5 W — D W) s + — fr,
(o Dlesees = (0 Pleymer + =

1 C C 1 m m

_(83Wa - 804W3)|x3=0* = /L_(83Wa - 804W3 )|x3=0+’

C

W2|$3=6+ = W(T|x3=s— +529aa and W§|x3=0_ = W¢T|$3=0+'

Observe that 0W = — “maqm 10:0G, and the following equalities hold

QeW§|x3=s+ = QmW§n|x3=s— + (Ie52937 (ICW:§|9¢3=O— = QmW:;n|x3=0+~
We choose P = p;dz? in H?Q!(OF) such that
Noo N P|3(g =0, and P|x3:€+ = gi(xT)dxi.

Since for € € (0,dp/2), the domain OF satisfies O\(¥1r N Oe) C O C O, and
according to (6.6), there exists an e-independent constant C' > 0 such that

Pl 201 0y < C.
Defining W = W + ezloeaIP’, we infer

AW — pgW = 521(9§ (0dP — f1eqelP) +€l0:G, in O, Npo AW|s0 =0, on O,
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and the following transmission conditions hold

1 ~ < 1 - ~ 2 —
—(BWE = 0aW5)|ay=c+ = —(BWT = 0aW3")|oy=c- + —fa,
He Him He

1

- N 1 - -
p (OsW5 = 0aW5)|zy=0- = M—(asVV(T = 0aW3")|zy=0+,

Welogmet = Willog=es Weleg=o- = Willug=o+

where fo = fo — (03pa — Oap3)|ps=c+. Moreover,
(JeW§|m3:s+ = qu;|13:£*a qCWSCLEg:O* = qu§1|m3:0+'
Since the functions }: are defined on I, it is convenient to define ﬁ; on I';. by
Vxt el F; o®(xT,¢€) = };(XT).
Denoting by G and F, the following 1-forms defined by
G = elo:G + e210: (3dP — ieeP), F = Foda®,
there exists an e-independent constant C' > 0 such that
G| L201(0) < C¥2, (0G| L2(0y) < C*? and  |[F||g-1/201(r.y < C.
The 1-form W satisfies the following equalities
SAW — pgW =G, in OSUO5 U0,  Napo AWepo =0, ondO, (6.7a)

with the following transmission conditions on I'. and on I'

1 ~ 1 -
—int(NFE)dWe|F+ = —int(NFE)dWm|F— + —T, (67b)
He : Hm c H

e

1 ~ 1 ~
—int(Np)dWm|p+ = —int(Np)dWC|p7, (670)
Hm He

Np, AWe|ps = No, AW™ |-, and  Np AW™|pe = No AWS|p—. (6.7d)
Moreover,
5W = LG, in OZUOE U0, (6.8)
Mg
and G and F are such that
Geint(Nr, )We s = g int(Np, )W™| 1o, e int(Np)WE|p- = g int(Np) W™ |
Multiply (6.7) by W and integrate by parts with the help of (6.8) to infer
||We||Hﬂl(d,5,05) + \/EHWmHHQl(d,é,osﬂ) + ||WC||HS21(d,6,OC) < Ce?,
for an e-independent constant C. Morever, W =W+ 621(95]}” implies

IWe| ot (,6,05) + VEIW™ | a1 a,6,02) + Wl o (a,6,0.) < Ce2, (6.9)

from which we infer Theorem 2.9. O
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7. Asymptotic Expansion at any Order

We may extend our derivation principle to obtain asymptotic transmission condi-
tions at any order. Actually, there exists a recurrence formula, which is given in
this section. The sketch of the proof of the expansion, which is similar to the proof
of Theorem 6.3 is left to the reader. For (o, 3,1,k) € {1,2}* define the following
sequences (Afx,ﬁm)lENv (ng,ﬁm)IENv (C(lx,ﬁLn)IEN and (Dﬁx,ﬁm)IEN by

Al :%(gg‘L%<gg‘H>>
=\ Ve e \Vam) )| o1 o

!
I, m i D'= (—m_n (ng)> ,
. _z<gaaa(1)) VT e
o=\ V) )| o/ 1
n=0 [ ] D) (%n
afr el g™ Vg n:07

l
cl. — O ( gap
af gl gm

Using (4.4)—(4.6), for k > 1 we define 8%8?’“‘2 and 9,ETF T respectively by

n=0

k42 k41 k41 k
OZETIH? = 0, 0NEP T + €apseins A nunOnE" T = timmEN

k

+ €ap3€ir3 Z{(Bg\maa + Ciba’{aa)ggmkil
=1

+ Al)\am(aﬁgg]7k+1_l - 8/35;17k_l)}7

k

OpERMH = =N (D'EPFT + eapseins (ClpOa + Bl ) EMFT).
=0

Define now the differential forms Sy;;1 and Ty by

1 ! m m
Sk1 = {M— / (O2EMMH2 — 950, & ) d
m JO

k

1 ~ g .

o 205, (BB = OB ko } da*,
€ =0

Ths1 = {/1 B ENFtdn — f:a;gli‘;“} dz?.
0 1=0
The 1-forms E&#*! and ES*+1 are therefore defined by
SAESFHT — ueqefEe’kH =0, in Ok,
SAESM ! — g BESFH =0, in O,

Napo ANESF 50 =0,
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with the following transmission conditions on I'

1 - 1
—int(Np)dES* |y — —int(Np)dES* o = Spyq,
I

e C

Nr A Ee’k+1|p+ — Nr A Ec’k+1|pf = Npr A Tgtr.

Since for n = 0,1 the 1-forms (€™ ES™ E&™), o 1 are determined by (2.10)—(6.3)~
(6.1)—(6.4), and since 8,,5;1’2 is also known according to Remark 5.2, the recurrence
process is initialized. The reader could prove that outside a neighborhood of O%
the following estimate holds E = Y"}'_, e*EF + O(e").

Appendix: Explicit Formulas

We refer the reader to [18, 35] for the basic notions of differential calculus for
a general compact connected oriented Riemannian manifold (M,g) of R with
smooth compact boundary M. The following property has been used through-
out the paper.

Property A.1. (Useful equality) Suppose that M is a compact connected oriented
Riemannian manifold without boundary of R", and let k be an integer smaller than
n. Let w is a k-form and Y is a smooth 1-form such that dY = 0. Then applying
the above Green formula with the help of the definition of the inner product we
infer that for w € HQ*(§, M)

int(Y)dw = (=1)6(int(Y)w). (A1)
Proof. Actually, for any n € HQ*=2(d, M), we have

/ (int(Y)dw, n)qr—2 dvolys z/ (0w, Y Am)gr-1 dvolys
M M

z/ (w,d(Y A n))qr dvolay,
M

= (—1)]“_2/ (W, Y Adn)qr dvolyy
M

= (—1)’“*2/ (int(Y)w, dn)qr—1 dvoly,
M

= (—1)k_2 /M<5(int(Y)w),77>Qk_z dvoly,. 0O

We now present explicit formulas of the differential calculus for a manifold
M C R3 endowed with the Euclidean metric. Denote by (x,y, 2) the usual Euclidean
coordinates of M and let (y1,ys2,y3) be another system of coordinates: there exists
a C°°-diffeomorphism ¢ such that ¥ (y1,92,y3) = (2,y, 2). The Euclidean metric
in (y1,y2,ys)-coordinates is given by the matrix (gij)i j=1,2,3:9i; = Oy, - Oy, 1),
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where - denotes the Euclidean scalar product of R3. The inverse matrix of (g;;);; is
denoted by (¢g%);; and let g denote by its determinant g = det((gi;)i,j=1,2,3)-

Denote by (dy!,dy?,dy?) the basis of Q'(M) associated to (y1,%2,y3). It is
clear that 2-forms (dy? A dy?,dy® A dy',dy' A dy?) is a basis of Q?(M). Since
M is equipped with the Euclidean metric, we perform the change of coordinates
U(y1,Y2,y3) = (x,y,z) to infer that the inner product (-,-)or for k = 0,1,2, is
determined in (y1,y2, y3)-coordinates by’ the following equalities

(F,G)oo = FG, (dy',dy’)or = g7,

(dy'dy”, dy’dy’)q2 = g7 g™ — g" ", (A.2)
1

(Fay' dy?dy®, Galy'dyP ) = - FG.

where F' and G are smooth functions on M, and ¢ is the determinant of (g;;).

o FExterior products on R3. The exterior product between a k-form and a I[-form
equals zero as soon as k + [ > 3. Moreover, for k € {0,...,3}, the exterior
product between a O-form and a k-form is the usual scalar multiplication between
a function and a k-form. The following formulas hold (see Flanders [18]).

> Exterior product of 1-forms. Let A = \;dy® and p = p;dy’ be two 1-forms, then
AN = Aipydy'dy’ = %(ekzmkmm)dy"dyj :
> Exterior product between a 2-form and a 1-form. Let A = %)\kdyidyj and
= pidy’, then
AN = Apppdy ' dy?dy?®.
e Expression of d. A straightforward application of the recurrence formula for d
given Schwarz [35] implies the following formulas.

> d on 0-forms. Let A be a O-form, i.e. A is a function. Then

oA

d\ =
yi

dy’.

> d on 1-forms. Let = p;dy’, then dp equals

_Omy iy Cigk Ot 30,0
dp = R dy'dy’ = >\ dy'dy’.

> d on 2-forms. Let A = 228\, dy’d? be a 2-form, then we have

2
d\ = % dytdy2dy?.
Oy

iTo simplify notations, we omit the sign A between the differential forms dy® and dy?, for 4,j =
1,2,3.
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Proposition A.2. (Star Hodge operator) Star Hodge operator is defined in R® by
the following formula.

e Hodge on functions and 3-forms. Let S be a 0-form and T = 7dy'dy?dy® be a
3-form. Then

1
*S = \/§deldy2dy3, *T = ET.

e Hodge on 1-forms. Let R = R; dy’ be a 1-form. Then xR is the 2-form defined by
*R = e%k\/ﬁgklf{l dydy’.

e Hodge on 2-forms. Let S = <48, dy'dy’ be a 2-form. Then %S is the 1-form
equal to

1 .
*S = —@g;p Sk dy’.

V9
Proof. If w is a k-form in R?, then xw is the (3 — k)-form such that
Ve QX M), nAxw=(n, w>Qk(M)\/§dy1dy2dy3.

Applying the above formulas of the exterior products, and equalities (A.2), we infer
the proposition. O

Proposition A.3. (The codifferential operator &) According to the codifferential
definition (see Schwarz [35]) the following formulas hold.

o Codifferential of 1-forms. Let p = uidyi then

o= —— ki A.
H \/— ay (\/_g /Ll) ( 3)
e Codifferential of 2-forms. Let A = <=\, dy'dy?, then

9ij 8 Jdim i
O\ = ijl\/_ay (\/_/\ )dy

Proof. Since the codifferential on k-forms in R? is defined by 6 = (—1)3* x dx, a
straightforward application of the formulas of the differential operator d and the
use of Proposition A.2 lead us to the formulas of the codifferential operator. O

Proposition A.3 with the formulas of d differential operator implies the following
corollary.

Corollary A.4. (dd and A operators on functions and on 1-forms) Recall that
A = —(6d + dod).
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e Let f be a function. Then

0
Af = —8df = —~— Mo ) Ad
o Let A = \dy' be a 1-form, then

; 0 (g 0O )
od\ = ¢; emn = —\, | dy", A5
k€l \/_8% (\/ﬁaym Y ( )

gri O (gkl 0 ) 0 (1 0 il )) ,

A= — (epemm i 2 (9 2\ ) 2 (L 2 A )dyr

(j“ V9 0y; \ /G 0ym yr \/ank(\/gg 0))dy
(A.6)

Using duality between the interior and the exterior products [35], we infer the
following proposition.

Proposition A.5. (Interior product) Let N be a wvector-field identified with the
corresponding 1-form N = N;dy’.

e Interior product of a vector-field on a 1-form. Let p = pu;dy’. Then
int(N)p = g Njp; (A7)
e Interior product of a vector-field on a 2-form. Let p = p;; dy'dy?, then

int(N)p = gripij Ne(9% g — g g”") dy". (A8)
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