
March 9, 2010 15:50 WSPC/251-CM 1793-7442
S1793744210000132

Confluentes Mathematici, Vol. 2, No. 1 (2010) 37–134
c© World Scientific Publishing Company
DOI: 10.1142/S1793744210000132

SEMIBOUNDED REPRESENTATIONS AND INVARIANT

CONES IN INFINITE DIMENSIONAL LIE ALGEBRAS

KARL-HERMANN NEEB

Fachbereich Mathematik, TU Darmstadt
Schlossgartenstrasse 7, 64289-Darmstadt, Germany

neeb@mathematik.tu-darmstadt.de

Received 23 November 2009
Revised 16 December 2009

A unitary representation of a, possibly infinite dimensional, Lie group G is called semi-
bounded if the corresponding operators idπ(x) from the derived representations are
uniformly bounded from above on some non-empty open subset of the Lie algebra g.
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interaction between the areas of infinite dimensional convexity, Lie theory, symplec-
tic geometry (momentum maps) and complex analysis. Here open invariant cones in
Lie algebras play a central role and semibounded representations have interesting con-
nections to C∗-algebras which are quite different from the classical use of the group
C∗-algebra of a finite dimensional Lie group. The second half is devoted to a detailed
discussion of semibounded representations of the diffeomorphism group of the circle, the
Virasoro group, the metaplectic representation on the bosonic Fock space and the spin
representation on fermionic Fock space.
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B(X) = {v ∈ E: inf〈X, v〉 > −∞} for X ⊆ E′, 45
Bp(H) Schatten ideal of order p, 51
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HX(v) = 1
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Iπ conv(im(Φπ)), momentum set of π, 56

S(A) states of the C∗-algebra A, 77

S(H) bosonic/symmetric Fock space, 60

Wπ = B(Iπ)
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Wsp(V,ω) = {X ∈ sp(V, ω):HX � 0}, 69
Wspres(H) =Wsp(H) ∩ spres(H), 72

C+ closed upper half plane, 61
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Sp(H) symplectic group of real Hilbert space HR, 52
Spres(H) restricted symplectic group of HR, 52
Ures(H, P ) restricted unitary group defined by P , 51

Ures(H+,H−) restricted pseudo-unitary group, 53

Vir Virasoro group, simply connected with L(Vir) = vir, 95

HK Hilbert space with reproducing kernel K, 64

HR real Hilbert space underlying the complex Hilbert

space H, 52

O(M) holomorphic functions on M , 64

dπ(x) derived representation, 55

up(H) skew-hermitian elements of Bp(H); Lie algebra

of Up(H), 51

ĤSpres(H) central extension of H� Spres(H) containing

the metaplectic group, 107

Ŝpres(H) metaplectic group, 99

Ôres(H) metagonal group, 181

hsp(V, ω) = heis(V, ω)� sp(V, ω), Jacobi–Lie algebra of (V, ω), 70

lim(C) recession cone of convex set C, 46

O(H) orthogonal group of real Hilbert space HR, 52
q � 0 q is positive definite, for quad. form, 69

sπ(x) = sup(Spec(idπ(x))), for smooth unit. rep. π, 57

1. Introduction

In the unitary representation theory of a finite dimensional Lie group G a central

tool is the convolution algebra L1(G), resp., its enveloping C∗-algebraC∗(G), whose
construction is based on the Haar measure, whose existence follows from the local

compactness of G. Since the non-degenerate representations of C∗(G) are in one-

to-one correspondence to continuous unitary representations of G, the full power of

the rich theory of C∗-algebras can be used to study unitary representations of G.
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To understand and classify irreducible unitary representations, the crucial methods

are usually based on the fine structure theory of finite dimensional Lie groups,

such as Levi and Iwasawa decompositions. Both methods are no longer available

for infinite dimensional Lie groups because they are not locally compact and there

is no general structure theory available.

However, there are many interesting classes of infinite dimensional Lie groups

which possess a rich unitary representation theory. Many of these representations

show up naturally in various contexts of mathematical physics ([15, 55, 56, 81, 88,

18, 90, 94, 4]). The representations arising in mathematical physics, resp., Quan-

tum Field Theory are often characterized by the requirement that the Lie algebra

g = L(G) of G contains an element h, corresponding to the Hamiltonian of the

underlying physical system, for which the spectrum of the operator i · dπ(h) in the

“physically relevant” representations (π,H) is non-negative. These representations

are called positive energy representations (cf. [92, 10, 88, 21]).

To develop a reasonably general powerful theory of unitary representations of

infinite dimensional Lie groups, new approaches have to be developed which do

neither rest on a fine structure theory nor on the existence of invariant measures.

In this note we describe a systematic approach which is very much inspired by the

concepts and requirements of mathematical physics and which provides a unifying

framework for a substantial class of representations and several interesting phenom-

ena. Due to the lack of a general structure theory, one has to study specific classes of

representations. Here we focus on semibounded representations. Semiboundedness

is a stable version of the positive energy condition. It means that the self-adjoint

operators idπ(x) from the derived representation are uniformly bounded below for

all x in some non-empty open subset of g. Our long term goal is to understand

the decomposition theory and the irreducible semibounded representations by their

geometric realizations.

The theory of semibounded unitary representations combines results, concepts

and methods from several branches of mathematics: the theory of convex sets

and functions in locally convex spaces, infinite dimensional Lie theory, symplec-

tic geometry (momentum maps, coadjoint orbits) and complex geometry (infinite

dimensional Kähler manifolds and complex semigroup actions). In Secs. 2–5 below,

we describe the relevant aspects of these four areas and recall some basic results

from [67, 68]. A crucial new point is that our approach provides a common func-

tional analytic environment for various important classes of unitary representations

of infinite dimensional Lie groups. That it is now possible to study semibounded

representations in this generality is due to the recent progress in infinite dimensional

Lie theory with fundamental achievements in the past decade. For a detailed survey

we refer to [66]. A comprehensive exposition of the theory will soon be available in

our monograph with Glöckner [25].

For finite dimensional Lie groups semibounded unitary representations are well

understood. In [60] they are called “generalized highest weight representations”

because the irreducible ones permit a classification in terms of their highest weight
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with respect to a root decomposition of a suitable quotient algebra (see Remark 5.5

for more details on this case). This simple picture does not carry over to infinite

dimensional groups.

We now describe our setting in some more detail. Based on the notion of a

smooth map between open subsets of a locally convex space one obtains the concept

of a locally convex manifold and hence of a locally convex Lie group (cf. [66,57,25]).

In Sec. 3, we discuss some key examples. Let G be a (locally convex) Lie group and g

be its Lie algebra. For a unitary representation (π,H) of G, we write πv(g) := π(g)v

for its orbit maps and call the representation (π,H) of G smooth if the space

H∞ := {v ∈ H:πv ∈ C∞(G,H)}

of smooth vectors is dense inH. Then all operators idπ(x), x ∈ g, are essentially self-

adjoint and crucial information on their spectrum is contained in the momentum set

Iπ of the representation, which is a weak-∗-closed convex subset of the topological

dual g′. It is defined as the weak-∗-closed convex hull of the image of the momentum

map on the projective space of H∞:

Φπ:P(H∞) → g′ with Φπ([v])(x) =
1

i

〈dπ(x).v, v〉
〈v, v〉 for [v] = Cv.

As a weak-∗-closed convex subset, Iπ is completely determined by its support

functional

sπ: g → R ∪ {∞}, sπ(x) = − inf〈Iπ , x〉 = sup(Spec(idπ(x))).

It is now natural to study those representations for which sπ, resp., the set Iπ ,

contains the most significant information, and these are precisely the semibounded

ones. As we shall see in Remark 4.8, the geometry of the sets Iπ is closely connected

to invariant cones, so that we have to take a closer look at infinite dimensional Lie

algebras containing open invariant convex cones W which are pointed in the sense

that they do not contain any affine line.

For finite dimensional Lie algebras, there is a well-developed structure theory of

invariant convex cones ([36]) and even a characterization of those finite dimensional

Lie algebras containing pointed invariant cones ([58, 74]; see also [60] for a self-

contained exposition). As the examples described in Sec. 6 show, many key features

of the finite dimensional theory survive, but a systematic theory of open invariant

cones remains to be developed. A central point of the present note is to exploit

properties of open invariant cones for the theory of semibounded representations,

in particular to verify that certain unitary representations are semibounded. In

Sec. 7, we discuss two aspects of semiboundedness in the representation theory of

C∗-algebras, namely the restrictions of algebra representations to the unitary group

U(A) and covariant representations with respect to a Banach–Lie group acting by

automorphisms on A.

Section 8 is devoted to a detailed analysis of invariant convex cones in the Lie

algebra V(S1) of smooth vector fields on the circle and its central extension, the
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Virasoro algebra vir. In particular we show that, up to sign, there are only two open

invariant cones in V(S1). From this insight we derive that the group Diff(S1)+ of

orientation preserving diffeomorphisms of S1 has no nontrivial semibounded unitary

representations, which is derived from the triviality of all unitary highest weight

modules ([26]). As one may expect from its importance in mathematical physics,

the situation is different for the Virasoro group Vir. For Vir we prove a convexity

theorem for adjoint and coadjoint orbits which provides complete information on

invariant cones and permits us to determine the momentum sets of the unitary

highest weight representations. In particular, we show that these, together with

their duals, are precisely the irreducible semibounded unitary representations. Our

determination of the momentum sets uses the complex analytic tools from Sec. 5,

which lead to a realization in spaces of holomorphic sections on the complex mani-

fold Diff(S1)+/S1. This manifold has many interesting realizations. In string theory

it occurs as a space of complex structures on the based loop space C∞
∗ (S1,R) ([13]),

and Kirillov and Yuriev realized it as a space of univalent holomorphic functions

on the open complex unit disc ([44, 46]). Its close relative Diff(S1)/PSL2(R) can

be identified with the space of Lorentzian metrics on the one-sheeted hyperboloid

(cf. [48]), which leads in particular to an interpretation of the Schwarzian derivative

in terms of a conformal factor.

In Secs. 9 and 10 we continue our discussion of important examples with the

automorphism groups Sp(H) of the canonical commutation relations (CCR) and

O(H) of the canonical anticommutation relations (CAR). Geometrically, Sp(H)

is the group of real linear automorphisms of a complex Hilbert space H preserv-

ing the imaginary part ω(x, y) := Im〈x, y〉 of the scalar product and O(H) is the

group of real linear automorphisms preserving its real part β(x, y) := Re〈x, y〉
(cf. [14]). Section 9 is dedicated to the Fock representation of the (CCR). Here we

start with the unitary representation (W,S(H)) of the Heisenberg group Heis(H)

on the symmetric/bosonic Fock space S(H). The group Sp(H) acts naturally by

automorphisms αg on Heis(H) and W ◦ αg is equivalent to W if and only if g

belongs to the restricted symplectic group Spres(H), i.e. its antilinear part g2 is

Hilbert–Schmidt. Since the Fock representation of Heis(H) is irreducible, this leads

to a projective representation of Spres(H) on S(H). We write Ŝpres(H) for the

corresponding central T-extension; the metaplectic group ([91, 96], [88, Sec. 5]).

Using a quite general smoothness criterion (Theorem A.4), we show that this

group carries a natural Banach–Lie group structure and that its canonical uni-

tary representation on S(H) (the metaplectic representation) is smooth. From

an explicit formula for the corresponding Lie algebra cocycle, we derive a natu-

ral presentation of this group as a quotient of a semidirect product. We further

show that the metaplectic representation is semibounded and determine the cone

of semibounded elements. The combined representation of the semidirect product

Heis(H)� Ŝpres(H) is also semibounded and irreducible, and, using the tools from

Sec. 5, we show that its momentum set is the closed convex hull of a single coadjoint

orbit.
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In Sec. 10 we then turn to the (CAR), for which we consider the representation

on the fermionic Fock space Λ(H). Here we likewise obtain a projective representa-

tion of the restricted orthogonal group Ores(H) ([97]). With completely analogous

arguments we then show that the corresponding central extension Ôres(H) is a

Lie group, the metagonal group, whose representation on Λ(H) (the spin repre-

sentation) is smooth and semibounded. We also prove that the momentum set of

the even spin representation is the weak-∗-closed convex hull of a single coadjoint

orbit. Our discussion of the bosonic and fermionic Fock representations are very

much inspired by the construction of the metaplectic representation in [103] and

the presentation in [77]. For finer results on cocycles and connections to physics

we refer to [49, 84, 88]. For a more detailed discussion of the metaplectic and the

metagonal group, see [104] and [63, Sec. IV.2].

The example of the orthogonal group Ores(H) is particularly instructive because

it shows very naturally how semibounded representations enter the scene for infi-

nite dimensional analogs, such as Ores(H), of compact groups, for which one rather

expects to see bounded representations such as the spin representation of O1(H)

(cf. [59]). In many cases, such as for O1(H), the class of groups with bounded repre-

sentations is too restrictive to do justice to the underlying geometry. What makes

the larger groups more interesting is the rich supply of exterior automorphisms

and the existence of nontrivial central extensions encoding relevant geometric

information.

As our examples show, the process of second quantization, i.e. passing from a

one-particle Hilbert space to a many-particle space, destroys norm continuity for

the representation of the automorphism groups. What survives is semiboundedness

for the centrally extended groups acting on the many-particle spaces. This is closely

related to the fact that Lie groups of non-unitary maps on a Hilbert spaceH, such as

Spres(H) have unitary representations on the corresponding many-particle spaces.

In physics language this means that “unphysical symmetries” of the one-particle

Hilbert space may lead to symmetries of the many-particle space (cf. [84]). In the

context of finite dimensional Lie groups, the analogous phenomenon is that non-

compact matrix groups have nontrivial infinite dimensional unitary representations.

We hope that the detailed discussion of three major classes of representations

in Secs. 8–10 demonstrate the close interactions between convex geometry, com-

plex analysis and Lie theory in the context of semibounded unitary representa-

tions. Presently, this theory is still in its infancy, but a general picture appears

to evolve. One major point is that understanding semibounded unitary represen-

tations requires a good deal of knowledge on open invariant cones in the cor-

responding Lie algebra g and, what is closely related, information on the set

g′seq of semi-equicontinuous coadjoint orbits Oλ, i.e. orbits for which the function

x �→ supOλ(x) is bounded on some non-empty open subset of g. Note that for any

semibounded representation the momentum set Iπ is contained in g′seq. In many

important cases, the methods developed in Sec. 5 provide a complete description

of Iπ in terms of generating coadjoint orbits.
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The main new results and aspects presented in this paper are:

• Section 5 provides tools to verify that unitary representations can be realized in

spaces of holomorphic sections of line bundles and to calculate their momentum

sets. Here Theorem 5.11 is the key tool.

• The smoothness of the action of a Banach–Lie group on the space of smooth

vectors proved in [71] is applied in our context in two essential ways. In Sec. 4,

it provides a Hamiltonian action on P(H∞) for a unitary representation of a

Banach–Lie group, and in Sec. 7 it relates a C∗-dynamical system (A, H, α) and
corresponding covariant representations satisfying a spectral condition to semi-

bounded representations of semidirect product Lie groups of the form U(A∞)�H .

This leads in particular to the remarkable conclusions in Theorem 7.7, which are

based on elementary properties of invariant cones.

• The analysis of the convexity properties of adjoint and coadjoint orbits of V(S1)
and vir is new. It leads in particular to an identification of the class of irreducible

semibounded representations with the unitary highest weight representations and

their duals (Theorem 8.22).

• The insights that the Fock representations of Spres(H) and Ores(H) are semi-

bounded seems to be new, and so are the results on adjoint and coadjoint orbits

of the corresponding Banach–Lie groups.

For finite dimensional groups, the first systematic investigation of unitary repre-

sentations (π,H) for which the cone {x ∈ g: sπ(x) ≤ 0} is nontrivial for non-compact

simple Lie groups (which are necessarily hermitian by [105]) has been undertaken

in the pioneering work of G. Olshanski ([76]). Based on the powerful structure

theory for invariant cones developed in [36] by Hofmann, Hilgert and Lawson, we

were eventually able to develop a general theory for semibounded representations of

finite dimensional Lie groups, including a classification and a disintegration theory

([60]). We hope that one can also develop a similarly rich theory of complex semi-

groups and holomorphic extensions, so that C∗-algebraic tools become available

to deal with direct integrals of semibounded representations. In [67] we undertook

some first steps in this direction, including a complete theory for the Abelian case

(cf. Theorem 5.2). What is needed here is a good theory of analytic vectors, which

becomes a tricky issue for infinite dimensional Lie groups. Up to now, existence

of analytic vectors is only known for very special classes of groups such as cer-

tain direct limits ([85]) and the canonical commutator relations in Quantum Field

Theory ([82, 34]).

If K is a compact simple Lie group and L(K) := C∞(S1,K) the corresponding

loop group, then the group Tr := T = R/Z acts smoothly by rotations on L(K)

and also on its canonical central extension L̃(K) by T, which leads to the “smooth

version” L̂(K) := L̃(K)�T of affine Kac–Moody groups. For these groups positive

energy representations are defined by requiring the spectrum of the generator of Tr
to be bounded below in the representation. Similarly, one defines positive energy

representations of the group Diff(S1)+ of orientation preserving diffeomorphisms
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of the circle. Various aspects of the theory of irreducible positive energy repre-

sentations were developed in [88, 27, 81, 100, 101], but only in [81, Secs. 9.3, 11.4;

Proposition 11.2.5] one finds some attempts towards a decomposition theory.

Positivity conditions for spectra also play a key role in Segal’s concept of phy-

sical representations of the full unitary group U(H) of a Hilbert space H, endowed

with the strong operator topology ([89]). Here the positivity requirements even

imply boundedness of the representation, discrete decomposability and even a

classification of the irreducible representations.

2. Semi-Equicontinuous Convex Sets

Let E be a real locally convex space and E′ be its topological dual, i.e. the space of
continuous linear functionals on E. We write 〈α, v〉 = α(v) for the natural pairing

E′ ×E → R and endow E′ with the weak-∗-topology, i.e. the coarsest topology for

which all linear maps

ηv:E
′ → R, ηv(α) := α(v)

are continuous. For a subset X ⊆ E′, the set

B(X) := {v ∈ E: inf〈X, v〉 > −∞}

is a convex cone which coincides with the domain of the support function

sX :E → R ∪ {∞}, sX(v) := − inf〈X, v〉 = sup〈X,−v〉

of X in the sense that B(X) = s−1
X (R). As a sup of a family of continuous linear

functionals, the function sX is convex, lower semicontinuous and positively homo-

geneous.

Definition 2.1. We call a subset X ⊆ E′ semi-equicontinuous if sX is bounded

on some non-empty open subset of E (cf. [68]). This implies in particular that

the cone B(X) has interior points and even that sX is continuous on B(X)0 ([67,

Proposition 6.8]).

If the space E is barreled, which includes in particular Banach and Fréchet

spaces, we have the following handy criterion for semi-equicontinuity. We only have

to apply [67, Theorem 6.10] to the lower semicontinuous function sX .

Proposition 2.2. If E is barreled, then X ⊆ E′ is semi-equicontinuous if and only

if B(X) has interior points.

Remark 2.3. (a) The notion of semi-equicontinuity generalizes the notion of

equicontinuity, which is equivalent to sX being bounded on some 0-neighborhood

of E. In fact, the boundedness of sX on some symmetric 0-neighborhood U = −U
means that there exists a C > 0 with sX(±v) ≤ C for v ∈ U. This is equivalent to

|α(v)| ≤ C for v ∈ U,α ∈ X, which means that X is equicontinuous.
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(b) If Y := conv(X) denotes the weak-∗-closed convex hull of X , then sX =

sY , and, using the Hahn–Banach Separation Theorem, Y can be reconstructed

from sY by

Y = {α ∈ E′: (∀ v ∈ B(Y ))α(v) ≥ inf〈Y, v〉 = −sY (v)}.

If, in addition, the interior B(Y )0 is non-empty, then we even have

Y = {α ∈ E′: (∀ v ∈ B(Y )0)α(v) ≥ inf〈Y, v〉 = −sY (v)}
([67, Proposition 6.4]).

Definition 2.4. (a) For a convex subset C ⊆ E we put

lim(C) := {x ∈ E:C + x ⊆ C}
and

H(C) := lim(C) ∩ − lim(C) := {x ∈ E:C + x = C}.
Then lim(C) is a convex cone and H(C) a linear subspace of E.

(b) A convex cone W ⊆ E is called pointed if H(W ) = {0}.
(c) For a subset C ⊆ E,

C� := {α ∈ E′:α(C) ⊆ R+}
is called the dual cone and for a subset X ⊆ E′, we define the dual cone by

X� := {v ∈ E: 〈X, v〉 ⊆ R+}.

Examples 2.5. (a) If E is a Banach space, then the unit ball

X := {α ∈ E′: ‖α‖ ≤ 1}
in E′ is equicontinuous because the Hahn–Banach Theorems imply that sX(v) =

‖v‖ for v ∈ E.

(b) If ∅ �= Ω ⊆ E is an open convex cone, then its dual cone Ω� is semi-

equicontinuous because we have sΩ� = 0 on Ω̄ = (Ω�)� and sΩ� = ∞ on the

complement of this closed cone.

We have just seen that open convex cones lead to semi-equicontinuous sets.

There is also a partial converse:

Remark 2.6. Let X ⊆ E′ be a semi-equicontinuous set and Ẽ := E ⊕ R. For
the set

X̃ := X × {1} ⊆ Ẽ′ we then have s eX(v, t) := t+ sX(v),

so that the boundedness of sX on some non-empty open subset of E implies that

the interior of the dual cone X̃� ⊆ Ẽ is non-empty. In view of Example 2.5(b), this

means that X is semi-equicontinuous if and only if it can be embedded into the

dual of some open convex cone in Ẽ.
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The following observation shows that semi-equicontinuous convex sets share

many important properties with compact convex sets (cf. [67, Proposition 6.13]):

Proposition 2.7. Let X ⊆ E′ be a non-empty weak-∗-closed convex subset and

v ∈ E such that the support function sX is bounded above on some neighborhood of

v. Then X is weak-∗-locally compact, the function

ηv:X → R, ηv(α) := α(v)

is proper, and there exists an extreme point α ∈ X with α(v) = min〈X, v〉.

We conclude this section with some elementary properties of convex subsets of

locally convex spaces.

The following lemma ([12, Corollary II.2.6.1]) is often useful:

Lemma 2.8. For a convex subset C of a locally convex space E the following

assertions hold :

(i) C0 and C are convex.

(ii) C
0
= C0 and if C0 �= ∅, then C0 = C.

Lemma 2.9. If ∅ �= C ⊆ E is an open or closed convex subset, then the following

assertions hold :

(i) lim(C) = lim(C) is a closed convex cone.

(ii) lim(C) = {v ∈ E: v = limn→∞ tncn, cn ∈ C, tn → 0, tn ≥ 0}. If tjcj → v holds

for a net with tj ≥ 0 and tj → 0 and cj ∈ C, then also v ∈ lim(C).

(iii) If c ∈ C and d ∈ E satisfy c+ Nd ⊆ C, then d ∈ lim(C).

(iv) c + Rd ⊆ C implies d ∈ H(C). In particular, H(C) = {0} if and only if C

contains no affine lines.

(v) H(C) is closed and the subset C/H(C) ⊆ E/H(C) contains no affine lines.

(vi) B(C)� = lim(C) and B(C)⊥ = H(C).

Proof. (cf. [67, Proposition 6.1]) (i) If C is open, then C = (C)0 by Lemma 2.8,

and thus x+ C ⊆ C is equivalent to x+ C ⊆ C. In particular, lim(C) is closed.

(ii) If c ∈ C and x ∈ lim(C), then c + nx ∈ C for n ∈ N and 1
n (c + nx) → x.

If, conversely, x = lim tjcj with tj → 0, tj ≥ 0, cj ∈ C, and c ∈ C, then (1− tj)c+

tjcj → c+ x ∈ C implies that C + x ⊆ C, i.e. x ∈ lim(C) = lim(C).

(iii) In view of 1
n (c+ nd) → d, (ii) implies d ∈ lim(C).

(iv) immediately follows from (iii).

(v) The closedness of H(C) = lim(C)∩− lim(C) follows from (i). Therefore the

quotient topology on E/H(C) is Hausdorff, so that the quotient topology turns

E/H(C) into a locally convex space. Let q:E → E/H(C) denote the quotient

map. If y + Rd ⊆ q(C) = C/H(C) is an affine line and y = q(x), d = q(c), then

x+Rc ⊆ q−1(C/H(C)) = C implies c ∈ H(C) by (iv), which leads to d = q(c) = 0.

Hence C/H(C) contains no affine lines.
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(vi) From

C = {v ∈ E: (∀α ∈ B(C)) α(v) ≥ inf α(C)}
(a consequence of the Hahn–Banach Separation Theorem), we derive that B(C)� ⊆
lim(C) = lim(C). Conversely, lim(C) ⊆ B(C)� follows immediately from c +

lim(C) ⊆ C for each c ∈ C.

Remark 2.10. IfX ⊆ E′ is semi-equicontinuous, then B(X) has interior points, so

that H(X) ⊆ B(X)⊥ = {0} (Lemma 2.9(vi)) implies H(X) = {0}, i.e. X contains

no affine lines. If, conversely, H(X) = {0} and dim V < ∞, then it follows from

[60, Proposition V.1.15] that X is semi-equicontinuous. Therefore closed convex

subsets of finite dimensional vector spaces are semi-equicontinuous if and only if

they contain no affine lines.

For later applications, we record the following fact on fixed point projections

for actions of compact groups.

Proposition 2.11. Let K be a compact group acting continuously on the complete

locally convex space E by the representation π:K → GL(E).

(a) If Ω ⊆ E is an open or closed K-invariant convex subset, then Ω is invariant

under the fixed point projection

p(v) :=

∫

K

π(k)v dµK(k),

where µK is a normalized Haar measure on K.

(b) If C ⊆ E′ is a weak-∗-closed convex K-invariant subset, then C is invariant

under the adjoint

p′(λ)v := λ(p(v)) =

∫

K

λ(π(k)v) dµK (k)

of p.

Proof. (a) The existence of the integrals defining the projection p follows from the

completeness of E (cf. [39, Proposition 3.30]). Let λ ∈ B(Ω) ⊆ E′ be a continuous

linear functional bounded below on Ω.

If Ω is open, we then have λ(π(k)v) > inf λ(Ω) for every k ∈ K, so that

λ(p(v)) =

∫

K

λ(π(k)v) dµK (k) > inf λ(Ω).

In view of the Hahn–Banach Separation Theorem, this implies that p(v) ∈ Ω

(Remark 2.3(b)). If p(v) ∈ ∂Ω, then [12, Proposition II.5.2.3] implies the exis-

tence of λ ∈ B(Ω) = B(Ω) with λ(p(v)) = min λ(Ω) = inf λ(Ω), a contradiction.

Therefore p(v) ∈ Ω
0
= Ω (cf. Lemma 2.8).

If Ω is closed, then the preceding argument implies λ(p(v)) ≥ inf λ(Ω), and

hence that p(v) ∈ Ω by the Separation Theorem.
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(b) Now let C ⊆ E′ be weak-∗-closed and G-invariant. For each v ∈ E and

λ ∈ C, we then have

p′(λ)(v) = λ(p(v)) =

∫

K

λ(π(k)v) dµK (k) ≥ inf〈C, v〉,

so that the Hahn–Banach Separation Theorem shows that p′(λ) ∈ C.

3. Infinite Dimensional Lie Groups

In this section we provide the definition of a locally convex Lie group and present

several key examples that will show up later in our discussion of semibounded

representations.

Definition 3.1. (a) Let E and F be locally convex spaces, U ⊆ E open and

f :U → F a map. Then the derivative of f at x in the direction h is defined as

df(x)(h) := (∂hf)(x) :=
d

dt

∣∣∣∣
t=0

f(x+ th) = lim
t→0

1

t
(f(x+ th)− f(x))

whenever it exists. The function f is called differentiable at x if df(x)(h) exists for

all h ∈ E. It is called continuously differentiable, if it is differentiable at all points

of U and

df :U × E → F, (x, h) �→ df(x)(h)

is a continuous map. Note that this implies that the maps df(x) are linear (cf. [25,

Lemma 2.2.14]). The map f is called a Ck-map, k ∈ N ∪ {∞}, if it is continuous,

the iterated directional derivatives

djf(x)(h1, . . . , hj) := (∂hj · · · ∂h1f)(x)

exist for all integers j ≤ k, x ∈ U and h1, . . . , hj ∈ E, and all maps djf :U×Ej → F

are continuous. As usual, C∞-maps are called smooth.

(b) If E and F are complex locally convex spaces, then a map f is called complex

analytic if it is continuous and for each x ∈ U there exists a 0-neighborhood V with

x + V ⊆ U and continuous homogeneous polynomials βk:E → F of degree k such

that for each h ∈ V we have

f(x+ h) =

∞∑

k=0

βk(h),

as a pointwise limit ([9]). The map f is called holomorphic if it is C1 and for

each x ∈ U the map df(x):E → F is complex linear (cf. [57, p. 1027]). If F is

sequentially complete, then f is holomorphic if and only if it is complex analytic

(cf. [24], [9, Theorems 3.1 and 6.4]).

(c) If E and F are real locally convex spaces, then we call f real analytic,

resp., Cω , if for each point x ∈ U there exists an open neighborhood V ⊆ EC and a

holomorphic map fC:V → FC with fC|U∩V = f |U∩V (cf. [57]). The advantage of this

definition, which differs from the one in [9], is that it works nicely for non-complete
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spaces, any analytic map is smooth, and the corresponding chain rule holds without

any condition on the underlying spaces, which is the key to the definition of analytic

manifolds (see [24] for details).

Once one has introduced the concept of a smooth function between open subsets

of locally convex spaces, it is clear how to define a locally convex smooth manifold. A

(locally convex ) Lie group G is a group equipped with a smooth manifold structure

modeled on a locally convex space for which the group multiplication and the

inversion are smooth maps. We write 1 ∈ G for the identity element and λg(x) = gx,

resp., ρg(x) = xg for the left, resp., right multiplication on G. Then each x ∈ T1(G)

corresponds to a unique left invariant vector field xl with xl(g) := T1(λg)x, g ∈ G.

The space of left invariant vector fields is closed under the Lie bracket of vector

fields, hence inherits a Lie algebra structure. In this sense we obtain on g := T1(G) a

continuous Lie bracket which is uniquely determined by [x, y]l = [xl, yl] for x, y ∈ g.

We shall also use the functorial notation L(G) := (g, [·, ·]) for the Lie algebra of

G and, accordingly, L(ϕ) = T1(ϕ):L(G1) → L(G2) for the Lie algebra morphism

associated to a morphism ϕ:G1 → G2 of Lie groups. Then L defines a functor

from the category of locally convex Lie groups to the category of locally convex

topological Lie algebras. The adjoint action of G on L(G) is defined by Ad(g) :=

L(cg), where cg(x) = gxg−1. This action is smooth and each Ad(g) is a topological

isomorphism of L(G). The coadjoint action on the topological dual space L(G)′ is
defined by

Ad∗(g)α := α ◦Ad(g)−1

and the maps Ad∗(g) are continuous with respect to the weak-∗-topology on L(G)′,
but in general the coadjoint action of G is not continuous with respect to this

topology. If g is a Fréchet, resp., a Banach space, then G is called a Fréchet-, resp.,

a Banach–Lie group.

A smooth map expG :L(G) → G is called an exponential function if each curve

γx(t) := expG(tx) is a one-parameter group with γ′x(0) = x. The Lie group G is said

to be locally exponential if it has an exponential function for which there is an open

0-neighborhood U in L(G) mapped diffeomorphically by expG onto an open subset

of G. All Banach–Lie groups are locally exponential ([66, Proposition IV.1.2]). Not

every infinite dimensional Lie group has an exponential function ([66, Ex. II.5.5]),

but exponential functions are unique whenever they exist.

In the context of unitary representation theory, the exponential function permits

us to associate to each element x of the Lie algebra a unitary one-parameter group

πx(t) := π(expG tx). We therefore assume in the following thatG has an exponential

function.

Examples 3.2. Here are some important examples of infinite dimensional Lie

groups that we shall encounter below.

(a) (Unitary groups) If A is a unital C∗-algebra, then its unitary group

U(A) := {g ∈ A: g∗g = gg∗ = 1}
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is a Banach–Lie group with Lie algebra

u(A) = {x ∈ A:x∗ = −x}.
In particular, the unitary group U(H) = U(B(H)) of a complex Hilbert space H is

of this form, and we write u(H) for its Lie algebra.

As we shall see below (Definition 7.4), in some situations one is forced to consider

more general classes of algebras: A locally convex topological unital algebra A is

called a continuous inverse algebra if its unit group A× is open and the inversion

map a �→ a−1 is continuous. This condition already implies that A×, endowed with

the canonical manifold structure as an open subset, is a Lie group (cf. [24]). If, in

addition, A is a complex algebra and ∗ a continuous algebra involution, then

U(A) := {g ∈ A: g∗g = gg∗ = 1}
is a closed subgroup, and even a submanifold, as is easily seen with the Cayley

transform c(x) = (1− x)(1+ x)−1. It defines an involutive diffeomorphism of some

open neighborhood of 1 onto some open neighborhood of 0 satisfying c(x)∗ = c(x∗)
and c(x−1) = −c(x). In particular, c(g) is skew-hermitian if and only if g is unitary,

and since U(A) is a subgroup of A×, this argument shows that it actually is a Lie

subgroup.

(b) (Schatten class groups) If H is a real or complex Hilbert space and Bp(H)

denotes the p-Schatten ideal (p ≥ 1) with the norm ‖A‖p := tr((A∗A)p/2)1/p, then

Up(H) := U(H) ∩ (1+Bp(H))

is a Banach–Lie group with Lie algebra

up(H) := u(H) ∩Bp(H)

(cf. [56, 65]).

(c) (Restricted groups) If P is an orthogonal projection on H and G ⊆ GL(H)

a subgroup, then we call

Gres := {g ∈ G: [g, P ] ∈ B2(H)}
the corresponding restricted group. Using the fact that B2(H) is invariant under

left and right multiplication with elements of G, it is easy to see that this is indeed

a subgroup, and in many cases it carries a natural Banach–Lie group structure.

Writing H = im(P )⊕ ker(P ) and, accordingly, operators on H as (2× 2)-matrices,

then

g =

(
a b

c d

)
∈ Gres ⇔ b, c ∈ B2(H).

In particular, we have the restricted unitary group

Ures(H, P ) := {g ∈ U(H): [g, P ] ∈ B2(H)}.
(d) IfH is a complex Hilbert space, then the scalar product 〈·, ·〉 (always assumed

to be linear in the first component), defines two real bilinear forms

β(x, y) := Re〈x, y〉 and ω(x, y) := Im〈x, y〉 = Re〈x, Iy〉,
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where β is symmetric and ω is skew-symmetric. Writing HR for the underlying real

Banach space, we thus obtain the symplectic group

Sp(H) := Sp(HR, ω) := {g ∈ GL(HR): (∀ v, w ∈ HR)ω(gv, gw) = ω(v, w)}
= {g ∈ GL(HR): g

�Ig = I}

and the orthogonal group

O(H) := O(HR, β) := {g ∈ GL(HR): (∀ v, w ∈ HR)β(gv, gw) = β(v, w)}
= {g ∈ GL(HR): g

�g = 1}.

There are two important variants of these groups, namely the Hilbert–Lie groups

Sp2(H) := Sp(H) ∩ (1+B2(HR)), O2(H) := O(H) ∩ (1+B2(HR))

and the restricted groups

Spres(H) := {g ∈ Sp(H): [g, I] ∈ B2(HR)}

and

Ores(H) := {g ∈ O(H): [g, I] ∈ B2(HR)},

where Iv := iv denotes the complex structure on HR defining the complex Hilbert

space H.

The groups Sp(HR, ω) and O(HR, β) play a key role in Quantum Field The-

ory as the automorphism groups of the canonical commutation relations (CCR)

and the canonical anticommutation relations (CAR) (cf. [14]). However, only the

corresponding restricted groups, resp., their central extensions, have corresponding

unitary representations (cf. Secs. 9 and 10).

(e) The group Diff(M)op of diffeomorphisms of a compact manifold M is a Lie

group with respect to the group structure defined by ϕ ·ψ := ψ ◦ϕ. Its Lie algebra

is the space V(M) of smooth vector fields on M with respect to the natural Lie

bracket. The use of the opposite group simplifies many formulas and minimizes the

number of negative signs. In particular, it implies that the exponential function is

given by the time 1-flow and not by its inverse. As we shall see below, this convention

also leads to simpler formulas because the action of Diff(M)op by pullbacks is a left

action.

(f) If K is a Lie group andM is a compact manifold, then the space C∞(M,K)

of smooth maps is a Lie group with Lie algebra C∞(M, k), where k is the Lie algebra

of K.

(g) A domain D in the complex Banach space V is said to be symmetric if there

exists for each point x ∈ D a biholomorphic involution sx ∈ Aut(D) for which x

is an isolated fixed point, or, equivalently Tx(sx) = −id. It is called a symmetric

Hilbert domain if, in addition, V is a complex Hilbert space. Then the group Aut(D)

of biholomorphic automorphisms of D carries a natural Banach–Lie group structure

(cf. [43, Sec. V], [102], [61, Theorem V.11]).
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Here is a typical example. IfH± are two complex Hilbert spaces and B2(H+,H−)
is the Hilbert space of Hilbert–Schmidt operators from H+ to H−, then

D := {z ∈ B2(H+,H−): ‖z‖ < 1}

is a symmetric Hilbert domain, where ‖ · ‖ denotes the operator norm, which is

smaller than the Hilbert–Schmidt norm ‖ ·‖2. In particular, D is unbounded if both

spaces are infinite dimensional. On the Hilbert space K := H− ⊕ H+ we define a

hermitian form by γ((v, w), (v′, w′)) := 〈v, v′〉 − 〈w,w′〉 and write

U(H+,H−) := {g ∈ GL(K): (∀x, y ∈ K) γ(gx, gy) = γ(x, y)}

for the corresponding pseudo-unitary group. From the projection P (v−, v+) :=

(v−, 0) we now obtain a restricted pseudo-unitary group

Ures(H+,H−) = {g ∈ U(H+,H−): ‖[g, P ]‖2 <∞}

(cf. (c) above), and this group acts on D by

g · z =

(
a b

c d

)
· z := (az + b)(cz + d)−1.

The subgroup T1 of Ures(H+,H−) acts trivially, and we thus obtain an isomorphism

Ures(H+,H−)/T1 ∼= Aut(D)0

(combine [43, Sec. 5] on the automorphisms of the completion with respect to the

operator norm with the extension result in [61, Theorem V.11]).

(h) In (g), the case H = H+ = H− is of particular interest because it leads

to two other series of irreducible symmetric Hilbert domains generalizing the oper-

ator balls in symmetric, resp., skew-symmetric matrices. Let σ be an antilinear

isometric involution on H and define x� := σx∗σ for x ∈ B(H). Then the map

ι:H → K, v �→ 1√
2
(v, σv) is an antilinear isometric embedding whose image is an

orthogonal direct sum K = ι(H) ⊕ iι(H), so that K ∼= (HR)C as Hilbert spaces,

where the complex conjugation on K is given by τ(v, w) = (σw, σv). By complex

linear extension, we thus obtain an embedding γ: Sp(H) ↪→ GL(K), whose image

preserves the real subspace ι(H) and the complex bilinear skew-symmetric form ωC
obtained by complex bilinear extension of ω(x, y) = Im〈x, y〉. Since the complex

bilinear form

ωC((x, y), (x
′, y′)) := 〈x, σy′〉 − 〈x′, σy〉

on K satisfies

ωC((x, σx), (y, σy)) = 〈x, y〉 − 〈y, x〉 = 2iIm〈x, y〉 = 2iω(x, y),

the subgroup γ(Sp(H)) is contained in Sp(K, ωC). From the fact that it also com-

mutes with τ one easily derives that it also preserves the canonical hermitian form
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γ((x, y), (x′, y′)) = 〈x, x′〉 − 〈y, y′〉, and this leads to an isomorphism

Sp(H) ∼= γ(Sp(H)) = U(H,H) ∩ Sp(K, ωC) (1)

(cf. [63, Remark I.2], [72, Sec. IV]). This in turn leads to isomorphisms

Spres(H) ∼= Ures(H,H) ∩ Sp(K, ωC)

and

spres(H) ∼=
{(

a b

b∗ −a�
)
: a ∈ u(H), b = b� ∈ B2(H)

}
. (2)

From that one further derives that Spres(H) acts by holomorphic automorphisms

on the symmetric Hilbert domain

Ds := {z ∈ B2(H): z� = z, ‖z‖ < 1}
by fractional linear transformations, and we thus obtain isomorphisms

Spres(H)/{±1} ∼= Aut(D)0 and Spres(H)/U(H) ∼= Ds.

(i) For the complex symmetric bilinear form

βC((x, y), (x
′, y′)) := 〈x, σy′〉+ 〈x′, σy〉

we similarly obtain

O(H) ∼= U(H,H) ∩O(K, βC) (3)

which in turn leads to

Ores(H) ∼= Ures(H,H) ∩O(K, βC)
and

ores(H) ∼=
{(

a b

−b∗ −a�
)
: a ∈ u(H), b� = −b ∈ B2(H)

}
. (4)

Since we shall need it several times in the following, we recall some basic facts

on the adjoint and the coadjoint action on a centrally extended Lie algebra.

Remark 3.3. Let ĝ = R ⊕ω g be a central extension of the Lie algebra g defined

by the 2-cocycle ω, i.e.

[(z, x), (z′, x′)] = (ω(x, x′), [x, x′]) for z, z′ ∈ R, x, x′ ∈ g.

Then the adjoint action of ĝ factors through a representation adbg: g → der(ĝ), given

by adbg(x)(z, y) = (ω(x, y), [x, y]), which implies that g → g′, x �→ ixω = ω(x, ·) is a
1-cocycle.

If G is a corresponding Lie group to which the action of g on ĝ integrates as a

smooth linear action, then it is of the form

Adbg(g)(z, y) = (z +Θω(g)(Ad(g)y),Ad(g)y) = (z −Θω(g
−1)(y),Ad(g)y), (5)

where Θω:G → g′ is a 1-cocycle with T1(Θω)x = ixω. The uniqueness of the

representation of G on ĝ follows from the general fact that, for a connected Lie
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group, smooth representations are uniquely determined by their derived represen-

tations ([66, Remark II.3.7]). The existence for simply connected G follows from [64,

Proposition VII.6]. The corresponding dual representation of G on ĝ′ ∼= R × g′ is
then given by

Ad∗bg(g)(z, α) = (z,Ad∗(g)α− zΘω(g)). (6)

As these formulas show, the passage from the adjoint and coadjoint action of g

to the G-action on ĝ is completely encoded in the cocycle Θω:G→ g′.

4. Momentum Sets of Smooth Unitary Representations

In this section we introduce the concept of a semibounded unitary representation

of a Lie group G. A key tool to study these representations is the momentum map

Φ:P(H∞) → g′. According to Theorem 4.5, this map is also a momentum map in

the classical sense of differential geometry, provided G is a Banach–Lie group.

Definition 4.1. A unitary representation of G is a pair (π,H) of a complex Hilbert

space H and a group homomorphism π:G → U(H). It is said to be continuous if

the action map G × H → H, (g, v) �→ π(g)v is continuous, which, since G acts by

isometries, is equivalent to the continuity of the orbit maps πv:G→ H, g �→ π(g)v.

We write

H∞ := {v ∈ H:πv ∈ C∞(G,H)}

for the subspace of smooth vectors. The representation (π,H) is said to be smooth

if H∞ is dense in H. On H∞ the derived representation dπ of the Lie algebra

g = L(G) is defined by

dπ(x)v :=
d

dt

∣∣∣∣
t=0

π(expG tx)v

(cf. [62, Remark IV.2]). If (π,H) is smooth, then the invariance of H∞ under π(G)

implies that the operators idπ(x), x ∈ g, on this space are essentially self-adjoint

(cf. [67, Lemma 5.6], [83, Theorem VIII.10]).

Remark 4.2. (a) If (π,H) is a smooth unitary representation, then the space

Hc := {v ∈ H:πv ∈ C(G,H)} ⊇ H∞ of continuous vectors is dense, and since

this space is closed (by the uniform boundedness of π(G)), it follows that H = Hc.

This in turn implies that the G-action on H is continuous. This means that smooth

representations are in particular continuous.

(b) If G is finite dimensional, then G̊arding’s Theorem asserts that every con-

tinuous unitary representation of G is smooth. However, this is false for infinite

dimensional Lie groups. The representation of the additive Banach–Lie group

G := L2([0, 1],R) on H = L2([0, 1],C) by π(g)f := eigf is continuous with

H∞ = {0} ([7]).
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Definition 4.3. (a) Let P(H∞) = {[v] := Cv: 0 �= v ∈ H∞} denote the projective

space of the subspace H∞ of smooth vectors. The map

Φπ:P(H∞) → g′ with Φπ([v])(x) =
1

i

〈dπ(x).v, v〉
〈v, v〉

is called the momentum map of the unitary representation π. The right-hand side is

well defined because it only depends on [v] = Cv. The operator idπ(x) is symmetric

so that the right-hand side is real, and since v is a smooth vector, it defines a

continuous linear functional on g. We also observe that we have a natural action of

G on P(H∞) by g.[v] := [π(g)v], and the relation

π(g)dπ(x)π(g)−1 = dπ(Ad(g)x)

immediately implies that Φπ is equivariant with respect to the coadjoint action of

G on g′.
(b) The weak-∗-closed convex hull Iπ ⊆ g′ of the image of Φπ is called the

(convex ) momentum set of π. In view of the equivariance of Φπ, it is an Ad∗(G)-
invariant subset of g′.

For the following theorem, we recall the definition of a Hamiltonian action:

Definition 4.4. Let σ:G×M →M be a smooth action of the Lie group G on the

smooth manifold M (neither is assumed to be finite dimensional) and suppose that

ω is a G-invariant closed 2-form on M . Then this action is said to be Hamiltonian

if there exists a map J : g → C∞(M,R) for which dJx = iσ̇(x)ω holds for the derived

Lie algebra homomorphism σ̇: g → V(M), defined by σ̇(x)p = −T(1,p)(σ)(x, 0). The
map Φ:M → g′,Φ(m)(x) := Jx(m) is then called the corresponding momentum

map. Of particular interest are momentum maps which are equivariant with respect

to the coadjoint action.

Theorem 4.5. Let (π,H) be a unitary representation of a Banach–Lie group G.

Then the seminorms

pn(v) := sup{‖dπ(x1) · · · dπ(xn)v‖:xi ∈ g, ‖xi‖ ≤ 1}

define on H∞ the structure of a Fréchet space with respect to which the action

of G is smooth. Accordingly, the projective space P(H∞) carries the structure of

a complex Fréchet manifold on which G acts smoothly by holomorphic maps. The

Fubini–Study metric on P(H) induces on P(H∞) the structure of a weak Kähler

manifold whose corresponding weak symplectic form Ω is given for any unit vector

v ∈ H∞ by

Ω[v](Tv(q)x, Tv(q)y) = −2 Im〈x, y〉 for x, y ∈ v⊥,

where q:H∞\{0} → P(H∞), v �→ [v], is the canonical projection. With respect to

this symplectic form, the action of G on P(H∞) is Hamiltonian with momentum

map Φπ.
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Proof. The smoothness of the action of G on H∞ follows from Theorem A.2. This

implies that the natural charts defined by projections of affine hyperplanes define

on P(H∞) a complex manifold structure for which G acts smoothly by holomorphic

maps (see [62, Proposition V.2] for details). Moreover, the Fubini–Study metric on

P(H) restricts to a (weak) Kähler metric on P(H∞) which is invariant under the

G-action. It is determined by the property that the projection map q satisfies for

any unit vector v and x, y ∈ v⊥ the relation

〈Tv(q)x, Tv(q)y〉 = 〈x, y〉.

In particular, we see that Ω defines a weak symplectic 2-form on P(H∞) (cf. [53,

Sec. 5.3]). For x ∈ g, the smooth function

Hx([v]) :=
1

i

〈dπ(x)v, v〉
〈v, v〉

on P(H∞) now satisfies for y ∈ v⊥ and ‖v‖ = 1:

dHx([v])(Tv(q)y) = 2Re〈−idπ(x)v, y〉 = 2 Im〈dπ(x)v, y〉
= −Ω[v](Tv(q)dπ(x)v, Tv(q)y),

i.e. dHx = iXΩ for the smooth vector field on P(H∞) defined by X([v]) :=

−Tv(q)dπ(x)v = σ̇(x)([v]). This means that the action of G on P(H∞) is Hamilto-

nian and Φπ:P(H∞) → g′ is a corresponding momentum map.

The main new point of the preceding theorem is that it provides for any Banach–

Lie group a natural analytic setup for which the momentum map Φπ really is

a momentum map for a smooth action on a weak symplectic manifold. The corre-

sponding result for the action of the Banach–Lie group U(H) on P(H) is well-known

(cf. [53, Ex. 11.4(h)]).

A key property of the momentum set Iπ is that it provides complete information

on the extreme spectral values of the operators idπ(x):

sup(Spec(idπ(x))) = sIπ(x) = − inf〈Iπ , x〉 for x ∈ g (7)

(cf. [67, Lemma 5.6]). This relation immediately entails the equivalences

x ∈ I�π ⇔ sIπ(x) ≤ 0 ⇔ −idπ(x) ≥ 0. (8)

It is now natural to study those representations for which sπ, resp., the set Iπ ,

contains the most significant information, which leads to the following concept:

Definition 4.6. A smooth unitary representation (π,H) of a Lie group G is said

to be semibounded if its momentum set Iπ is semi-equicontinuous, i.e. if

sπ(x) := sIπ(x) = sup(Spec(idπ(x)))

is bounded from above on some non-empty open subset of g. We call (π,H) bounded

if Iπ is equicontinuous.
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The representation (π,H) is said to satisfy the positive energy condition with

respect to some d ∈ g if idπ(d) ≥ 0. It satisfies the positive energy condition with

respect to some convex cone C ⊆ g, if idπ(x) ≥ 0 holds for each x ∈ C (cf. [95]).

For a semibounded representation (π,H), the domain s−1
π (R) of sπ is a con-

vex cone with non-empty interior and sπ is continuous on this open cone (cf. [67,

Proposition 6.8]). Since the momentum set Iπ is invariant under the coadjoint

action, the function sπ and its domain are invariant under the adjoint action. This

leads to two open invariant convex cones in g:

Wπ := {x ∈ g: sπ(x) <∞}0 = B(Iπ)
0 and Cπ := {x ∈ g: sπ(x) ≤ 0}0,

where “0” denotes the interior of a set. Note that (8) implies that Cπ is the interior

of the dual cone I�π .

We collect some basic properties of these two cones:

Proposition 4.7. For a smooth representation (π,H) of G, the following assertions

hold :

(i) If Cπ �= ∅, then π is semibounded, and if i1 ∈ dπ(g), then the converse is also

true.

(ii) If Cπ �= ∅, then H(Cπ) = ker dπ. In particular, Cπ is pointed if and only if the

derived representation dπ is injective.

(iii) If h ⊆ g is a subalgebra with the property that dπ|h is a bounded representation,

then h ⊆ H(Wπ).

(iv) Let η:H → G be a morphism of Lie subgroups. If π is semibounded, then

πH := π ◦ η is semibounded if Wπ ∩ L(η)h �= ∅, and then IπH = L(η)∗Iπ. In
particular, if H ⊆ G is a Lie subgroup, then the restriction πH := π|H of π to

H is semibounded if Wπ ∩ h �= ∅, and then IπH = Iπ|h.

Proof. (i) If Cπ �= ∅, then the boundedness of sπ on Cπ implies that π is semi-

bounded. Suppose, conversely, that π is semibounded and i1 ∈ dπ(g). Then there

exists an element x ∈ g for which sπ is bounded from above on a neighborhood

of x by some M ∈ R. Pick z ∈ g with dπ(z) = i1. Now sπ(x +Mz) ≤ 0 on this

neighborhood, so that Cπ �= ∅.
(ii) The relation Cπ = (I�π)

0 implies that

I�π = Cπ (9)

(Lemma 2.8). If Cπ is non-empty, then Lemma 2.9(i) implies that

H(Cπ) = H(I�π) = I�π ∩ −I�π = I⊥π = ker dπ

because dπ(x) = 0 is equivalent to Spec(idπ(x)) ⊆ {0}.
(iii) That dπ|h is bounded implies that all operators idπ(x), x ∈ h, are bounded,

so that h ⊆ B(Iπ) ⊆ W̄π = lim(Wπ) (Lemma 2.9(i)), and since h = −h, the assertion

follows.
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(iv) From (7) it follows that sπH = sπ◦L(γ), and ifWπ∩L(γ)h �= ∅, this function
is bounded on some non-empty open subset of h. Therefore πH is semibounded.

Pick x ∈ h with y := L(γ)x ∈ Wπ . Then the evaluation map ηgy : Iπ → R, α �→
α(x), is proper by Proposition 2.7, and this map factors through the adjoint map

L(η)′: g′ → h′, α �→ α ◦ L(η):
ηgy = ηhx ◦ L(η)′: Iπ → R.

Since the weak-∗-topology on h′ is Hausdorff, [11, Chap. I, Sec. 10, Proposition 1.5]

implies that L(η)′: Iπ → h′ is a proper map. In particular, its image is closed, hence

a weak-∗-closed convex subset of h′. For each x ∈ h we have

sup〈IπH , x〉 = sπH (−x) = sπ(−L(η)x) = sup〈Iπ ,L(η)x〉 = sup〈L(η)′Iπ , x〉,
so that the Hahn–Banach Separation Theorem implies that IπH = L(η)′Iπ.

Remark 4.8. If i1 �∈ dπ(g), then we may consider the direct product Lie group

Ĝ := G×T, where we consider T as a subgroup of C×, with the exponential function

expT(t) = eit on L(T) ∼= R. Our representation π now extends trivially to a smooth

unitary representation of Ĝ, defined by

π̂(g, t) := tπ(g).

Now ĝ ∼= g× R, ĝ′ ∼= g′ × R, and the momentum map of π̂ is given by

Φbπ([v]) = (Φπ([v]), 1),

so that Ibπ = Iπ × {1}. With Remark 2.6, we now see that π is semibounded if and

only if Cbπ �= ∅. Note also that dπ̂(0, 1) = i1, so that Proposition 4.7(i) applies to

this representation.

Remark 4.9. (on bounded representations) (a) From [68, Theorem 3.1] we know

that a smooth representation (π,H) is bounded if and only if π:G → U(H) is a

morphism of Lie groups, if U(H) is endowed with the Banach–Lie group structure

defined by the operator norm. In view of (7), the boundedness of (π,H) is equiv-

alent to the boundedness of all operators idπ(x) and the continuity of the derived

representation dπ: g → B(H) as a morphism of topological Lie algebras, where we

identify the operator dπ(x) with its continuous extension to all of H.

(b) In [68, Proposition 3.5] it is also shown that if π is continuous with respect

to the norm topology on U(H), then π is automatically smooth if either G is locally

exponential or g is a barreled space. In particular, for Banach–Lie groups G the

bounded representations are precisely the norm-continuous ones. The concept of a

norm-continuous unitary representation also makes sense for arbitrary topological

groups, but the refined concept of semiboundedness does not; it requires the Lie

algebra for its definition.

(c) If (π,H) is a bounded unitary representation of a Lie group G, then the

closure h of dπ(g) ⊆ u(H) is a Banach–Lie algebra, and H := 〈expU(H) h〉 ⊆ U(H)

carries a natural Banach–Lie group structure with L(H) = h ([66, Theorem IV.4.9]).
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If G is connected, then π:G→ U(H) factors through the inclusion map H → U(H)

of this Banach–Lie group. In this sense bounded representations are a “Banach

phenomenon” and all questions on this class of representations can be reduced to

Banach–Lie groups.

(d) If (π,H) is a bounded representation for which ker(dπ) = I⊥π = {0}, then
‖dπ(x)‖ defines a G-invariant norm on g. If G is finite-dimensional, then the exis-

tence of an invariant norm implies that the Lie algebra g is compact. In particular,

all its irreducible representations are finite dimensional. However, in the infinite

dimensional context, there is a substantially richer supply of bounded unitary rep-

resentations. For a detailed discussion of bounded unitary representations of the

unitary groups Up(H) (Examples 3.2(b)), we refer to [59].

Example 4.10. LetH be a complex Hilbert space and consider U(H) as a Banach–

Lie group with Lie algebra u(H). Writing A � B for A,B ∈ B(H) if B − A is a

positive invertible operator, we see that for the identical representation (π,H),

the cone

Cπ = {x ∈ u(H): ix� 0}

is non-empty. Since π is bounded, we also have Wπ = g. The same holds for all

representations (π⊗n,H⊗n) on the n-fold tensor power of H.

The natural representations πs and πa of U(H) on the symmetric and antisym-

metric Fock spaces

S(H) := ⊕̂n∈N0S
n(H) and Λ(H) := ⊕̂n∈N0Λ

n(H)

are direct sums of bounded representations, hence in particular smooth. They are

not bounded, as the restriction to the subgroup T1 already shows. However, the

relation Cπ ⊆ Cπs , Cπa still implies that πs and πa are semibounded. We shall

use this simple observation later in our proof that the metaplectic and the spin

representation are semibounded (cf. Secs. 9 and 10).

We conclude this section with a convenient tool to verify the existence of eigen-

vectors for semibounded unitary one-parameter groups.

Proposition 4.11. Let (π,H) be a semibounded unitary representation of G and

d ∈ Wπ with expG(λd) ∈ Z(G) for some λ ∈ R×. Suppose that π(expG(λd)) ∈ T1,
which is in particular the case if π is irreducible. Then idπ(d) is bounded from

above, has discrete spectrum, and there exists a smooth vector v ∈ H∞ which is an

eigenvector for the largest eigenvalue of idπ(d).

Proof. Replacing d by λd, we may assume that λ = 1. If π is irreducible, Schur’s

Lemma implies that π(Z(G)) ⊆ T1 and thus in particular π(expG d) ∈ T1. Let
β ∈ R with π(exp d) = eiβ1. Then edπ(d)−iβ1 = 1, so that Spec(idπ(d)+β1) ⊆ 2πZ
is discrete.
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Let Pn denote the orthogonal projection onto the eigenspace of idπ(d) corre-

sponding to the eigenvalue 2πn−β. This projection is given by the following integral

Pn(v) =

∫ 1

0

e2πinte−itβπ(exp(td))v dt =

∫ 1

0

eit(2πn−β)π(exp(td))v dt.

If v is a smooth vector for G, then the smoothness of the H-valued function

g �→ π(g)Pn(v) =

∫ 1

0

eit(2πn−β)π(g exp(td))v dt

follows from the smoothness of the integrand as a function on R×G by differenti-

ation under the integral (cf. [25] for details). This implies that Pn(H∞) ⊆ H∞.

Therefore the density of H∞ in H implies the density of Pn(H∞) in Pn(H).

In particular, each non-zero eigenspace of dπ(d) contains smooth vectors. Finally,

the boundedness of Spec(idπ(d)) from above implies the existence of a maximal

eigenvalue.

5. Aspects of Complex Analysis

As we have already seen in [68], a closer analysis of semibounded representa-

tions requires a good understanding of the related complex geometric structures.

Basically, the connection to complex analysis relies on the fact that if A is a

self-adjoint operator on a complex Hilbert space, then the associated unitary one-

parameter group γA(t) := eitA extends to a strongly continuous homomorphism

γ̂:C+ := R+ iR+ → B(H), z �→ eizA (defined by a spectral integral) which is holo-

morphic on the open upper half plane if and only if Spec(A) is bounded from below.

It is this key observation, applied in various situations, that leads to a variety of

interesting tools and results, that we describe below.

Problem 5.1. If (π,H) is a semibounded unitary representation, then we have a

well-defined map

π̂:G×Wπ → B(H), (g, x) �→ geidπ(x),

and if G is finite dimensional and dπ injective, then we know from [60] that the

product set Sπ := G × Wπ always carries a complex manifold structure, a holo-

morphic associative multiplication and an antiholomorphic involution (g, x)∗ :=

(g−1,Ad(g)x), turning (Sπ, ∗) into a complex involutive semigroup and π̂ into a

holomorphic representation. In particular, π̂(G×Wπ) = π(G)eidπ(Wπ) is an involu-

tive subsemigroup of B(H). This structure is extremely useful in the theory of semi-

bounded representations and the related geometry. However, for infinite dimensional

groups, our understanding of corresponding analogs is still quite rudimentary.

As we shall see below, the preceding problem has a trivial solution for Abelian

groups.
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5.1. The Abelian case

If E is a locally convex space, then its additive group G := (E,+) is a particularly

simple locally convex Lie group. Then L(G) = E as an Abelian Lie algebra, expG =

idE , and the coadjoint action is trivial.

For such groups semibounded representations can be understood completely

with classical methods, well known from the context of locally compact Abelian

groups. If X ⊆ E′ is a weak-∗-closed convex semi-equicontinuous subset, then

Proposition 2.7 implies that it is locally compact, so that the space C0(X) of

continuous complex-valued functions on X vanishing at infinity is a commutative

C∗-algebra. Moreover, the interior B(X)0 is a non-empty open convex cone in X ,

so that S := E + iB(X)0 is a tube domain in the complexification EC. This open

subset of EC is a complex manifold, a semigroup with respect to addition, and

(x + iy)∗ := −x+ iy defines an antiholomorphic involution, turning it into a com-

plex involutive semigroup (cf. [67] for an extended discussion of this technique).

This leads to a holomorphic homomorphism of semigroups

γ:S → C0(X), γ(x+ iy)(α) := eiα(x)−α(y)

(cf. Proposition 2.7), and one can show that every semibounded smooth represen-

tation (π,H) of G with Iπ ⊆ X “extends” holomorphically to S by π̂(x + iy) :=

π(x)eidπ(y), which in turn extends to a representation ρ of the C∗-algebra C0(X)

on H. Using this correspondence and the Spectral Theorem for C∗-algebras, one
arrives at the following spectral theorem ([68, Theorem 4.1]):

Theorem 5.2. (Spectral Theorem for semibounded Representations) For every

regular Borel spectral measure P on X, the prescription π(v) := P (eiηv ) (where the

right-hand side denotes a spectral integral) defines a semibounded smooth represen-

tation of G with Iπ ⊆ X. Conversely, any such semibounded representation has

this form for a uniquely determined regular Borel spectral measure P on X.

The preceding theorem provides a complete description of the semibounded

representation theory of Abelian Lie groups of the form (E,+) and hence also

of quotients thereof. In particular, every connected Abelian Banach–Lie group is

such a quotient. For recent results concerning extremely general spectral theorems

for representations of commutative involutive algebras by unbounded operators we

refer to [99].

Remark 5.3. With Theorem 5.2 it is easy to see that the bounded unitary repre-

sentations of (E,+) are precisely those defined by spectral measures on (compact)

equicontinuous subsets of the dual space.

Similar characterizations are known for continuous isometric actions α:G →
Iso(E) of a locally compact Abelian groupG on a Banach space E. One associates to

such a representation its Arveson spectrum Sp(α) ⊆ Ĝ and then the norm continuity

of α is equivalent to the compactness of its spectrum ([79, Theorem 8.1.12]).
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Remark 5.4. The key point behind the Spectral Theorem 5.2 is that the semi-

boundedness provides a method to connect representations of (E,+) to representa-

tions of a commutative C∗-algebra, so that the Spectral Theorem for commutative

Banach-∗-algebras provides the spectral measure on X ⊆ E′.
In general, continuous unitary representations of locally convex spaces cannot

be represented in terms of spectral measures on E′. This is closely related to the

problem of writing the continuous positive definite functions πv,v(x) := 〈π(x)v, v〉
as the Fourier transform

µ̂(x) =

∫

E′
eiα(x) dµ(α)

of some finite measure µ on E′. If E is nuclear, then the Bochner–Minlos Theorem

([22]) ensures the existence of such measures and hence also of spectral measures rep-

resenting unitary representations. However, if E is an infinite dimensional Banach

space, then E is not nuclear ([22]), so that the Bochner–Minlos Theorem does not

apply. Therefore it is quite remarkable that nuclearity assumptions are not needed

to deal with semibounded representations.

5.2. Hilbert spaces of holomorphic functions

In general, the momentum set of a semibounded representation is not easy to com-

pute, but in many interesting situations it is the weak-∗-closed convex hull of a single
coadjoint orbit Oλ ⊆ g′. Here our intuition is guided by the finite dimensional case,

which is by now well understood (cf. [60]).

Remark 5.5. For a finite dimensional connected Lie group G, semibounded uni-

tary representations are direct integrals of irreducible ones ([60, Sec. XI.6]) and the

irreducible ones possess various kinds of nice structures. Here the key result is that

for every irreducible semibounded representation (π,H) and x ∈ B(Iπ)
0, we can

minimize the proper functional ηx(α) = α(x) on the convex set Iπ (Proposition 2.7).

One can even show that the minimal value is taken in Φπ([v]) for an analytic vector

v, and from that one can derive that v is an eigenvector for idπ(x) (this is implicitly

shown in [60, Theorem X.3.8]). Combining this with finite dimensional structure

theory, based on the observation that the adjoint image of the centralizer ZG(x)

has compact closure, one can show that if dπ is injective, then H∞ contains a dense

highest weight module of the complexification gC ([60, Theorems X.3.9 and XI.4.5]).

If [vλ] ∈ P(H∞) is a highest weight vector for the highest weight representation

(πλ,Hλ), then the corresponding G-orbit G[vλ] has the remarkable property that

it is a complex homogeneous subspace of P(H∞), and one can even show that it

is the unique G-orbit in P(H∞) with this property ([60, Theorem XV.2.11]). Its

image Oλ := Φπλ
(G[vλ]) ⊆ g∗ is a coadjoint orbit satisfying

Oλ = Ext(Iπλ
), Iπλ

= conv(Oλ) and G[vλ] = Φ−1
πλ

(Oλ) (10)

([60, Theorem X.4.1]), where we write Ext(C) for the set of extreme points of a

convex set C. Moreover, two irreducible semibounded representations are equivalent
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if and only if the corresponding momentum sets, resp., the coadjoint orbits Oλ

coincide ([60, Theorem X.4.2]).

In particular, a central feature of unitary highest weight representations is that

the image of the highest weight orbit already determines the momentum set as its

closed convex hull. It is therefore desirable to understand in which situations certain

G-orbits in P(H∞) already determine the momentum set as the closed convex hull

of their image. As we shall see below, this situation frequently occurs if H consists

of holomorphic functions on some complex manifold, resp., holomorphic sections of

a line bundle.

Definition 5.6. LetM be a complex manifold (modeled on a locally convex space)

and O(M) the space of holomorphic complex-valued functions on M . We write M

for the conjugate complex manifold. A holomorphic function

K:M ×M → C

is said to be a reproducing kernel of a Hilbert subspace H ⊆ O(M) if for each

w ∈M the function Kw(z) := K(z, w) is contained in H and satisfies

〈f,Kz〉 = f(z) for z ∈M, f ∈ H.

Then H is called a reproducing kernel Hilbert space and since it is determined

uniquely by the kernel K, it is denoted HK (cf. [60, Sec. I.1]).

Now let G be a real Lie group and σ:G×M →M, (g,m) �→ g ·m be a smooth

right action of G on M by holomorphic maps. Then (g.f)(m) := f(g−1.m) defines

a unitary representation of G on a reproducing kernel Hilbert space HK ⊆ O(M)

if and only if the kernel K is invariant:

K(g.z, g.w) = K(z, w) for z, w ∈M, g ∈ G.

In this case we call HK a G-invariant reproducing kernel Hilbert space and write

(πK(g)f)(z) := f(g−1.z) for the corresponding unitary representation of G on HK .

Theorem 5.7. ([68, Theorem 2.7]) Let G be a Fréchet–Lie group acting smoothly by

holomorphic maps on the complex manifold M and HK ⊆ O(M) be a G-invariant

reproducing kernel Hilbert space on which the representation is semibounded, so that

the cone WπK is not empty. If, for each x ∈ WπK , the action (m, t) �→ expG(−tx).m
of R on M extends to a holomorphic action of the upper half plane C+ (continuous

on C+ and holomorphic on its interior), then

IπK = conv(ΦπK ({[Km]:Km �= 0})).

Example 5.8. Here is the prototypical example that shows why x ∈ WπK is

closely related to the existence of a holomorphic extension of the corresponding

flow on M .

Let (π,H) be a continuous unitary representation of G = R and H∞ be the

Fréchet space of smooth vectors on which G acts smoothly (Theorem A.2). Let
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M := H∞ be the complex Fréchet manifold obtained by endowing H∞ with the

opposite complex structure. Then G acts on M by holomorphic maps and the

density of H∞ in H yields an embedding

ι:H ↪→ O(M), ι(v)(m) = 〈v,m〉,

whose image is the reproducing kernel space HK with kernel K(x, y) = 〈y, x〉.
With A := −idπ(1) we then have π(t) = eitA, and if Spec(A) is bounded from

below, then π̂:C+ → B(H), z �→ ezA defines a holomorphic extension of the unitary

representation to C+ (cf. [60, Theorem VI.5.3]). Since H∞ is invariant under every

operator π̂(z), it is easy to see that (z,m) �→ e−z̄Am defines a holomorphic action

of C+ on M , extending the action of R given by (t,m) �→ π(−t)m.

Remark 5.9. Suppose that q:V → M is a G-homogeneous holomorphic Hilbert

bundle, i.e. V carries a left action of G by holomorphic bundle automorphisms and

q(g.z) = g.q(z) for z ∈ V, g ∈ G. We write Γ(V) for the space of holomorphic

section of V. Then G acts on Γ(V) by (g.s)(m) := g.s(g−1.m). We are interested in

G-invariant Hilbert subspaces H ⊆ Γ(V) on which G acts unitarily and for which

the evaluation maps evm:H → Vm, s �→ s(m), m ∈M , are continuous linear maps

between Hilbert spaces.

To see how Theorem 5.7 applies in this situation, we realize Γ(V) by holomorphic

functions on the dual bundle V∗ whose fiber (V∗)m is the dual space of Vm. Each s ∈
Γ(V) defines a holomorphic function ŝ(αm) := αm(s(m)) on V∗ which is fiberwise

linear. We thus obtain an embedding Ψ:Γ(V) → O(V∗) whose image consists of

those holomorphic functions on V∗ which are fiberwise linear. Accordingly, Ψ(H) ⊆
O(V∗) is a reproducing kernel Hilbert space. The natural action of G on V∗ is given

by (g.αm)(zg.m) := αm(g−1.zg.m) for αm ∈ V∗
m, so that

Ψ(g.s)(αm) = αm(g.s(g−1.m)) = (g−1.αm)(s(g−1.m)) = Ψ(s)(g−1.αm)

implies that Ψ is equivariant with respect to the natural G-actions on Γ(V) and

O(V∗). Therefore the reproducing kernelK ofHK := Ψ(H) ⊆ O(V∗) isG-invariant,
and we are thus in the situation of Theorem 5.7. In addition, the fiberwise linearity

of the functions in HK leads to Kzα = z̄Kα for α ∈ V∗ and z ∈ C×. If HK �= {0},
then the homogeneity of the bundle V implies that Kα �= 0 for every 0 �= α ∈
V∗. Writing P(V∗) for the projective bundle associated to V∗ whose fibers are the

projective spaces of the fibers of V∗, we therefore obtain a well-defined map

Φ:P(V∗) → g′, [αm] �→ ΦπK ([Kαm ]) for αm ∈ V∗
m\{0}.

Since this map is G-equivariant and G acts transitively on M , we obtain for each

m0 ∈M :

Φ(P(V∗)) = Ad∗(G)Φ(P(V∗
m0

)). (11)
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If, in addition, the requirements of Theorem 5.7 are satisfied, i.e. the action

of the one-parameter-groups generated by −x ∈ B(IπK )0 on V, resp., V∗, extend
holomorphically to C+, we obtain

IπK = conv(im(Φ)). (12)

If, in particular, V is a line bundle, i.e. the fibers are one-dimensional, then

P(V∗) ∼=M , and we obtain a G-equivariant map Φ:M → g′ whose image is a single

coadjoint orbit Oπ.

Example 5.10. If H is a complex Hilbert space, then its projective space P(H)

is a complex Hilbert manifold. Moreover, there exists a holomorphic line bundle

q:LH → P(H) with the property that for every nonzero continuous linear functional

α ∈ H′ we have on the open subset Uα := {[v] ∈ P(H):α(v) �= 0} a bundle chart

ϕα: (LH)|Uα → Uα × C

such that the transition functions are given by

ϕβ ◦ ϕ−1
α ([v], z) =

(
[v],

α(v)

β(v)

)
for 0 �= α, β ∈ H′.

This implies that each 0 �= v ∈ H defines a linear functional on the fiber (LH)[v] by

ϕ−1
α ([v], z) �→ α(v)z,

which further implies that (LH)∗[v] = [v], i.e. L∗
H is the tautological bundle over

P(H).

The complement of the zero-section of LH is equivalent, as a C×-bundle, to the

projection H\{0} → P(H) by the map ϕα([v], z) �→ 1
zα(v)v. This identification can

be used to show that the natural map

Ψ:H′ → Γ(LH), Ψ(α)([v]) = ϕ−1
β

(
[v],

α(v)

β(v)

)
for β(v) �= 0

defines a linear isomorphism (see [62, Theorem V.4] for details).

As the group U(H) acts smoothly by holomorphic bundle isomorphisms on LH,

this construction shows that the unitary representation π∗: U(H) → U(H′), given
by π∗(g)α = α ◦ π(g)∗ can be realized in the space Γ(LH) of holomorphic sections

of LH.

To realize the identical representation on H itself by holomorphic sections, we

simply exchange the role of H and H′, which leads to a U(H)-equivariant iso-

morphism H → Γ(LH′).

To simplify the applications of Theorem 5.7, we need a criterion for its appli-

cability. Here the main idea is that, since every Hilbert space H can be realized as

a space of holomorphic sections of the bundle LH′ , we obtain similar realizations

from cyclic G-orbits in P(H) which are complex manifolds.

Theorem 5.11. (Complex Realization Theorem) (a) Let G be a Fréchet–Lie group

with Lie algebra g and H ⊆ G be a closed subgroup for which the coset space G/H
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carries the structure of a complex manifold such that the projection q:G → G/H

is a smooth H-principal bundle and G acts on G/H by holomorphic maps. Let

x0 = 1H ∈ G/H be the canonical base point and p ⊆ gC be the kernel of the

complex linear extension of the map g → Tx0(G/H) to gC, so that p is a closed

subalgebra of gC.
Let (π,H) be a unitary representation of G and dπ: gC → End(H∞) be the

complex linear extension of the derived representation. Suppose that 0 �= v ∈ H∞

is an eigenvector for H and of the subalgebra p := {x+ iy = x− iy:x+ iy ∈ p} of

gC. Then the map

η:G/H → P(H′), gH �→ [π∗(g)αv] = [αv ◦ π(g)−1], αv(w) = 〈w, v〉,
is holomorphic and G-equivariant. If, in addition, v is cyclic, then we obtain a G-

equivariant injection H ↪→ Γ(η∗LH′), where η∗LH′ is a G-equivariant holomorphic

line bundle over G/H. If, in addition, G is connected, then π is irreducible.

(c) Suppose that, for each x ∈ Wπ , the flow (t,m) �→ expG(−tx)H extends

holomorphically to C+. Then the momentum set is given by

Iπ = conv(Φπ(G[v])) = conv(OΦπ([v])).

Proof. (a) First we observe that the map Υ:H → H′, v �→ αv is an antilinear

isometry and that the contragredient representation π∗(g)α := α ◦ π(g)−1 is also

unitary.

Next we recall that the smooth action of G on M := G/H defines a homo-

morphism g → VO(M), the Lie algebra of holomorphic vector fields. Since M

is complex, VO(M) is a complex Lie algebra, and, for each p ∈ M , the sub-

space {X ∈ VO(M):X(p) = 0} is a complex subalgebra. This proves that p is

a Lie subalgebra of gC, and its closedness follows from the continuity of the map

gC → Tx0(M) ∼= g/h.

(b) Since v is a p-eigenvector, there exists a continuous linear functional λ: p → C
with dπ(z̄)v = λ(z)v for z ∈ p, so that we have for w ∈ H and z ∈ p the relation

αv(z.w) = 〈dπ(z)w, v〉 = −〈w, dπ(z̄)v〉 = −λ(z)αv(w).

We conclude that αv is an p-eigenvector. This implies that the tangent map

Tx0(η): Tx0(M) → T[αv](P(H′))

is complex linear, i.e. compatible with the respective complex structures. SinceM is

homogeneous, T (η) is complex linear on each tangent space, and this means that η

is holomorphic. Therefore η∗LH′ is a holomorphic line bundle overM and we obtain

a G-equivariant pullback map H ∼= Γ(LH′) → Γ(η∗LH′). Its kernel consists of all

those sections vanishing on η(M), which corresponds to the elements w ∈ (π(G)v)⊥.
In particular, this map is injective if v is a cyclic vector.

That (π,H) is irreducible ifG is connected follows from [60, Proposition XV.2.7].

(c) If x ∈ Wπ, then idπ(x) is bounded from above, so that (z, α) �→ α ◦ ezdπ(x)
defines a continuous action of C+ on H′ which is holomorphic on C0

+ and satisfies
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(t, α) �→ π∗(expG(−tx))α (cf. Example 5.8). As η is G-equivariant and holomor-

phic, it is also equivariant with respect to the C+-actions onM and the holomorphic

action on P(H′) by (z, [α]) �→ [α ◦ ezdπ(x)]. Therefore the C+ actions on M and on

H′ combine to a holomorphic action of C+ on η∗LH′ . Now we combine Theorem 5.7

with Remark 5.9 to obtain (c). Here we only have to observe that the realization

of H by holomorphic sections of LH′ leads on the dual bundle, whose comple-

ment of the zero-section can be identified with H′\{0}, to the evaluation functional

Kαv = v ∈ H (cf. Example 5.10).

Example 5.12. An important special case where the requirements of Theorem 5.11

are satisfied occurs if the G-action on the complex manifold M extends to a holo-

morphic action of a complex Lie group GC ⊇ G with holomorphic exponential

function.

If (π,H) is an irreducible representation of a compact Lie group G, then it

is finite dimensional and in particular bounded, so that π extends to a holomor-

phic representation π̂:GC → GL(H). Since the highest weight orbit G[vλ] is a

compact complex manifold, it is also invariant under the GC-action on P(H), and

Theorem 5.11, applied to the maximal torus H ⊆ G, implies that Iπ = conv(Oπ)

for Oπ = Φπ(G[vλ]).

Remark 5.13. (a) If G is finite dimensional, then Theorem 5.7 applies to all

irreducible semibounded representations ([60, Proposition XII.3.6]), where G/H

is the highest weight orbit G[vλ] ⊆ P(Hλ), and this eventually leads to Iπλ
=

conv(O−iλ).

(b) We have already seen in (10) that, for finite dimensional groups, the highest

weight orbit G[vλ] ⊆ P(Hλ) can be characterized as the inverse image of the set

Ext(Iπλ
) of extreme points of the momentum set (Remark 5.5). For the special case

where G is a compact group, one finds in [32] a different characterization of the

highest weight orbit as the set of all those elements for which the subrepresentation

of Sym2(Hλ) generated by v ⊗ v is irreducible. It would be interesting to see if a

similar result holds in other situations.

If G is finite dimensional, for any [v] ∈ G[vλ] the orbit of [v ⊗ v] is a complex

manifold (actually a holomorphic image of G[vλ]), and from that one can derive

that the cyclic representation it generates is irreducible ([60, Proposition XV.2.7]).

Another interesting characterization of the highest weight orbit of an irreducible

representation of a compact Lie group is given in [19]. Starting with an orthonormal

basis iF1, . . . , iFn of the Lie algebra g with respect to an invariant scalar product,

one defines the invariant dispersion of a state [v] by

(∆F )2 =

〈∑

r

(Fr − 〈Fr〉)2
〉
, where 〈A〉 = 〈Av, v〉

〈v, v〉 for A = A∗.
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If C :=
∑

r F
2
r is the corresponding Casimir operator, which acts on H as a multiple

c1 of the identity, one easily finds that

(∆F )2 = c− ‖Φπ([v])‖2,

which is minimal if ‖Φπ([v])‖ is maximal. As Iπ = conv(Oπ) holds for a coadjoint

orbitOπ, and the scalar product on g, resp., g′ is invariant, the orbitOπ is contained

in a sphere. Therefore the invariant dispersion (∆F )2 is minimal in a state [v] if

and only if Φπ([v]) ∈ Oπ = Ext(Iπ).

6. Invariant Cones in Lie Algebras

In this section we take a closer look at important examples of invariant convex

cones in Lie algebras.

6.1. Invariant cones in unitary Lie algebras

Examples 6.1. If H is a complex Hilbert space, then the Lie algebra u(H) of

skew-hermitian bounded operators contains the open invariant cone

Cu(H) := {x ∈ u(H): ix� 0}

(cf. Example 4.10).

More generally, for any unital C∗-algebra A, the Banach–Lie algebra u(A) =

{x ∈ A: x∗ = −x} contains the open invariant cone

Cu(A) := {x ∈ u(A): ix� 0}.

6.2. Invariant cones in symplectic Lie algebras

Definition 6.2. If V is a Banach space and q:V → R a continuous quadratic form,

then we say that q is strongly positive definite, written q � 0, if
√
q defines a Hilbert

norm on V . In particular, we are asking for V to be complete with respect to this

norm.

Now let (V, ω) be a strongly symplectic Banach space (cf. Remark B.2) and

sp(V, ω) ⊆ gl(V ) be the corresponding symplectic Lie algebra. We associate to each

X ∈ sp(V, ω) the quadratic Hamiltonian HX(v) := 1
2ω(Xv, v) and obtain an open

invariant cone by

Wsp(V,ω) := {X ∈ sp(V, ω):HX � 0}

which is non-empty if and only if V is topologically isomorphic to a real Hilbert

space which carries a complex Hilbert space structure 〈·, ·〉 with

ω(v, w) = Im〈v, w〉 for v, w ∈ V

(cf. Proposition B.3, [1, Theorem 3.1.19]).
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Definition 6.3. Actually sp(V, ω) is a Lie subalgebra of the semidirect product

hsp(V, ω) := heis(V, ω)� sp(V, ω),

where heis(V, ω) = R⊕ω V is the Heisenberg algebra associated to (V, ω), with the

bracket

[(z, v), (z′, v′)] := (ω(v, v′), 0).

Since every continuous linear functional on V is of the form ixω, the discussion in

Remark B.2 implies that hsp(V, ω) can be identified with the space of continuous

polynomials of degree ≤ 2 on V , endowed with the Poisson bracket

{f, g} = ω(Xg, Xf ) where iXf
ω = df.

Let Heis(V, ω) := R× V be the Heisenberg group of (V, ω) with the multiplication

(t, v)(t′, v′) :=

(
t+ t′ +

1

2
ω(v, v′), v + v′

)
.

Then the Jacobi group HSp(V, ω) := Heis(V, ω)�Sp(V, ω) acts by σ
(
(c, w, g), v

)
:=

w + gv on V and the corresponding derived action is given by σ̇(z, w, x)(v) =

−w −Xv, so that

(iσ̇(z,w,x)ω)v = −ω(w +Xv, ·) = −iw+Xvω.

Therefore this action is Hamiltonian with equivariant momentum map

Φ:H → hsp(V, ω)′, Φ(v)(c, w,A) := −c− ω(w, v) − 1

2
ω(Av, v)

(cf. [60, Proposition A.IV.15], where we use a different sign convention).

Lemma 6.4. The convex cone

W+
hsp(V,ω) := {(c, v, A) ∈ hsp(V, ω): (∀ v ∈ V )c+ ω(x, v) +HA(v) > 0, HA � 0}

is open and invariant in the Banach–Lie algebra hsp(V, ω). It is contained in the

larger open invariant cone

Whsp(V,ω) := {(c, v, A) ∈ hsp(V, ω):HA � 0}.

Proof. It is clear that W := W+
hsp(V,ω) is an invariant convex cone. It remains to

show that it is open. If f(v) = c + ω(x, v) + 1
2ω(Av, v) is such that HA is strictly

positive, then df(v) = ixω + iAvω, which vanishes if and only if v = −A−1x. It

follows in particular, that each such function has a unique minimal value which is

given by

f(−A−1x) = c− ω(x,A−1x) +
1

2
ω(x,A−1x) = c− 1

2
ω(x,A−1x).

Therefore the condition f > 0 is equivalent to c > 1
2ω(x,A

−1x), showing that W

is indeed open in hsp(V, ω).
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From now on we assume that H is a complex Hilbert space, V = HR is the

underlying real Banach space, and ω(v, w) := Im〈v, w〉 is the corresponding sym-

plectic form. Then Iv = iv is a complex structure on HR leaving ω invariant. It

satisfies

ω(Iv, v) = Im〈iv, v〉 = ‖v‖2. (13)

Formalizing this property leads to:

Definition 6.5. We call a real linear complex structure J :H → H ω-positive if

ω(Jv, w) is symmetric and positive definite and write Iω for the set of ω-positive

complex structures on H.

The following lemma is well known for the finite dimensional case, but it carries

over to infinite dimensional Hilbert spaces. It implies in particular that Iω = OI is

an adjoint orbit of the Lie algebra sp(H).

Lemma 6.6. The following assertions hold :

(i) Sp(H) ∩ sp(H) = {g ∈ GL(HR): Ig�I = −g−1 = g} is the set of complex

structures J on H for which ω(Jv, w) is symmetric.

(ii) Iω = Iep for p := {x ∈ sp(H): Ix = −xI} = {x ∈ sp(H):x� = x}.
(iii) The conjugation action of Sp(H) on Iω leads to a diffeomorphism Iω ∼=

Sp(H)/U(H).

(iv) If A ∈ sp(H) is such that HA � 0, then there exists a unique ω-positive

complex structure J on H commuting with A.

(v) Ires
ω := Ad(Spres(H))I = {J ∈ Iω: ‖I − J‖2 <∞} = Iω ∩ spres(H).

Proof. (i) That ω(Jv, w) is symmetric is equivalent to J ∈ sp(H), and as J−1 =

−J characterizes complex structures, (i) follows.

(ii) We have seen in (13) that I is ω-positive. Let J be another ω-positive

complex structure. Writing J = uex according to the polar decomposition of Sp(H)

with u ∈ U(H) and x ∈ p ([63, Theorem I.6(iv)]), we see that J2 = −1 is equivalent

to u2 = −1 (u is a complex structure) and ux = −xu (x is antilinear with respect

to u). If this is the case, then

ω(Jv, v) = ω(uexv, v) = ω(e−x/2uex/2v, v) = ω(uex/2v, ex/2v)

shows that J is ω-positive if and only if u has this property. Since u is complex

linear,H decomposes into ±i-eigenspacesH± of u. Then ω(uv, v) is positive definite

on H+ and negative definite on H−, so that the ω-positivity implies u = I. This

proves (ii).

(iii) For g = uex ∈ Sp(H), the relation g−1Ig = e−xIex = Ie2x shows that

Sp(H) acts transitively on Iω. As U(H) is the stabilizer of I, (iii) follows from the

smoothness of the map J = Iex �→ x = 1
2 log(J

�J).
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(iv) Let (v, w)A := ω(Av,w) denote the real Hilbert structure on H defined by

A. Then

ω(x, y) = ω(A(A−1x), y) = (A−1x, y)A

implies that A−1 is skew-symmetric with respect to (·, ·)A, and the same holds for

A itself. Therefore −A2 ≥ 0 and J := (−A2)−1/2A is a complex structure leaving

(·, ·)A invariant (cf. [1, Theorem 3.1.19]). Then

ω(Jv, v) = ω((−A2)−1/2Av, v) = ((−A2)−1/2v, v)A

is positive definite, so that J is ω-positive.

If J ′ is another ω-positive complex structure commuting with A, then the con-

struction of J shows that it also commutes with J . Therefore JJ ′ is an involution

and since J and J ′ are ω-positive, the −1-eigenspace of this involution is trivial,

which leads to J ′ = J .

(v) From the polar decomposition

Spres(H) = U(H) exp(p2) with p2 := p ∩ spres(H) = {x ∈ p: ‖x‖2 <∞}

we derive that Ires
ω = Iep2 . For the entire function F (z) := ez−1

z , we then have

Iex − I = IF (x)x.

Since F (x) is invertible for the real symmetric operator x by the Spectral Mapping

Theorem, it follows that Iex−I is Hilbert–Schmidt if and only if x has this property.

For J = Iex we also observe that

[I, J ] = −ex − IexI = e−x − ex = e−x(1− e2x) = −e−xF (2x)2x,

so that [I, J ] is Hilbert–Schmidt if and only if x is. This leads to Ires
ω = Iω∩spres(H).

The following theorem is a useful tool when dealing with invariant cones in

symplectic Lie algebras.

Theorem 6.7. For the canonical open invariant cones in sp(H), spres(H) and

hsp(H) we have the following conjugacy results:

(i) Wsp(H) = Ad(Sp(H))Cu(H) and Cu(H) =Wsp(H) ∩ u(H).

(ii) Wspres(H) :=Wsp(H) ∩ spres(H) = Ad(Spres(H))Cu(H).

(iii) Whsp(H) = Ad(HSp(H))(R × {0} × Cu(H)) for the corresponding Lie group

HSp(H) = Heis(H)� Sp(H).

(iv) Whspres(H) := Whsp(H) ∩ hspres(H) = Ad(HSpres(H))(R × {0} × Cu(H)) for

HSpres(H) := Heis(H)� Spres(H).

Proof. (i) If A ∈ sp(H) is complex linear, then A∗ = −A, so that ω(Av, v) =

Im〈Av, v〉 = 〈−iAv, v〉. Therefore A ∈ Wsp(H) is equivalent to iA � 0, i.e.

Wsp(H) ∩ u(H) = Cu(H).
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For A ∈ Wsp(H) we find with Lemma 6.6(iv) a J ∈ Iω commuting with A. For

any g ∈ Sp(H) with J = Ad(g)I, whose existence follows from Lemma 6.6(iii), we

conclude that Ad(g)−1A commutes with I, hence is contained in Wsp(H) ∩ u(H) =

Cu(H). This proves (i).

(ii) In view of Lemma 6.6(v), it suffices to show that for any A ∈ Wspres(H) the

corresponding ω-positive complex structure J = (−A2)−1/2A from Lemma 6.6(iv)

is contained in Ires
ω , i.e. [I, J ] is Hilbert–Schmidt. Since A2 commutes with I, we

have [I, J ] = (−A2)−1/2[I, A], so that the invertibility of (−A2)−1/2 implies that

A ∈ spres(H) is equivalent to J ∈ spres(H).

(iii) As we have seen in the proof of Lemma 6.4 above, for each element

(c, x,A) ∈ Whsp(H), the Hamiltonian function f(v) = c + ω(x, v) + HA(v) has

a unique minimum in −A−1x. Since the adjoint action of the Heisenberg group

Heis(H) ⊆ HSp(H) corresponds to a translation action on H, each adjoint orbit

OX in Whsp(V,ω) contains an element Y whose corresponding Hamiltonian function

is minimal in 0, so that Y ∈ R×{0}× sp(H). In view of (i), each orbit in Whsp(V,ω)

meets the subalgebra R× {0} × u(H), and this proves (iii).

(iv) follows by combining the argument under (iii) with the proof of (ii).

6.3. Invariant Lorentzian cones

If (g, β) is a Lorentzian Lie algebra, i.e. β is an invariant Lorentzian form (which is

negative definite on a closed hyperplane), then each half of the open double cone

{x ∈ g:β(x, x) > 0} is an open invariant cone in g.

Example 6.8. A particularly important example is g = sl2(R) with β(x, y) =

−tr(xy). Indeed, the basis

h =

(
1 0

0 −1

)
, u =

(
0 1

−1 0

)
, t =

(
0 1

1 0

)

is orthogonal with

β(xh+ yu+ zt, xh+ yu+ zt) = −2x2 + 2y2 − 2z2.

For g = sl2(R), the adjoint group coincides with the identity component SO(g, β)0 ∼=
SO1,2(R)0, which implies that the adjoint and coadjoint orbits are the connected

components of the level surfaces of the associated quadratic form, and the 0-level

surface of isotropic vectors decomposes into the 0-orbit and two isotropic orbits

lying in the boundary of the double cone. This description of the adjoint orbits

implies in particular that there are precisely two nontrivial open invariant cones,

namely the connected components of the set {x:β(x, x) > 0}.
Remark 6.9. Other examples of Lorentzian Lie algebras arise as double extensions

from Lie algebras g0, endowed with an invariant scalar product κ0: IfD ∈ der(g0, κ0)

is a continuous skew-symmetric derivation, then g := R × g0 × R is a Lie algebra

with respect to the bracket

[(z, x, t), (z′, x′, t′)] = (κ0(Dx, x′), tDx′ − t′Dx+ [x, x′], 0)
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and the continuous symmetric bilinear form

κ((z, x, t), (z′, x′, t′)) := zt′ + z′t+ κ0(x, x′),

is easily seen to be invariant. The pair (g, κ) is called a double extension of (g0, κ0)

(cf. [54]).

Example 6.10. (a) If k is a compact Lie algebra and g0 := C∞(S1, k) is the

corresponding loop algebra, then we identify its elements with 2π-periodic functions

on R. With an invariant scalar product κk on k, we obtain the invariant scalar

product

κ0(ξ, η) :=

∫ 2π

0

κk(ξ(t), η(t)) dt

on g0, and the derivation Dξ := ξ′ is skew-symmetric. The corresponding double

extension produces the (unitary forms) of the untwisted affine Kac–Moody Lie

algebras.

(b) If g0 := u2(H) is the Lie algebra of skew-hermitian Hilbert–Schmidt oper-

ators on the Hilbert space H and A = −A∗ ∈ u(H), then κ0(x, y) := tr(xy∗) =

−tr(xy) is an invariant scalar product on g0 and one obtains a double extension

for the derivation D(x) := [A, x]. It is nontrivial if and only if A �∈ Ri1 + u2(H)

(cf. [63]).

Problem 6.11. Classify infinite dimensional Lorentzian Lie algebras g which are

complete in the sense that for x ∈ g with β(x, x) > 0 the orthogonal space is a

Hilbert space with respect to −β. The construction in Example 6.10(b) produces

interesting examples.

Finite dimensional indecomposable Lorentzian Lie algebras have been classified

by Hilgert and Hofmann in [35]. The simple result is that an indecomposable finite

dimensional Lorentzian Lie algebra is either sl2(R), endowed with the negative of

its Cartan–Killing form, or a double extension of an Abelian Lie algebra, defined

by an invertible skew-symmetric derivation D ([36, Theorem II.6.14]).

6.4. Invariant cones of vector fields

Example 6.12. Let g = V(S1) = C∞(S1)∂θ be the Lie algebra of smooth vector

fields on the circle S1 ∼= R/Z, where ∂θ := ∂
∂θ denotes the generator of the right

rotations. Then

WV(S1) := {f∂θ: f > 0}
is an open invariant cone (cf. Sec. 7).

Example 6.13. The preceding example has a natural higher dimensional general-

ization. Let (M, g) be a compact Lorentzian manifold possessing a timelike vector

field T , i.e. gm(T (m), T (m)) > 0 for every m ∈M . Then

W := {X ∈ V(M): (∀m ∈M) g(X,X) > 0, g(X,T ) > 0}
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is an open convex cone in the Fréchet space V(M) and its intersection with the

subalgebra conf(M, g) of conformal vector fields is an open invariant cone. For

M = S1 all vector fields are conformal and we thus obtain Example 6.12.

6.5. Invariant cones and symmetric Hilbert domains

Example 6.14. (a) We recall from Example 3.2(g) the concept of a symmetric

Hilbert domain and write G := Aut(D)0 for the identity component of its automor-

phism group. We assume w.l.o.g. that D is the open unit ball of a complex Banach

space V (cf. [42,43]). Let K = G∩GL(V ) be the subgroup of linear automorphisms

of D, i.e. the group of complex linear isometries of V and let k = L(K) be its Lie

algebra. Then

Wk := {x ∈ k: ‖eix‖ < 1}
is a pointed open convex cone in the subalgebra k, and

W := Ad(G)Wk

is a pointed open invariant convex cone in g (cf. [61, Theorem V.9], and [105,

Theorem 5] for the finite dimensional case). By definition, this open cone has the

interesting property that every orbit in W meets k.

(b) Because they will also show up in the following, we take a closer look at

some characteristic examples. In Examples 3.2(g), we have seen that the group

G = Ures(H+,H−) acts naturally on the circular symmetric Hilbert domain D :=

{z ∈ B2(H+,H−): ‖z‖ < 1}. Here the stabilizer of 0 is

K := U(H−)×U(H+),

which acts by (a, d)z = azd−1. From the Hilbert space isomorphism B2(H+,H−) ∼=
H−⊗̂H∗

+, one now derives with

‖eix− ⊗ e−ix+‖ = ‖eix−‖‖e−ix+‖ = supSpec(ix−) + sup Spec(−ix+)
= sup Spec(ix−)− inf Spec(ix+)

that

Wk = {(x−, x+) ∈ k ∼= u(H−)× u(H+): sup Spec(ix−) < inf Spec(ix+)},
and W = Ad(G)Wk is the corresponding open invariant cone in g = u(H+,H−).
Since the action of G on D is not faithful, this cone has a nontrivial edge H(W ) =

Ri1 = L(T1).
(c) For H+ = H− = H and the subgroup G = Spres(H) ⊆ Ures(H+,H−), we

have K ∼= U(H), corresponding to the pairs of the form (a, a−�) ∈ U(H) × U(H),

and, accordingly,

Wk = {x ∈ u(H) ix� 0} = Cu(H)

(Examples 3.2(h) and 6.1). From Theorem 6.7(ii) it now follows that

W = Ad(G)Wk =Wspres(H). (14)
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6.6. A general lemma

The following lemma captures the spirit of some arguments in the previous con-

structions of invariant convex cones in Lie algebras in a quite natural way. F.i., it

applies to finite dimensional simple algebras as well as V(S1).
Lemma 6.15. Suppose that the element d ∈ g has the following properties :

(a) The interior Wmin of the invariant convex cone generated by Od = Ad(G)d is

non-empty and different from g.

(b) There exists a continuous linear projection p: g → Rd which preserves every

open and closed convex subset.

(c) There exists an element x ∈ g for which p(Ox) is unbounded.

Then each non-empty open invariant cone W contains Wmin or −Wmin, and for

λ ∈ g′ the following are equivalent

(i) λ ∈ g′seq, i.e. Oλ is semi-equicontinuous.

(ii) Oλ(d) is bounded from below or above.

(iii) λ ∈W �
min ∪ −W �

min.

Proof. If W ⊆ g is an open invariant cone, then p(W ) ⊆ Rd contains an open half

line, so that (b) implies that W contains either d or −d. Accordingly, we then have

Wmin ⊆W or −Wmin ⊆W .

(iii) ⇒ (i): As Wmin is open, W �
min ∪ −W �

min consists of semi-equicontinuous

coadjoint orbits (Example 2.5(b)).

(i) ⇒ (ii): Let λ ∈ g′seq. Since B(Oλ)
0 is an open invariant cone, (a) implies that

it either contains d or −d, which is (ii).

(ii) ⇒ (iii): Assume w.l.o.g. that infOλ(d) > −∞. We claim that Oλ ⊆ W �
min,

which is equivalent to Oλ(d) ≥ 0.

To this end, we consider µ ∈ g′ defined by p(x) = µ(x)d. Then −d �∈ Wmin

and (b) imply that µ ∈ W �
min, so that µ(Od) ≥ 0. If µ(Od) is bounded from

above, then ±d ∈ B(Oµ), so that the invariance of the convex cone B(Oµ) leads

to ±Wmin ⊆ B(Oµ), and hence to g = B(Oµ), contradicting (c). We conclude that

µ(Od) is unbounded. Applying (b) to the closed convex subset C := conv(Od),

it follows that [1,∞[·d ⊆ C, and hence that d ∈ lim(C) (Lemma 2.9(iii)). As

lim(C) is an invariant cone, (a) entails Wmin ⊆ lim(C). We finally conclude that

λ ∈ B(Od) = B(C) ⊆ lim(C)� ⊆W �
min (Lemma 2.9(vi)).

The preceding lemma applies in particular to finite dimensional simple non-

compact Lie algebras ([105]):

Proposition 6.16. For a finite dimensional simple non-compact Lie algebra g, the

following assertions hold :

(i) Every non-empty invariant convex subset C �= {0} has interior points.

(ii) If g contains a proper open invariant convex cone, then there exist minimal

and maximal open invariant cones Wmin ⊆Wmax such that for any other open
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invariant cone W we either have

Wmin ⊆W ⊆Wmax or Wmin ⊆ −W ⊆Wmax.

In this case the set of semi-equicontinuous coadjoint orbit in g′ coincides with

W �
min ∪ −W �

min.

Proof. (i) If ∅ �= C �= {0} is invariant and convex, then span(C) is a nonzero

ideal of g, hence equal to g. If the affine subspace generated by C is proper, then

its translation space is a hyperplane ideal of g, contradicting the simplicity of

g. Therefore C generates g as an affine space, hence has interior points because

dim g <∞ and C contains a simplex of maximal dimension.

(ii) Let g = k⊕p be a Cartan decomposition of g and z := z(k) be the center of k.

Then the existence of invariant cones implies that z = zg(k) = Rd is one-dimensional

([105]). Therefore we have a fixed point projection pz: g → z with respect to the

action of the compact subgroup ead k, and this projection preserves all open and

closed invariant convex subsets (Proposition 2.11(a)). If pz(Ox) is bounded for every

x ∈ g, then pz, considered as a linear functional on g, has a bounded orbit. As g is

simple, this implies that all coadjoint orbits are bounded, and this contradicts the

non-compactness of g. Therefore (a)–(c) in Lemma 6.15 are satisfied, which implies

that the set of semi-equicontinuous coadjoint orbits is W �
min ∪ −W �

min.

7. Connections to C∗-Algebras

In this section we discuss two aspects of semibounded representation theory in the

context of C∗-algebras. The first one concerns the momentum sets of restrictions

of representations of a unital C∗-algebra A to its unitary group U(A), and the sec-

ond one concerns covariant representations for C∗-dynamical systems defined by a

Banach–Lie groupH acting on a C∗-algebraA. Using the results from Appendix A,

it follows that covariant representations lead to smooth unitary representations of

the Lie group U(A∞) � H , so that spectral conditions for covariant representa-

tions can be interpreted in terms of semibounded representations and the theory of

invariant cones in Lie algebras becomes available.

In this subsection A denotes a unital C∗-algebra and U(A) its unitary group,

considered as a Banach–Lie group (Example 3.2(a)). We identify the state space

S(A) := {ϕ ∈ A′:ϕ(1) = ‖ϕ‖ = 1} ⊆ {ϕ ∈ A′:ϕ(u(A)) ⊆ iR}
of A with a subset of u(A)′ by mapping ϕ ∈ S(A) to the real-valued functional

−iϕ|u(A) ∈ u(A)′ (cf. [60, Sec. X.5] for more details).

7.1. Representations of the unitary group

If (π,H) is a unitary representation of U(A) obtained by restricting an algebra

representation, then its momentum set is simply given by

Iπ = {ϕ ∈ S(A):ϕ(kerπ) = {0}} = S(A) ∩ (kerπ)⊥ ∼= S(π(A))
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(cf. [60, Theorem X.5.13]). In particular, the momentum set is completely deter-

mined by the kernel of the representation π, resp., the C∗-algebra π(A). This is

why representations with the same kernel are called physically equivalent in alge-

braic Quantum Field Theory ([31]).

In [20, Theorem 9.1] one finds a characterization of the separable C∗-algebras A
of type I as those for which irreducible representations are determined by their ker-

nels, hence by their momentum sets. More generally, postliminal C∗-algebras have
this property ([20, Theorem 4.3.7]). We conclude in particular that the existence

of separable C∗-algebras A which is not of type I implies the existence of non-

equivalent irreducible representations (π1,H1) and (π2,H2) with kerπ1 = kerπ2,

and hence with Iπ1 = Iπ2 . We thus observe:

Theorem 7.1. Bounded irreducible unitary representations of Banach–Lie groups

are in general not determined up to equivalence by their momentum sets.

Proposition 7.2. (Momentum sets of irreducible representations) For irreducible

representations (π,H) of a C∗-algebra A, the following assertions hold :

(i) U(A) acts transitively on P(H), so that Oπ := im(Φπ) is a single coadjoint

orbit with Iπ = conv(Oπ).

(ii) Oπ consists of pure states i.e. Oπ ⊆ Ext(S(A)).

(iii) Two irreducible representations π1 and π2 are equivalent if and only if

Oπ1 = Oπ2 .

Proof. (i) [20, Theorem 2.8.3]

(ii) [20, Proposition 2.5.4]

(iii) (cf. [20, Corollary 2.8.6]) From the naturality of the momentum map it

follows that equivalent representations have the same orbits. The converse follows

from the fact that an irreducible representation can be recovered from any of its

pure states ϕ by the GNS construction, and states in the same U(A)-orbit lead to

equivalent representations.

In [8] these results are generalized to irreducible representations of U(A) occur-

ring in tensor products of algebra representations and their duals.

Examples 7.3. (a) If π is the identical representation of the C∗-algebraA = B(H)

on H, then the corresponding momentum map is given by

Φπ([v])(x) =
1

i

〈xv, v〉
〈v, v〉 = −i tr(xPv),

where Pv(w) =
〈w,v〉
〈v,v〉 v is the orthogonal projection onto [v]. Clearly, this representa-

tion is faithful and irreducible, so that Iπ = S(A). On the other hand, Oπ = im(Φπ)

can be identified with the set of rank-one projections, as elements of the dual space
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A′. With the trace pairing, we can embed the subspace Herm1(H) of hermitian

trace class operators in to the dual A′. Then

Herm1(H) ∩ S(A) = {S ∈ Herm1(H):S ≥ 0, trS = 1},

and the Spectral Theorem for compact hermitian operators implies that

Ext(S(A)) ∩Herm1(H) = Φπ(P(H))

is a single coadjoint orbit. However, since the Calkin algebra A/K(H) is nontrivial

if dimH = ∞, A also has pure states vanishing on the ideal K(H) of compact

operators and U(H) does not act transitively on Ext(S(A)).

(b) For the natural representation ofG = U(H) on the symmetric powers Sn(H),

the elements [vn], 0 �= v ∈ H, form a single G-orbit on which the complex group

GL(H) = A× acts holomorphically (Proposition 7.2(i)). Since

ΦSn(π)([v
n]) = nΦπ([v]) for 0 �= v ∈ H,

it thus follows from Example 5.12 that

ISn(π) = nIπ. (15)

For a generalization to more general subrepresentations of H⊗n, we refer to [8].

7.2. C∗-dynamical systems

Definition 7.4. Let G be a topological group andA a C∗-algebra. A C∗-dynamical

system is a triple (A, G, α), where α:G → Aut(A), g �→ αg, is a homomorphism

defining a continuous action of G on A.

Theorem 7.5. ([71]) If G is a Banach–Lie group and (A, G, α) a C∗-dynamical

system, then the space A∞ of smooth vectors is a Fréchet algebra with respect to

the locally convex topology defined by the seminorms

pn(a) := sup{‖dα(x1) · · · dα(xn)a‖:xi ∈ g, ‖xi‖ ≤ 1}, n ∈ N0,

and the action of G on A∞ is smooth. If, in addition, A is unital, then A∞ is a

continuous inverse algebra.

Now let (A, H, α) be a C∗-dynamical system, where H is a Banach–Lie group

and A is a unital C∗-algebra. Then U(A∞) carries a natural Fréchet–Lie group

structure (cf. Example 3.2(a)), and we can form the semidirect product Lie

group G := U(A∞)�H .

For the proof of the following theorem, we record a general observation on

invariant cones.

Lemma 7.6. If W ⊆ g is an open invariant convex cone, then we have for each

element x ∈ g satisfying (adx)2 = 0 the relation [x, g] ⊆ H(W ). In particular, x is

central if W is pointed.
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Proof. Let w ∈ W . Then, for each t ∈ R, we have w + R[x,w] = eRadxw ⊆ W, so

that [x,w] ∈ H(W ) (Lemma 2.9). Now g = W −W leads to [x, g] ⊆ H(W ). If, in

addition, W is pointed, this implies that [x, g] = {0}, i.e. x ∈ z(g).

Theorem 7.7. Let (π, ρ,H) be a covariant representation of (A, H, α), i.e. π is a

non-degenerate representation of A on H and ρ is a unitary representation of H

satisfying

π(αgA) = ρ(g)π(A)ρ(g)−1 for A ∈ A, g ∈ H.

Then the following assertions hold :

(i) The corresponding representation π̂(a, h) := π(a)ρ(h) of G = U(A∞) �H is

smooth if and only if ρ has this property.

(ii) Wbπ = u(A∞)×Wρ and π̂ is semibounded if and only if ρ has this property if

and only if Cbπ �= ∅.
(iii) If A is commutative and π̂ is semibounded, then the identity component H0 of

H acts trivially on π(A).

Proof. (i) For every H-smooth vector v ∈ H, the smoothness of the map

U(A) × H → H, (a, g) �→ π(a)ρ(g)v follows from the smoothness of the action of

the Banach–Lie group U(A) on H. Since the inclusion U(A∞) → U(A) is smooth,

it follows that every H-smooth vector is smooth for G, so that the corresponding

unitary representation π̂:G→ U(H), (a, g) �→ π(a)ρ(g) of G is smooth whenever ρ

has this property.

(ii) Clearly i1 = dπ(i1) ∈ dπ̂(g), so that π̂ is semibounded if and only if Cbπ �= ∅
(Proposition 4.7). Since A acts by bounded operators, we have u(A∞) ⊆ H(Wbπ),

and thus

Wbπ = u(A∞)× (Wbπ ∩ h) = u(A∞)×Wρ.

Therefore π̂ is semibounded if and only if ρ is semibounded.

(iii) As u(A∞) is an Abelian ideal of g, Lemma 7.6 implies that [u(A∞), h] ⊆
H(Cπ) = kerdπ̂, i.e. that H0 acts trivially on the C∗-algebra π(A).

Remark 7.8. A closely related fact is well known in the context of C∗-dynamical

systems with the group H = Rd. To explain the connection, let C ⊆ h′ be a

closed convex cone. Then we say that (π, ρ,H) satisfies the C-spectrum condi-

tion if −idρ(x) ≥ 0 for x ∈ C�, i.e. Iρ ⊆ C. If C� has interior points, we have

just seen that the C-spectrum condition implies that π̂ is semibounded, and if π

is faithful and A is commutative, this can only happen if H acts trivially on A
(cf. [10, Theorem IV.6.2]). To obtain nontrivial situations, one has to consider non-

commutative algebras. Typical examples arise for any semibounded representation

(ρ,H) of H for A := K(H) (compact operators on H) and αg(A) := ρ(g)Aρ(g)−1.
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Example 7.9. (a) If (ρ,H) is a smooth representation ofG, then the corresponding

action of G on K(H) defined by αg(A) := ρ(g)Aρ(g)−1 also has a dense space

K(H)∞ of smooth vectors because for every pair (v, w) of smooth vectors the

corresponding rank-one operator Pv,w, defined by Pv,w(x) := 〈x,w〉v satisfies

αgPv,w = Pρ(g)v,ρ(g)w ,

which easily implies that its orbit map is smooth.

(b) If H is a complex Hilbert space and A := CAR(H), then the canonical

action of the orthogonal group O(H) (of the underlying real Hilbert space) on A is

continuous and the subalgebra A∞ of smooth vectors is dense because it contains

a(H) and hence the ∗-subalgebra generated by this subset (cf. Sec. 10).

(c) To find a similar situation for the CCR is not so obvious because the Weyl

algebra CCR(H), i.e. the C∗-algebra defined by the generators W (f), f ∈ H, and

the Weyl relations

W (f)∗ =W (−f), W (f)W (h) = e
i
2 Im〈f,h〉W (f + h)

is a very singular object. The map W :H → CCR(H) is discontinuous, even on

every ray in H ([14, Theorem 5.2.8]). Since the action of the symplectic group

Sp(H) preserves these relations, it acts by αg(W (f)) = W (gf) on CCR(H), but

this action is highly discontinuous (cf. Sec. 9).

It seems that one possible way out of this dilemma is to find suitable C∗-algebras
consisting of operators with a more regular behavior than CCR(H). For interest-

ing recent results in this direction we refer to Georgescu’s work [23]. Another step

in this direction is the construction of a C∗-algebra A for each countably dimen-

sional symplectic space whose representations correspond to those representations

of the corresponding Weyl relations which are continuous on each one-parameter

group ([29]).

8. The Virasoro Algebra and Vector Fields on S1

In this section we discuss invariant cones in the Lie algebra V(S1) of smooth vector

fields on the circle and its (up to isomorphy unique) nontrivial central extension

vir, the Virasoro algebra. For V(S1) we show that, up to sign, there is only one

open invariant convex cone given by vector fields of the form f ∂
∂θ with f > 0.

As is well known on the Lie algebra level, all unitary highest weight representa-

tions of V(S1), resp., the subalgebra of vector fields for which f is a finite Fourier

polynomial, are trivial. On the group level we show the closely related result that

all semibounded unitary representations of Diff(S1)+ are trivial. This is the main

reason for the Virasoro algebra and the corresponding simply connected group

Vir playing a more important role in mathematical physics than Diff(S1)+ itself

(cf. [88, 56, 77]). For vir we prove a convexity theorem for adjoint and coadjoint

orbits which provides complete information on invariant cones and permits us to

determine the momentum sets of the unitary highest weight representations of Vir

and to show that they are semibounded.
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8.1. The invariant cones in V(S1)

We consider S1 as the quotient R/2πZ and identify smooth functions on S1 with the

corresponding 2π-periodic smooth functions on R, where the coordinate is denoted

by θ. Accordingly ∂θ := d
dθ is the vector field generating the rigid rotations of

S1. We write G := Diff(S1)op+ for the group of orientation preserving diffeomor-

phisms endowed with the group structure defined by ϕ · ψ := ψ ◦ ϕ, so that

g = V(S1) = C∞(S1)∂θ is its Lie algebra (cf. Examples 3.2(e)). We represent orien-

tation preserving diffeomorphisms of S1 by smooth functions ϕ:R → R satisfying

ϕ(θ + 2π) = ϕ(θ) + 2π for θ ∈ R and ϕ′ > 0.

In the following it will be convenient to consider the spaces

Fs(S1) := C∞(S1)(dθ)s, s ∈ R,

of s-densities on S1. Here (dθ)s denotes the canonical section of the s-density bundle

of S1 and G acts on Fs(S1) by pullbacks

ϕ∗(u(dθ)s) = (u ◦ ϕ)(ϕ∗dθ)s = (u ◦ ϕ)(ϕ′)s(dθ)s. (16)

The corresponding derived action of the Lie algebra V(S1) is given by the Lie

derivative

Lf∂θ
(u(dθ)s) = (fu′ + sf ′u)(dθ)s. (17)

The space F1 is the space of 1-forms and F−1
∼= V(S1) is the space of vector fields

on which (16) describes the adjoint action. We have equivariant multiplication maps

Fs ×Ft → Fs+t, and an invariant integration map

I:F1 → R, fdθ �→
∫ 2π

0

f(θ) dθ,

which leads to an invariant pairing F−1 × F2 → R, and hence to an equivariant

embedding

F2 ↪→ V(S1)′ = g′.

Its image is called the smooth dual of g. Identifying it with F2, the coadjoint action

of G on g′ corresponds to the natural action on F2.

In view of (16), the adjoint action clearly preserves the open cone

WV(S1) := {f∂θ: f > 0, f ∈ C∞(S1)}

of all vector fields corresponding to positive functions. Since every positive function

f with
∫ 2π

0
f dθ = 2π arises as ϕ′ for some ϕ ∈ G, each G-orbit in WV(S1) intersects

the (maximal) Abelian subalgebra t := R∂θ. We also have a projection map

pt: g → t, f∂θ �→ 1

2π

∫ 2π

0

f(s) ds · ∂θ =

∫

T

Ad(ϕ)(f∂θ) dµT (ϕ),
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where T := exp(t) ∼= T is the group of rigid rotations and µT the normalized Haar

measure on T .

The following lemma provides some fine information on the convex geometry of

adjoint orbits in WV(S1).

Lemma 8.1. The function χ:WV(S1) → R, f∂θ �→ χ(f) := 1
2π

∫ 2π

0
1
f dθ has the

following properties :

(i) It is smooth, G-invariant and strictly convex.

(ii) If the sequence (fn) in WV(S1) converges to f ∈ ∂WV(S1), then χ(fn) → ∞.

(iii) χ(f + g) ≤ χ(f) for f, g ∈ WV(S1).
(iv) For each c > 0, the set Ic := {x ∈ WV(S1):χ(x) ≤ 1

c} is an invariant closed

convex subset of g with lim(Ic) =WV(S1). Its boundary is a single orbit

Oc∂θ
= ∂Ic = Ext(Ic) =

{
f ∈WV(S1):χ(f) =

1

c

}

which coincides with its set of extreme points and satisfies Ic = conv(Oc∂θ
).

(v) pt(Oc∂θ
) = pt(Ic) = [c,∞[·∂θ and the only inverse image of the “minimal

value” c∂θ is the element c∂θ itself.

Proof. (i) The G-invariance of χ follows immediately from the Substitution Rule.

The function χ is convex because inversion is a convex function on R×
+ and integrals

of convex functions are convex. It is smooth because on WV(S1) pointwise inversion

is a smooth operation (since C∞(S1,R) is a real continuous inverse algebra; [24]),

and integration is a continuous linear functional.

To verify that χ is strictly convex, we observe that

(∂hχ)(f) = − 1

2π

∫ 2π

0

h

f2
dθ and (∂2hχ)(f) =

1

π

∫ 2π

0

h2

f3
dθ, (18)

which is positive definite for each f > 0.

(ii) Now we turn to the boundary behavior of χ. Suppose that the sequence

(fn) in WV(S1) tends to a boundary point f ∈ ∂WV(S1). Then f(θ0) = 0 for some

θ0 ∈ [0, 2π[, and f ≥ 0 implies that we also have f ′(θ0) = 0, hence f(θ) ≤ C(θ−θ0)2
in a compact δ-neighborhood U of θ0. Given ε > 0, we eventually have fn ≤
2C(θ − θ0)

2 + ε on U (here we use C2-convergence), and therefore

2πχ(fn) ≥
∫ θ0+δ

θ0−δ

1

fn(θ)
dθ ≥

∫ δ

−δ

1

2Cθ2 + ε
dθ.

Since
∫ δ

−δ
1
θ2 dθ = ∞, the Monotone Convergence Theorem implies that

lim
ε→0

∫ δ

−δ

1

2Cθ2 + ε
dθ = ∞,

and therefore that χ(fn) → ∞. It also follows that
∫ 2π

0
1

f(θ) dθ = ∞.

(iii) If f, g ∈WV(S1), then
1

f+g ≤ 1
f implies the assertion.
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(iv) From (ii) we derive that Ic is closed in g. Its invariance follows from the

invariance of χ and its convexity from the convexity of χ. The boundary of Ic is

a level set of χ, and since every orbit in WV(S1) meets R+∂θ in a unique point

and χ|R×
+∂θ

is injective, it follows that ∂Ic = Oc∂θ
. The fact that χ is strictly

convex further implies that ∂Ic ⊆ Ext(Ic), and since the converse inclusion is trivial,

equality follows.

From (iii) we derive that WV(S1) ⊆ lim(Ic), so that the closedness of lim(Ic)

(Lemma 2.9(i)) implies that WV(S1) ⊆ lim(Ic). Now equality follows from lim(Ic) ⊆
lim(WV(S1)) =WV(S1) (Lemma 2.9(ii)).

To see that Ic coincides with the closed convex hull D := conv(Oc∂θ
), we first

observe that we trivially have D ⊆ Ic. Next we note that ∂θ is contained in the

3-dimensional subalgebra

s := span{1, cos(θ), sin(θ)}∂θ ∼= sl2(R)

corresponding to the action of SL2(R) on P1(R) ∼= S1. In s the element ∂θ corre-

sponds to the matrix

u =

(
0 1

−1 0

)
,

so that Example 6.8 implies that the corresponding group S := 〈exp s〉 ∼= PSL2(R)
satisfies pt(Ad(S)∂θ) = [1,∞[·∂θ (cf. Example 6.12) and from that we derive in

particular that

[c,∞[·∂θ ⊆ pt(Oc∂θ
) ⊆ D, (19)

so that Ic = Ad(G)([c,∞[·∂θ) leads to Ic ⊆ D.

(v) We have already seen in (18) above that (∂hχ)(c) = − 1
2πc2

∫ 2π

0
h dθ, so that

p−1
t (c∂θ) is a tangent hyperplane of the strictly convex set Ic. This implies that c∂θ

is the unique minimum of the linear functional −dχ(c) on Ic and hence that

p−1
t (c∂θ) ∩ Ic = {c∂θ}.
We also conclude that pt(Ic) ⊆ [c,∞[·∂θ, so that (v) follows from (19).

Remark 8.2. The topological dual V(S1)′ of V(S1) = C∞(S1)∂θ naturally identi-

fies with the space of distributions on S1. Then each λ ∈ W �
V(S1) is a distribution

satisfying λ(f) ≥ 0 for f ≥ 0, and this implies that λ extends continuously from

C∞(S1) to the Banach space C(S1) and thus defines a (finite) positive Radon mea-

sure on S1 (cf. [87, Chap. I, Sec. 4, Theorem V]). This shows that the functionals

in W �
V(S1) satisfy a strong regularity condition.

Theorem 8.3. (Classification of open invariant cones in V(S1)) The two open cones

±WV(S1) are the only non-empty proper open invariant cones in V(S1).

Proof. Let C ⊆ V(S1) be a non-empty open invariant cone. Then C is in particular

invariant under the adjoint action of the rotation group T ∼= T, generated by the
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vector field d := ∂θ. Averaging over T , we see that either d or −d is contained in C

(Proposition 2.11), which leads to WV(S1) ⊆ C or −WV(S1) ⊆ C.

Let us assume that WV(S1) ⊆ C. Now we apply the same argument to the dual

cone C� ⊆W �
V(S1) (Proposition 2.11(b)). If C is proper, then C� contains a nonzero

functional λ, and then d ∈ C leads to λ(d) > 0. Averaging over T now leads to a

T -invariant functional λ∗ ∈ C� ⊆W �
V(S1) satisfying λ

∗(d) = λ(d) > 0. We conclude

that λ∗ is a positive multiple of the invariant measure µ = dθ on S1 ∼= R/2πZ
(Remark 8.2), which corresponds to the constant function 1 ∈ F2, so that

Ad∗(ϕ)µ = (ϕ′)2µ

follows from (16). For any f∂θ ∈ C we now find
∫ 2π

0
ψ(θ)2f(θ) dθ ≥ 0 for each posi-

tive function ψ with
∫ 2π

0 ψ(θ) dθ = 2π (these are precisely the functions occurring as

ϕ′ for an orientation preserving diffeomorphism), and this implies the correspond-

ing relation for all non-negative functions ψ with the integral 2π. If f(θ0) < 0, then

we may choose ψ supported by the set {f < 0} and obtain a contradiction. This

proves that C ⊆ WV(S1) and hence that C = WV(S1) because WV(S1) = (WV(S1))
0

(Lemma 2.8).

Proposition 8.4. For λ ∈ V(S1)′ the following are equivalent :

(i) Oλ is semi-equicontinuous.

(ii) inf Oλ(∂θ) > −∞ or supOλ(∂θ) <∞.

(iii) λ ∈W �
V(S1) ∪−W �

V(S1).

In particular, inf Oλ(∂θ) > −∞ implies Oλ(∂θ) ≥ 0.

Proof. We have to verify the assumptions of Lemma 6.15 for d := ∂θ. First,

WV(S1) is the open convex cone generated by the orbit Od. Second, the projection

pt: g → Rd = t is the fixed point projection for the adjoint action of the circle group

T , hence preserves open and closed convex subsets (Proposition 2.11). Finally, we

recall from Lemma 8.1(v) that pt(Od) = [1,∞[d is unbounded. Now the assertion

follows from Lemma 6.15.

Theorem 8.5. The quotient M := G/T of the group G = Diff(S1)+ by the sub-

group T of rigid rotations carries the structure of a complex Fréchet manifold on

which G acts smoothly by holomorphic maps. Here the tangent space Tx0(G/T ) in

the base point x0 = 1T is canonically identified with gC/p, where

p =



f∂θ ∈ C∞(S1,C)∂θ: f =

∞∑

n≤0

ane
inθ, an ∈ C



 .

For each element x ∈WV(S1), the flow onM defined by (t, gT ) �→ exp(tx)gT extends

to a smooth flow on the upper half plane C+ which is holomorphic on C0
+ ×M .
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Proof. The complex structure on M has been discovered by Kirillov and Yuriev

(cf. [44, 46, 78]; see in particular [50] for rigorous arguments concerning the com-

plex Fréchet manifold structure). Complex structures always come in pairs, and

we therefore write M̄ for the same smooth manifold, endowed with the opposite

complex structure.

According to [46], the complex manifold structure on M̄ can be obtained by iden-

tifying it with the space Freg of normalized regular univalent functions f :D → C,
where D is the open unit disc in C. These are the injective holomorphic maps

f :D → C extending smoothly to the closure of D and satisfying f(0) = 0 and

f ′(0) = 1 (cf. [30, Sec. 6.5.6] for a detailed discussion). Here the complex structure

is determined by its action on Tx0(G/T )
∼= TidD(Freg) ∼= g/t:

I[(einθ + e−inθ)∂θ] = [(−ieinθ + ie−inθ)∂θ] for n > 0.

Since each x ∈WV(S1) is conjugate to a multiple of ∂θ, it suffices to assume that

x = ∂θ is the generator of the rigid rotations of S1. In this case the action of the

one-parameter group T = expG(Rx) on Freg is given explicitly by

Rαf = Rα ◦ f ◦R−α, where Rαz = eiαz, α ∈ R

(cf. [30, Proposition 6.5.14]). If Imα ≤ 0, then |e−iα| ≤ 1, so that Rα(D) ⊆ D
implies that Rαf can still be defined as above, is continuous on C− := −C+ and

depends holomorphically on α for Imα < 0. This implies the holomorphic extension

to C− for the complex manifold M̄ . For the manifold M we therefore obtain an

extension to C+.

The holomorphic extension of actions of one-parameter groups on G/T can

be carried much further. As shown by Neretin in [73], one even has a “complex

semigroup” containing G in its boundary which acts on G/T .

Below we shall use the preceding theorem to identify the momentum sets for

the unitary highest weight representations of virC.

Definition 8.6. For the following we recall some algebraic aspects of V(S1). In the

complexification V(S1)C, we consider the elements

dn := ieinθ∂θ, n ∈ Z, (20)

satisfying the commutation relations

[dn, dm] = (n−m)dn+m.

The standard involution on this Lie algebra is given by (f∂θ)
∗ = −f̄∂θ, so that

x∗ = −x describes the elements of V(S1). Note that d∗n = d−n and in particular

d∗0 = d0, so that d0 = i∂θ is a hermitian element (cf. [41, p. 9]).

Theorem 8.7. All semibounded unitary representations of the group Diff(S1)+ are

trivial.
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Proof. Let (π,H) be a semibounded unitary representation of G = Diff(S1)op+ .

Then Wπ �= ∅, and in view of Theorem 8.3, we may w.l.o.g. assume that −∂θ ∈
−WV(S1) ⊆ Wπ, so that the spectrum of the image of d0 := i∂θ ∈ gC under the

derived representation is bounded from below. In view of expG(2πid0) = 1, it is

contained in Z and Proposition 4.11 implies the existence of a smooth unit vector

v ∈ H∞ which is an eigenvector for the minimal eigenvalue h of d0.

Now the relation [d0, dn] = −ndn implies that dn.v = 0 for each n > 0. For

n > 0 we then obtain

〈d−nv, d−nv〉 = 〈d∗−nd−nv, v〉 = 〈dnd−nv, v〉 = 〈[dn, d−n]v, v〉
= 2n〈d0v, v〉 = 2nh.

This implies in particular that h ≥ 0 and that h = 0 implies dnv = 0 for each

n ∈ Z. Now an easy direct calculation leads to

0 ≤ det

(〈d−2nv, d−2nv〉 〈d2−nv, d−2nv〉
〈d−2nv, d

2
−nv〉 〈d2−nv, d

2
−nv〉

)
= 4n3h2(8h− 5n)

([41, p. 90]; see also [26]). If h �= 0, this expression is negative for sufficiently large

n, so that we must have h = 0. This means that g.v = {0}, and hence that v ∈ HG

is a fixed vector (cf. [66, Remark II.3.7]).

The preceding argument implies that each semibounded unitary representation

(π,H) of G on a nonzero Hilbert space satisfies HG �= {0}. Applying this to the

representation on the invariant subspace (HG)⊥, which is also semibounded, we

find that this space is trivial, and hence that H = HG, i.e. the representation is

trivial.

Remark 8.8. A smooth unitary representation (π,H) of Diff(S1)+ is said to be a

positive energy representation if the operator −idπ(∂θ) has non-negative spectrum.

This means that ∂θ ∈ I�π, so thatWV(S1) ⊆ I�π leads toWV(S1) ⊆ Cπ , and therefore π

is semibounded. Hence the preceding theorem implies in particular that all positive

energy representations of Diff(S1)+ are trivial.

Problem 8.9. It would be nice to have an analog of Theorem 8.7 for the universal

covering group G̃ of G = Diff(S1)+, which has the fundamental group π1(G) = Z.
Then ∂θ generates a subgroup T̃ ⊆ G̃ isomorphic to R. Since this group is non-

compact, we cannot expect it to have eigenvectors, so that the argument in the proof

of Theorem 8.7 does not apply.

What we would need in this context is a suitable direct integral decomposition

with respect to the subgroup Z := Z(G̃) ∼= Z. If (π,H) is a semibounded represen-

tation of G̃ with π(Z) ⊆ T1, i.e. π has a central character (which is a consequence

of Schur’s Lemma if π is irreducible), then Spec(dπ(d0)) ⊆ λ + Z for some λ ∈ R,
and the argument from above applies. This proves that all irreducible semibounded

representations of G̃ are trivial.

We expect that a general semibounded representation of G̃ has a direct integral

decomposition H ∼=
∫ ⊕

bZ
Hχ dµ(χ) with respect to some measure µ on Ẑ ∼= T and
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that the semiboundedness of π implies that all representations πχ on the spaces Hχ

with central character χ are semibounded, hence trivial, and this would imply that

all semibounded representations of G̃ are trivial.

8.2. Invariant cones in the Virasoro algebra

In the analytic context, the Virasoro algebra is usually defined as the central exten-

sion vir = R⊕ωGF V(S1) defined by the Gelfand–Fuchs cocycle

ωGF(f∂θ, g∂θ) :=

∫ 2π

0

f ′g′′ dθ =
1

2

∫ 2π

0

f ′g′′ − f ′′g′ dθ =
∫ 2π

0

f ′′′g dθ. (21)

In many situations, the cohomologous cocycle

ω(f∂θ, g∂θ) :=

∫ 2π

0

(f ′′′ + f ′)g dθ = ωGF(f∂θ, g∂θ)−
1

2

∫ 2π

0

fg′ − f ′g dθ

= ωGF(f∂θ, g∂θ)−
1

2
λ([f∂θ, g∂θ]), (22)

with λ(f∂θ) =
∫ 2π

0
f dθ, turns out to be more convenient.

Remark 8.10. On the generators dn = ieinθ∂θ ∈ V(S1)C from (20) we have

ω(dn, d−n) = 2πi(n3 − n). (23)

With the central element ĉ := (24πi, 0) ∈ i vir ⊆ virC, we thus obtain the relation

[dn, dm] = (n−m)dn+m + δn,−m
n3 − n

12
ĉ

if we identify dn with the corresponding element (0, dn) ∈ virC ([41, p. 9]).

Since we shall need them in the following, we record some related formulas. First

we observe that

t := Rc+ Rd with c := (1, 0), d := (0, ∂θ) (24)

is a maximal Abelian subalgebra of vir. The relation [d0, dn] = −ndn implies that

dn ∈ virC is a root vector for the root αn ∈ t∗C defined by

αn(ĉ) = 0 and αn(d0) = −n.
In particular,

αn([dn, d
∗
n]) = αn([dn, d−n]) = 2nαn(d0) = −2n2 < 0 for n �= 0. (25)

We also observe that

[d∗n, dn] = [d−n, dn] = (ω(d−n, dn),−2nd0) = −i(2π(n3 − n), 2n∂θ)

= −2in(π(n2 − 1), ∂θ). (26)

In view of the G-invariant pairing of the space F2 of 2-densities with vector

fields, the 1-cocycle g → g′, x �→ ixω corresponds to the 1-cocycle

g → F2, f∂θ �→ (f ′′′ + f ′)(dθ)2.
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To obtain a formula for the adjoint action of G = Diff(S1)op+ on vir, we therefore

need a group cocycle G→ F2 integrating this 1-cocycle (Remark 3.3).

Definition 8.11. The Schwarzian derivative

S(ϕ) :=
ϕ′ϕ′′′ − 3

2 (ϕ
′′)2

(ϕ′)2
=
ϕ′′′

ϕ′ − 3

2

(
ϕ′′

ϕ′

)2

assigns to ϕ ∈ G a 2π-periodic smooth function. It satisfies the cocycle identity

S(ϕ ◦ ψ) = (S(ϕ) ◦ ψ) · (ψ′)2 + S(ψ)

(cf. [78]), which means that it defines an F2-valued 1-cocycle on G.

We easily derive that Tid(S)(f) = f ′′′, and therefore the modified Schwarzian

derivative

S̃(ϕ) := S(ϕ) +
1

2
((ϕ′)2 − 1) = S(ϕ) + ϕ.

1

2
− 1

2

is a cohomologous 1-cocycle with Tid(S̃)(f) = f ′′′ + f ′ (cf. [88, Sec. 7]). Therefore
Remark 3.3 implies that the coadjoint action of G on the smooth dual R × F2

∼=
R× C∞(S1) of vir is given by

Ad∗
ϕ(a, u) = (a, (u ◦ ϕ)(ϕ′)2 − aS̃(ϕ)), (27)

whereas, in view of (16), the adjoint action on vir = R⊕ω V(S1) ∼= R× C∞(S1) is
given by

Adϕ(z, f) =

(
z −
∫ 2π

0

fS̃(ϕ−1) dθ, (f ◦ ϕ) · (ϕ′)−1

)
.

We are especially interested in the adjoint action on the open convex cone

Wmax := {(z, f) ∈ vir : f > 0},
which is the inverse image of the positive invariant cone WV(S1) ⊆ V(S1) under the
quotient map vir → V(S1), (z, f) �→ f . From the corresponding results for WV(S1),
we derive immediately that each orbit in Wmax intersects t.

Proposition 8.12. For each (z, f) ∈ Wmax, the G-orbit of (z, f) meets t in a

unique element (β(z, f), α(z, f)), given by

α(z, f) :=
1

χ(f)
and β(z, f) := z −

∫ 2π

0

(f ′)2

2f
dθ +

1

2

∫ 2π

0

f dθ − π

χ(f)
.

For G = Diff(S1)+ and T = exp(R∂θ), the orbit map induces a diffeomorphism

Γ:G/T × (Wmax ∩ t) →Wmax, (ϕT, (β, α)) �→ Adϕ(β, α).

Proof. Let (z, f) ∈ Wmax and assume that Adϕ−1(z, f) = (β, α) ∈ t, i.e.

(β, α) =

(
z −
∫ 2π

0

fS̃(ϕ) dθ, (f · ϕ′) ◦ ϕ−1

)
.
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Then ϕ′ = α
f leads to ϕ′′ = −α f ′

f2 and

ϕ′′′ = −αf
′′

f2
+ 2α

(f ′)2

f3
=

α

f3
(2(f ′)2 − ff ′′).

This leads to

S(ϕ) =
ϕ′′′

ϕ′ − 3

2

(
ϕ′′

ϕ′

)2

=
1

f2
(2(f ′)2 − ff ′′)− 3

2

(f ′)2

f2
=

1

2f2
((f ′)2 − 2ff ′′)

=
(f ′)2

2f2
− f ′′

f
,

so that we obtain with
∫ 2π

0
f ′′ dθ = f ′(2π)− f ′(0) = 0 the relation
∫ 2π

0

fS(ϕ) dθ =

∫ 2π

0

(f ′)2

2f
dθ.

Next we use ϕ′ = α
f to obtain

1

2

∫ 2π

0

f((ϕ′)2 − 1) dθ =
1

2

∫ 2π

0

αϕ′ − f dθ = πα− 1

2

∫ 2π

0

f dθ.

Combining all that, we get

β = z −
∫ 2π

0

(f ′)2

2f
dθ +

1

2

∫ 2π

0

f dθ − πα.

We also obtain from ϕ′ = α
f the relation χ(f) = 1

2π

∫ 2π

0
1
f dθ =

1
α , so that α = 1

χ(f) .

This proves the first assertion.

Since T fixes the subalgebra t pointwise, Γ is a well-defined smooth map. As a

manifold, we may identify G/T with the set

{ϕ′:ϕ ∈ G} =

{
h ∈ C∞(S1):h > 0,

∫ 2π

0

h dθ = 2π

}
.

As we have seen above, the inverse of Γ is given by

Γ−1(z, f) = (ϕ, (β(z, f), α(z, f))),

where ϕ′ = α
f = 1

fχ(f) , and this map is also smooth. Therefore Γ is a diffeomor-

phism.

The function β is rather complicated, but it can be analyzed to some extent

as follows. First we observe that for the probability measure µ = 1
2π dθ Jensen’s

inequality and the convexity of the function 1
x on the positive half line imply that

1∫ 2π

0
f dµ

≤
∫ 2π

0

1

f
dµ = χ(f) =

1

α
,

which implies that
∫ 2π

0
f dθ ≥ 2πα. Therefore the sign of β(0, f) is not clear at all,

but we shall see below that β(0, f) ≤ 0.

Lemma 8.13. The function β is concave.
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Proof. To show that β is concave, we have to verify that ∂2hβ ≤ 0 in each point of

Wmax. Since β is Ad(G)-invariant and each orbit meets t, it suffices to verify this

at points (z, f), where f is constant, so that

(∂2hβ)(z, f) = −f−1

∫ 2π

0

(h′)2 dθ − π∂2h(χ
−1)(f).

Further,

∂h(χ
−1) = −χ−2∂hχ and ∂2h(χ

−1) = −χ−2(∂2hχ) + 2χ−3(∂hχ)
2,

so that we obtain with χ(f) = f−1 (f is constant) and the formulas (18) in the

proof of Lemma 8.1 the relations

(∂hχ)(f) = − 1

2πf2

∫ 2π

0

h dθ and (∂2hχ)(f) =
1

πf3

∫ 2π

0

h2 dθ.

This leads further to

∂2h(χ
−1)(f) = − f2

πf3

∫ 2π

0

h2 dθ + 2f3 1

4π2f4

(∫ 2π

0

h dθ

)2

=
1

πf

(
−
∫ 2π

0

h2 dθ +
1

2π

(∫ 2π

0

h dθ

)2
)
.

Putting everything together, we arrive at

f · (∂2hβ)(z, f) = −
∫ 2π

0

(h′)2 dθ +
∫ 2π

0

h2 dθ − 1

2π

(∫ 2π

0

h dθ

)2

.

We thus obtain a rotation invariant quadratic form on C∞(S1), so that it is diagonal
with respect to Fourier expansion. Evaluating it in the basis functions cos(nθ) and

sin(nθ) immediately shows that it is negative semidefinite.

Theorem 8.14. (Convexity Theorem for adjoint orbits of vir) For each x ∈
Rc+ R+∂θ ⊆ t, we have

pt(Ox) ⊆ x+ C+ for C+ := R+c+ R+∂θ.

If x is not central, then we even have the equality

pt(conv(Ox)) = x+ C+.

Proof. By continuity of the projection pt, it suffices to assume that x = (β0, α0)

with a constant α0 > 0, so that x ∈ Wmax ∩ t. Then α(x) = α0 and β(x) =

β0. Further, pt(Ox) ⊆ conv(Ox) (Proposition 2.11), so that the convexity of the

functions χ = α−1 and −β (Lemma 8.13) implies that for (β̃, α̃) ∈ pt(Ox), we have

α̃ ≥ α0 and β̃ ≥ β0.

This means that pt(Ox) ⊆ x+ C+.
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Now we assume that x = βc+ α∂θ with α > 0. In view of (25) in Remark 8.10,

Proposition C.3 implies that

pt(Ox) ⊇ x+ R+αn(x)[d
∗
n, dn] = x+ R+αn(−ix)i[d∗n, dn].

Further d0 = i∂θ leads to αn(−ix) > 0, so that

pt(Ox) ⊇ x+ R+i[d∗n, dn], n ∈ N.

Next we recall from (26) that

i[d∗n, dn] = 2n(π(n2 − 1), ∂θ) = 2n(π(n2 − 1)c+ d).

For n = 1 we obtain 2(0, ∂θ), and for n → ∞ we have positive multiples of

(1, 1
π(n2−1)∂θ) → c, so that the closed convex cone generated by the elements

i[d∗n, dn] is C+ = R+c+ R+d. This proves that

pt(conv(Ox)) = conv(Ox) ∩ t ⊇ x+ C+,

and our proof is complete.

Note that the following theorem cannot be derived from the “general”

Lemma 6.15 because t is two-dimensional.

Theorem 8.15. (Classification of open invariant cones in vir) The following state-

ments classify the open invariant convex cones in vir :

(i) Each proper open invariant convex cone in vir is either contained in Wmax or

−Wmax.

(ii) Each proper open invariant convex cone W ⊆ vir is uniquely determined by

C :=W ∩ t via W = Ad(G)C.

(iii) Let Cmax :=Wmax ∩ t. Then an open convex cone C ⊆ Cmax is the trace of an

invariant open convex cone if and only if C0
+ ⊆ C.

(iv) If Wmin is the open invariant cone corresponding to Cmin := C0
+, then each

open invariant convex cone W ⊆Wmax contains Wmin.

(v) An open invariant convex cone W is pointed if and only if C is pointed. In

particular, Wmin is pointed.

Proof. (i) Let W ⊆ vir be an open invariant convex cone. If z(vir) ∩W = ∅, then
z(vir)+W is a proper cone, and therefore its image in V(S1) is contained in WV(S1)
or −WV(S1), so that W ⊆ Wmax or W ⊆ −Wmax (Theorem 8.3). To verify (i), we

therefore have to show that c �∈ C := W ∩ t. Suppose the converse. Then there

exists an ε > 0 with x± := c± ε∂θ ∈ C. From Theorem 8.14 we derive that

pt(conv(Ox+)) = x+ + C+,

and, applying it also to −x−, we find that

pt(conv(Ox−)) = x− − C+.
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Since both sets are contained in C, we see that ±C+ ⊆ lim(C) = lim(C)

(Lemma 2.9), so that lim(C) = t, and thus 0 ∈ C = t. As W is open, 0 ∈ W

leads to W = vir.

(ii) follows from (i) and Proposition 8.12.

(iii) If C =W ∩ t for an invariant open convex cone W , then C ⊆ Cmax implies

that C ∩ z(vir) = {0}. Therefore we have for x ∈ C the relation

pt(conv(Ox)) = x+ C+ ⊆ C,

and thus C+ ⊆ lim(C) = C, which in turn yields C0
+ ⊆ C.

If, conversely, C0
+ ⊆ C holds for an open convex cone C ⊆ Cmax, then C+ ⊆

lim(C) = C leads for each x ∈ C to

pt(Ox) ⊆ x+ C+ ⊆ C.

Therefore

WC := {x ∈ vir : pt(Ox) ⊆ C} =
⋂

ϕ∈G

ϕ · p−1
t (C)

is a convex invariant cone containing the subset Ad(G)C which is open by

Proposition 8.12. HenceW 0
C is an open invariant convex cone satisfyingW 0

C∩t = C.

(iv) follows immediately from (iii).

(v) If W is pointed, i.e. it contains no affine lines, then the same holds for

C := W ∩ t. If, conversely, C contains no affine lines, then H(W ) is a closed

ideal of vir intersecting t trivially. Hence it is contained in [t, vir] and H(W )C is

adapted to the root decomposition with respect to tC. If it contains dn, then its

∗-invariance implies that it also contains d∗n = d−n, which leads to the contradiction

[dn, d−n] ∈ H(W )C. This implies that H(W ) = {0}, so that W is pointed.

As a consequence of the preceding theorem, the cones Wmin, resp., Wmax play

the role of a minimal, resp., maximal open invariant cone in vir. The existence

of minimal and maximal invariant cones is a well-known phenomenon for finite

dimensional hermitian Lie algebras (cf. [105] and Proposition 6.16).

Corollary 8.16. The smallest closed convex invariant cone in vir containing ∂θ is

the closure of Wmin.

Proof. If D ⊆ vir is a closed convex invariant cone, then ∂θ ∈ D implies that

∂θ + C+ ⊆ D (Theorem 8.14), so that C+ ⊆ D (Lemma 2.9), and thus Wmin ⊆ D

by invariance.

Remark 8.17. In view of the preceding theorem, the open invariant convex cones

in vir can be classified as follows. Since the closure of the cone C contains C+ =

R+c+R+∂θ and is contained in Cmax = Rc+R+∂θ, we have C = R+c+R+(∂θ−αc)
for some α > 0 whenever C �= Cmin, Cmax.
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8.3. Semi-equicontinuity of coadjoint orbits of vir′

In this final section on the Virasoro algebra we apply the detailed results on invari-

ant cones to semibounded representations and semi-equicontinuous coadjoint orbits.

In particular, we show that the set g′seq of semi-equicontinuous coadjoint orbits

coincides with the double cone W �
min ∪ −W �

min. This in turn is used to show that

the unitary highest weight representations of the Virasoro group are precisely the

irreducible semibounded representations and to determine their momentum sets.

Proposition 8.18. For λ ∈ vir′ and d = (0, ∂θ), the following are equivalent :

(i) Oλ is semi-equicontinuous.

(ii) The convex cone B(Oλ) contains Wmax or −Wmax.

(iii) Oλ(d) = λ(Od) is bounded from below or above.

(iv) λ ∈W �
min ∪ −W �

min.

(v) Oλ(d) ≥ 0 or λ(Od) ≤ 0.

Proof. (i) ⇒ (ii): If Oλ is semi-equicontinuous, then the invariant convex cone

B(Oλ) has interior points and contains z(vir). Therefore B(Oλ)
0/z(vir) is an open

invariant convex cone in V(S1), hence contains WV(S1) or −WV(S1) (Theorem 8.3).

This in turn implies that B(Oλ) contains either Wmax or −Wmax.

(ii) ⇒ (i) follows from Proposition 2.2 because vir is a Fréchet space.

(ii) ⇒ (iii) follows from d ∈ Wmax.

(iii) ⇒ (ii) follows from Rc ⊆ B(Oλ) and Wmax = Ad(G)(Rc + R×
+d)

(Proposition 8.12).

(i) ⇒ (iv): If λ(c) = 0, then Oλ can be identified with a semi-

equicontinuous coadjoint orbit of V(S1), so that Proposition 8.4 implies that λ ∈
W �

V(S1) ∪ −W �
V(S1) in V(S1)′, which means that λ ∈W �

max ∪ −W �
max in vir′.

If λ(c) �= 0, then Oλ is contained in the closed invariant hyperplane λ+ c⊥, so
that the construction in Remark 2.6 implies that the cone O�

λ has interior points.

Clearly, this cone is proper, so that Theorem 8.15 implies that it either contains

Wmin or −Wmin, which in turn leads to λ ∈W �
min ∪ −W �

min.

(iv) ⇒ (i): Since ±Wmin are open invariant cones, their duals are semi-

equicontinuous sets (Example 2.5(b)).

(iv) ⇔ (v): Since the closed convex invariant cone generated by d is Wmin

(Corollary 8.16), Oλ(d) ≥ 0 is equivalent to λ ∈ W �
min.

For any λ ∈ t∗ ∼= [t, g]⊥ ⊆ g′, the fact that Oλ is constant on the central element

c = (1, 0) implies that pt∗(Oλ) ⊆ t∗ is a connected subset of the affine line

{µ ∈ t∗:µ(c) = λ(c)} = λ+ (t∗ ∩ c⊥).

In particular, this set is convex.
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Proposition 8.19. If λ ∈ t∗, then

(a) Oλ(d) is bounded from below if and only if λ(d) ≥ 0 and λ(c) ≥ 0. If this is the

case and λ �= 0, then

B(Oλ)
0 =Wmax and Wmin ⊆ O�

λ.

(b) pt∗(Oλ) is contained in an affine half-line if and only if Oλ is semi-

equicontinuous if and only if λ(c)λ(d) ≥ 0.

Proof. (a) We recall from Theorem 8.14 that pt(conv(Od)) = d+C+. This implies

that λ(Od) is bounded from below if and only if λ ∈ (C+)
�, i.e. λ(c), λ(d) ≥ 0.

Suppose that these conditions are satisfied and that λ �= 0. Then B(Oλ)
0

is a proper open invariant cone, hence determined by its intersection with t

(Theorem 8.15). As this intersection contains d and is invariant under transla-

tion with Rc, Theorem 8.15 implies that it coincides with Cmax. This proves that

Wmax = B(Oλ)
0. We have already seen above that λ ∈ C�

+ and since pt∗(Oλ) is a

half-line constant on c and bounded below on d, it follows that C+ ⊆ O�
λ, which

leads to Wmin ⊆ O�
λ.

(b) We use Proposition C.3 to obtain with the notation of Remark 8.10

pt∗(Oλ) ⊇ λ+ R+λ([d∗n, dn])αn.

We also know that i[d∗n, dn] = 2n(π(n2 − 1), ∂θ), so that, for each n ∈ N,

pt∗(Oλ) ⊇ λ− R+λ(π(n2 − 1), ∂θ)iαn = λ− R+λ(π(n2 − 1), ∂θ)iα1.

If pt∗(Oλ) is contained in a half-line, the signs of the numbers

λ(π(n2 − 1), ∂θ), n ∈ N,

have to coincide, which is equivalent to λ(d)λ(c) ≥ 0. If, conversely, this condition is

satisfied, then (a) implies that Oλ(d) is semibounded, so that pt∗(Oλ) is contained

in an affine half-line.

Definition 8.20. We write Vir for the (up to isomorphism unique) simply con-

nected Lie group with Lie algeba vir.

A unitary representation (π,H) of Vir is called a highest weight representation if

there exists a smooth cyclic vector 0 �= v ∈ H∞ which is a t-eigenvector annihilated

by each dn, n > 0. Then the corresponding eigenfunctional λ ∈ it∗ is called the

highest weight and v a highest weight vector.

Theorem 8.21. If (πλ,Hλ) is a unitary highest weight representation of the simply

connected Lie group Vir with Lie algebra vir of highest weight λ ∈ it∗, then

λ(d0) ≥ 0 and λ(ĉ) ≥ 0, (28)
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i.e. iλ(∂θ) ≥ 0 and iλ(c) ≥ 0. The representation (πλ,Hλ) is semibounded and its

momentum set is given by

Iπλ
= conv(O−iλ).

For λ �= 0 we have

−Wmax =Wπλ
and −Wmin ⊆ Cπλ

.

Proof. First we use [41, Proposition 3.5] to see that the unitarity of the irreducible

highest weight module L(λ) of virC with highest weight λ ∈ it∗ implies (28). Actu-

ally, this follows from the simple observation that if vλ is a highest weight vector

of unit length, then

0 ≤ 〈d−nvλ, d−nvλ〉 = 〈d∗−nd−nvλ, vλ〉 = 〈[d∗−n, d−n]vλ, vλ〉

= λ([dn, d−n]) = λ

(
2nd0 +

n3 − n

12
ĉ

)
≥ 0

holds for each n ∈ N.
The existence of a corresponding continuous unitary highest weight represen-

tation (πλ,Hλ) of the simply connected Lie group Vir with Lie algebra vir has

been shown by Goodman and Wallach [28]. A more general method of integration

which applies in particular to highest weight modules of Vir has been developed by

Toledano Laredo ([101, Theorem 6.1.1]). It is based on techniques related to regular

Lie groups, and [101, Corollary 4.2.2] implies in particular that the highest weight

vector vλ is smooth. This vector is an eigenvector for the closed subalgebra of virC
generated by tC and dn, n > 0.

Next we recall from Theorem 8.5 the complex manifold

M = Diff(S1)+/ exp(R∂θ) ∼= Vir/T,

where T := exp t ⊆ Vir is the subgroup corresponding to t. Since the tangent space

in the base point x0 = 1T can be identified with virC /p, p := tC +
∑

n<0 Cdn,
Theorem 5.11 implies that the map

η:M → P(H′
λ), gT �→ [π∗

λ(g)αvλ ]

is holomorphic. As vλ is cyclic, we thus obtain a realization of the unitary represen-

tation (πλ,Hλ) in the space of holomorphic sections of the holomorphic line bundle

η∗LH′
λ
over M (cf. Theorem 5.11).a

From the highest weight structure of Hλ it follows that the set of tC-weights on
Hλ is given by λ−N0α1, so that idπλ(∂θ) = dπλ(d0) is bounded from below. There-

fore the cone Cmax from the Classification Theorem 8.15 satisfies −Cmax ⊆ Wπλ
,

which immediately leads to −Wmax ⊆ Wπλ
. Since ∂θ �∈ Wπλ

, this cone is proper,

aAn infinitesimal version of this construction can already be found in [47] and [45] contains various
formal aspects of the realization of the highest weight representations in spaces of holomorphic
functions, resp., sections of holomorphic line bundles on M .
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and the Classification Theorem thus implies the equalityWπλ
= −Wmax. With this

information we now apply Theorem 5.7 to determine the precise momentum set.

From Theorem 8.5 it now follows that, for each x ∈ Wmax = −Wπλ
= Wπ∗

λ
,

the smooth action of the corresponding one-parameter group on M extends to a

holomorphic action of C+. Therefore Theorem 5.11(c) implies that Iπλ
is the closed

convex hull of the coadjoint orbit Φπλ
(G[vλ]). In view of Φπλ

([vλ]) = −iλ ∈ t∗ ⊆
vir′, this proves that Iπλ

= conv(O−iλ). Now

Cπλ
= (I�πλ

)0 = (O�
−iλ)

0 ⊇ −Wmin

follows directly from Proposition 8.19, and since Wmin has interior points, (πλ,Hλ)

is semibounded.

For more details on the classification of unitary highest weight modules of vir, we

refer to [41]. We conclude this section with the following converse of Theorem 8.21:

Theorem 8.22. Every irreducible semibounded representation (π,H) of Vir is

either a highest weight representation or the dual of a highest weight representation.

Proof. We assume that the representation π is nontrivial, so that Iπ �= {0}. Let
pt∗ : vir

′ → t∗ be the restriction map. If pt∗(Iπ) = {0}, then t ⊆ I⊥π = kerdπ and

thus vir = t+ [t, vir] ⊆ ker dπ, contradicting the nontriviality of the representation.

Next we use Proposition 2.11 to conclude that {0} �= pt∗(Iπ) ⊆ Iπ . Then each

nonzero λ ∈ t∗∩Iπ has a semi-equicontinuous orbit, so that Oλ(d) is bounded from

below or above, and in this case B(Oλ)
0 = Wmax or −Wmax (Proposition 8.19).

This implies in particular that Wπ �= vir, i.e. π is not bounded.

As the open invariant cone Wπ is proper, Theorem 8.15(i) implies that Wπ is

either contained in Wmax or −Wmax. We assume the latter and claim that π is a

highest weight representation. In the other case, Wπ∗ = −Wπ ⊆ −Wmax, so that π

is the dual of a highest weight representation.

First we note that Wπ ⊆ −Wmax implies −Wmin ⊆ Wπ . As c ∈ H(Wπ) fol-

lows from dπ(c) ∈ iR1 (Schur’s Lemma), we obtain the relation Rc−Wmin ⊆Wπ ,

and therefore Wmax = Wmin + Rc leads to Wπ = −Wmax � −d. Hence the spec-

trum of idπ(d) = dπ(d0) is bounded from below. In view of exp(2πd) ∈ Z(Vir),

Proposition 4.11 implies the existence of a smooth unit vector v ∈ H∞ which is

an eigenvector for the minimal eigenvalue h of idπ(d). Then t = Rc + Rd, v is a

t-eigenvector and [d0, dn] = −ndn implies that dn.v = 0 for each n > 0. Therefore

(π,H) is a highest weight representation.

9. Symplectic Group and Metaplectic Representation

In this section we study the metaplectic representation (πs, S(H)) of the central

extension Ŝpres(H) of Spres(H) on the symmetric Fock space S(H). This repre-

sentation arises from self-intertwining operators of the Fock representation of the
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Heisenberg group Heis(H). We show that it is semibounded and determine the cor-

responding cone Wπs . For the larger central extension ĤSpres(H) of H� Spres(H),

the representation on S(H) is irreducible and semibounded and we show that its

momentum set is the weak-∗-closed convex hull of a single coadjoint orbit.

9.1. The metaplectic representation

On the dense subspace S(H)0 =
∑∞

n=0 S
n(H) of the symmetric Fock space S(H)

(cf. Appendix D) we have for each f ∈ H the creation operator

a∗(f)(f1 ∨ · · · ∨ fn) := f ∨ f1 ∨ · · · ∨ fn.

This operator has an adjoint a(f) on S(H)0, given by

a(f)Ω = 0, a(f)(f1 ∨ · · · ∨ fn) =
n∑

j=0

〈fj , f〉f1 ∨ · · · ∨ f̂j ∨ · · · ∨ fn,

where f̂j means omitting the factor fj. Note that a(f) defines a derivation on

the algebra S(H)0. One easily verifies that these operators satisfy the canonical

commutation relations (CCR):

[a(f), a(g)] = 0, [a(f), a∗(g)] = 〈g, f〉1. (29)

For each f ∈ H, the operator a(f) + a∗(f) on S(H)0 is essentially self-adjoint

([77, p. 70]), so that

W (f) := e
i√
2
a(f)+a∗(f) ∈ U(H)

is a unitary operator. These operators satisfy the Weyl relations

W (f)W (f ′) =W (f + f ′)e
i
2 Im〈f,f ′〉, f, f ′ ∈ H.

For the Heisenberg group

Heis(H) := R×H,

with the multiplication

(t, v)(t′, v′) :=

(
t+ t′ +

1

2
ω(v, v′), v + v′

)
, ω(v, v′) := Im〈v, v′〉

we thus obtain by W (t, f) := eitW (f) a unitary representation on S(H),

called the Fock representation. It is a continuous irreducible representation ( [77,

Corollary 3.11]). That it actually is smooth follows from the smoothness of

〈W (t, f)Ω,Ω〉 = eit−
1
4‖f‖2

(30)

and Theorem A.3.

Definition 9.1. The symplectic group Sp(H) acts via g.(t, v) := (t, gv) by auto-

morphism on the Heisenberg group, and since the unitary representation (W,S(H))
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is irreducible, there exists for each g ∈ Sp(H), up to multiplication with T, at most

one unitary operator πs(g) ∈ U(S(H)) with

πs(g)W (t, f)πs(g)
∗ =W (t, gf) for t ∈ R, f ∈ H. (31)

According to [96], such an operator exists if and only if g ∈ Spres(H) (cf. Exam-

ple 3.2(d)), which immediately leads to a projective unitary representation

πs: Spres(H) → PU(S(H)),

determined by (31) for any lift πs(g) ∈ U(S(H)) of πs(g). Writing u for the image

of u ∈ U(H) in the projective unitary group PU(H), the corresponding pull-back

Ŝpres(H) := π∗
sU(S(H)) = {(g, u) ∈ Spres(H)×U(S(H)): u = πs(g)}

is called the metaplectic group. It is a central extension of Spres(H) by T. We

shall see below that this group is a Lie group and that its canonical representation

πs(g, u) = u on S(H), the metaplectic representation, is smooth and semibounded.

Our strategy is to use Theorem A.4, which requires a suitable lift of πs.

Remark 9.2. From the relation dW (f) = i√
2
(a(f) + a∗(f)), we recover the anti-

linear and linear part of dW by

a(f) =
1

i
√
2
(dW (f) + idW (If)), a∗(f) =

1

i
√
2
(dW (f)− idW (If)),

so that by (31)

πs(g)a(f)πs(g)
−1 =

1

i
√
2
(dW (gf) + idW (gIf)) = a(g1f) + a∗(g2f) =: ag(f),

where g = g1 + g2 is the decomposition into linear and antilinear parts.

Theorem 9.3. The topological group Ŝpres(H) is a Lie group and the metaplectic

representation is smooth. A Lie algebra cocycle η defining ŝpres(H) as an extension

of spres(H) by R is given by

η(x, y) =
1

2i
tr([x2, y2]),

where x2 denotes the antilinear component of x.

Proof. Step 1. We consider the unbounded operators a(f) and a∗(f) on S(H)0 ⊆
S(H) and observe that CΩ is the common kernel of the annihilation operators a(f).

For g ∈ Spres(H), we observe that πs(g)Ω lies in the common kernel of the operators

ag(f) = πs(g)a(f)πs(g)
−1 (cf. Remark 9.2). If g1 is invertible, which is the case in

some open 1-neighborhood in Spres(H) (actually on the whole group), we consider

the antilinear operator T (g) := g2g
−1
1 for which ag(g

−1
1 f) = a(f) + a∗(T (g)f).

Therefore F = πs(g)Ω is a solution of the following system of equations:

a(f)F = −a∗(T (g)f)F for f ∈ H. (32)
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Step 2. For each n ∈ N, the subset a∗(H)Sn(H) is total in Sn+1(H), which

implies that

{T ∈ Sn+1(H): (∀ f ∈ H) a(f)T = 0} = {0}. (33)

If an element F =
∑∞

n=0 Fn ∈ S(H) with Fn ∈ Sn(H) satisfies (32), then

a(f)F1 = 0, a(f)Fn+1 = −a∗(T (g)f)Fn−1 for f ∈ H, n ∈ N. (34)

This implies F1 = 0, and inductively we obtain with (33) F2k+1 = 0 for k ∈ N0.

We also derive from (33) that F is completely determined by F0, hence that the

solution space of (32) is at most one-dimensional.

If F is a solution, we may w.l.o.g. assume that F0 = Ω. Then F2 satisfies

a(f)F2 = −a∗(T (g)f)Ω = −T (g)f, f ∈ H,

i.e. F2 = −T̂ (g) (Lemma D.3). This observation implies Shale’s result that only for

g ∈ Spres(H), i.e. ‖g2‖2 <∞, Eq. (31) has a solution πs(g) ∈ U(S(H)).

Step 3. Combining Lemma D.3(i) with Remark D.2, we conclude that the

exponential series e−T̂ (g) converges in S(H) for ‖T (g)‖2 < 1, which holds on an

open 1-neighborhood in Spres(H). Since the operators a(f) act as derivations on

S(H)0, it follows that

a(f)e−T̂ (g) = −a(f)T̂ (g) ∨ e−T̂ (g) = −T (g)f ∨ e−T̂ (g) = −a∗(T (g)f)e−T̂ (g),

so that e−T̂ (g) satisfies (32). We conclude that

πs(g)Ω = c(g)e−T̂ (g), c(g) ∈ C×. (35)

Choosing the operators πs(g), g ∈ Spres(H), in such a way that

c(g) = 〈Ωg,Ω〉 = 〈πs(g)Ω,Ω〉 > 0,

it follows that c(g) = ‖e−T̂ (g)‖−1 (cf. [77, p. 97]).

Step 4. Since the map g �→ T (g) = g2g
−1
1 is smooth in an identity neighborhood

and the map

{A ∈ p2: ‖A‖2 < 1} → S(H), A �→ e
bA

is analytic (cf. Remark D.2 and the proof of Lemma 6.6(v) for p2), hence in partic-

ular smooth, it follows that e−T̂ (g) and hence also c(g) are smooth in an identity

neighborhood of Spres(H).

From 〈πs(g)∗Ω,Ω〉 = 〈Ω, πs(g)Ω〉 > 0 we further obtain πs(g)
∗ = πs(g

−1). This

implies that the map

(g, h) �→ 〈πs(g)πs(h)Ω,Ω〉 = 〈πs(h)Ω, πs(g)∗Ω〉 = 〈πs(h)Ω, πs(g−1)Ω〉
is smooth in an identity neighborhood. Now TheoremA.4 implies that Ŝpres(H) is a

Lie group and that Ω is a smooth vector for the corresponding unitary representa-

tion, also denoted πs. Since Spres(H) acts smoothly on Heis(H), the space S(H)∞
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of smooth vectors is invariant under Heis(H), so that the irreducibility of the Fock

representation of Heis(H) on S(H) ([77, Corollary 3.11]) implies the smoothness

of πs.

Step 5. With Remark A.6 we can now calculate a suitable cocycle η with

F (g) := πs(g)Ω = c(g)e−T̂ (g) by

η(x, y) = 2 Im〈dF (1)x, dF (1)y〉+ i〈dF (1)[x, y],Ω〉.

As F (g) only depends on T (g) = g2g
−1
1 , we have F (gu) = F (g) for u ∈ U(H),

which leads to dF (1)x = 0 for x ∈ u(H). Hence η(x, ·) = 0 for x ∈ u(H). For x ∈ p2
we find with T (expx) = cosh(x) sinh(x)−1 = tanh(x) the relation dT (1)x = x, and

hence

dF (1)x = dc(1)(x)Ω− x̂.

Since c is real-valued, this leads with Lemma D.3(ii) for x, y ∈ p2 to

η(x, y) = 2 Im〈dc(1)(x)Ω− x̂, dc(1)(y)Ω− ŷ〉 = 2 Im〈x̂, ŷ〉

= Im tr(xy) =
1

2
Im tr([x, y]) =

1

2i
tr([x, y])

because the trace of the symmetric operator xy + yx is real and tr([x, y]) ∈ iR.

The content of the preceding theorem is essentially known (cf. [77, 103, 96]),

although all references known to the author only discuss the metaplectic represen-

tation as a representation of a topological group and not as a Lie group. In [77,

Theorem 3.19] and [49] one finds quite explicit formulas for group cocycles descri-

bing Ŝpres(H) as a central extension.

Remark 9.4. The metaplectic representation of G := Ŝpres(H) is not irreducible.

Since the representation of U(H) on each Sn(H) is irreducible (Example 7.3), every

G-invariant subspace is the direct sum of some Sn(H), n ∈ N0.

The preceding proof immediately shows that

π(G)Ω ⊆ Seven(H) := ⊕̂n∈N0S
2n(H)

and that all projections onto the subspaces S2n(H) are nonzero.

Using the fact that the operators in dπs(g) contain all multiplication operators

with elements Â, A ∈ p2 (cf. Lemma D.3), and their adjoints ([77]), it easily follows

that the representations of G on the two subspaces Seven(H) and Sodd(H) are

irreducible.

9.2. The metaplectic group

In this subsection we describe a convenient description of the metaplectic group

Ŝpres(H) as a Banach–Lie group. For further details we refer to [63]. First we recall
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from [63, Definition III.3] that

Sp1,2(H) :=

{
g =

(
a b

c d

)
∈ Sp(H) ⊆ U(H,H):

‖b‖2, ‖c‖2 <∞, ‖a− 1‖1, ‖d− 1‖1 <∞
}

carries the structure of a Banach–Lie group with polar decomposition

U1(H)× p2 → Sp1,2(H), p2 =

{(
0 b

b∗ 0

)
: b = b� ∈ B2(H)

}

(cf. [63, Definition IV.7, Lemma IV.13]). The full unitary group U(H) acts

smoothly by conjugation on Sp1,2(H), so that we can form the semidirect product

Sp1,2(H)�U(H), and the multiplication map

µ1: Sp1,2(H)�U(H) → Spres(H), (g, u) �→ gu

is a quotient morphism of Banach–Lie groups with kernel

N := {(g, g−1): g ∈ U1(H)},
so that

Spres(H) ∼= (Sp1,2(H)�U(H))/N

(cf. [63, Definition IV.7]).

From the polar decomposition of Sp1,2(H) we derive that π1(Sp1,2(H)) ∼=
π1(U1(H)) ∼= Z, hence the existence of a unique 2-fold covering group

q:Mp1,2(H) → Sp1,2(H). On the inverse image Û1(H) of U1(H) in Sp1,2(H) we

then have a unique character

√
det: Û1(H) → T with L(

√
det) =

1

2i
tr. (36)

Next we observe that the smooth action of U(H) on Sp1,2(H) lifts to a smooth

action on Mp1,2(H). We also note that, for SU1(H) := ker(det), we have U1(H) ∼=
SU1(H)�T, where the determinant is the projection onto the second factor. Accord-

ingly, Û1(H) ∼= SU1(H)� T with q(g, t) = (g, t2) and
√
det(g, t) = t.

Writing x = x1+x2 for the decomposition of x ∈ sp(H) into linear and antilinear

component, we recall from Theorem 9.3 that

ŝpres(H) ∼= R⊕η spres(H) with η(x, y) =
1

2i
tr([x2, y2]).

This implies that

σ: sp1,2(H) → ŝpres(H) ∼= R⊕η spres(H), σ(x) :=

(
1

2i
tr(x1), x

)

is a homomorphism of Banach–Lie algebras. Here we use that

[x, y]1 = [x1, y1] + [x2, y2] and tr([x1, y1]) = 0.
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On the subgroup Û1(H) ⊆ Mp1,2(H), σ integrates to the group homomorphism

σG: Û1(H) → Ŝpres(H) ⊆ Spres(H)×U(S(H)), σ(g) := (q(g),
√
det(g)πs(g)),

so that the polar decomposition of Sp1,2(H) implies that σ integrates to a morphism

of Banach–Lie groups σG:Mp1,2(H) → Ŝpres(H). Combining this map with the

canonical inclusion U(H) ↪→ Ŝpres(H), the equivariance of σG under conjugation

with unitary operators implies the existence of a homomorphism

µ:Mp1,2(H)�U(H) → Ŝpres(H), (g, u) �→ σG(g)u.

Proposition 9.5. The homomorphism µ factors through an isomorphism

µ: (Mp1,2(H)�U(H))/ kerµ→ Ŝpres(H)

of connected Banach–Lie groups with kerµ ∼= SU1(H).

Proof. If µ(g, u) = 1, then σG(g) = u−1 implies that g ∈ Û1(H) with q(g) = u−1.

Now

Ω = πs(µ(g, u))Ω =
√
det(g)Ω

implies
√
det(g) = 1. This shows that kerµ = {(g, q(g)−1): g ∈ SU1(H)}, and the

assertion follows.

The inverse image of the center Z ∼= T of Ŝpres(H) is

N̂ := {(g, q(g)−1): g ∈ Û1(H)}.

The inverse image Û(H) of the subgroup U(H) in Ŝpres(H) is of the form

Û(H) ∼= (Û1(H)�U(H))/ kerµ ∼= Z ×U(H). (37)

In particular, it splits as a central extension of Lie groups.

9.3. Semiboundedness of the metaplectic representation

In this subsection we show that the metaplectic representation (πs, S(H)) of

Ŝpres(H) is semibounded and determine the open invariant cone Wπs as the inverse

image of the canonical cone Wspres(H) in spres(H).

We start with a closer look at adjoint orbits of the symplectic Lie algebra.

Lemma 9.6. If (V, ω) is a finite dimensional symplectic space and X ∈ sp(V, ω)

is such that the Hamiltonian function HX(v) = 1
2ω(Xv, v) is indefinite, then

conv(OX) = sp(V, ω).

Proof. Let g := sp(V, ω). Then Proposition 6.16, combined with the uniqueness of

the open invariant cone in sp(V, ω) up to sign (cf. [105]), implies that the set of semi-

equicontinuous coadjoint orbits coincides with the double coneW �
sp(V,ω)∪−W �

sp(V,ω).
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Using the Cartan–Killing form to identify g with its dual, we accordingly see

that any semi-equicontinuous adjoint orbit is contained in the double cone

Wsp(V,ω) ∪ −Wsp(V,ω),

i.e. the corresponding Hamiltonian function is either positive or negative.

Finally, we observe that if x ∈ g satisfies conv(Ox) �= g, then B(Ox) is a nonzero

invariant cone and Proposition 6.16(i) implies that it has interior points. Therefore

Ox is semi-equicontinuous because every finite dimensional space is barreled.

Lemma 9.7. The subspace p := {X ∈ sp(H): IX = −XI} contains no nontrivial

Lie algebra ideals, and the same holds for the subspace

p2 := {X ∈ spres(H): IX = −XI} = p ∩ spres(H).

Proof. First we show that X ∈ p and [X, [I,X ]] = 0 implies X = 0. Realizing

sp(H) as a closed subalgebra of gl(HC) ∼= gl(H⊕H) (cf. Example 3.2(h)), we have

p =

{(
0 a

a∗ 0

)
: a� = a ∈ B(H)

}
and I =

(
i 0

0 −i

)
.

For X =
( 0 a
a∗ 0

)
this leads to

[X, [I,X ]] =

[(
0 a

a∗ 0

)
,

(
0 2ia

−2ia∗ 0

)]
= −4i

(
aa∗ 0

0 a∗a

)
.

If this operator vanishes, then a∗a = 0 implies that a = 0, so that X = 0.

If i ⊆ p is a Lie algebra ideal, then we have for each X ∈ i the relation

[X, [I,X ]] ∈ i ∩ u(H) = {0}, so that the preceding argument shows that X = 0.

The same argument applies to p2 = p ∩ spres(H).

Lemma 9.8. Let X ∈ sp(H). Then the projection pk: sp(H) → u(H) onto the

C-linear component satisfies

pk(OX) ⊆ {y ∈ u(H): iy ≤ 0} = Cu(H),

if and only if HX ≥ 0. A corresponding statement holds for spres(H).

Proof. Since pk is the fixed point projection for the action of the torus eRad I ,

it preserves the closed convex cones ±{Z ∈ sp(H):HZ ≥ 0} (Proposition 2.11),

so that the relation HX ≥ 0 implies ipk(OX) ≤ 0 (Theorem 6.7(i)). Suppose,

conversely, that ipk(OX) ≤ 0. If HX ≤ 0, then the preceding argument shows that

ipk(OX) ≥ 0, which leads to pk(OX) = {0}, so that the closed span of OX is an

ideal of g contained in p = kerpk. In view of Lemma 9.7, this leads to X = 0.

We may therefore assume that HX is indefinite. Hence there exists a finite

dimensional complex subspace H1 ⊆ H on which HX is indefinite. Then we have a
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Hilbert space direct sum H = H1 ⊕H⊥
1 and accordingly we write operators on H

as (2× 2)-block matrices:

X =

(
X11 X12

X21 X22

)
.

For v ∈ H1 we then have Im〈Xv, v〉 = Im〈X11v, v〉, so that X11 ∈ sp(H1) and HX11

is indefinite.

Identifying Sp(H1) in the natural way with a subgroup of Sp(H), Lemma 9.6

implies that conv(Ad(Sp(H1)X)) contains an element Y with Y11 = −i1. From

pk(Y ) =

(
pk(Y11) pk(Y12)

pk(Y21) pk(Y22)

)
=

(
Y11 pk(Y12)

pk(Y21) pk(Y22)

)

we now derive that ipk(Y ) �≤ 0, contradicting our assumption on X . This completes

the proof of the first assertion.

Since Sp(H1) ⊆ Spres(H), the preceding argument also implies the assertion for

the restricted Lie algebra spres(H).

Now we are ready to show that the metaplectic representation is semibounded.

We write

q: ŝpres(H) → spres(H)

for the quotient map and z for its kernel. Since the central extension is trivial over

the subalgebra u(H) of spres(H), we have

û(H) := q−1(u(H)) ∼= z⊕ u(H),

where the u(H)-complement is uniquely determined by the property that it is the

commutator algebra. Here we use that the Lie algebra u(H) is perfect (cf. [63,

Lemma I.3]). Accordingly, we may identify u(H) in a natural way with a subalgebra

of ŝpres(H).

Remark 9.9. The momentum set Iπs is completely determined by the restriction

of its support function sπs to Wπs = B(Iπs)
0 (Remark 2.3(b)) which is invariant

under the adjoint action. We shall see below that q(Wπs) ⊆ Wspres(H), so that

Theorem 6.7(ii) leads to

Wπs ⊆ Ad(Ŝpres(H))(z × Cu(H)),

where z ∼= R denotes the center. This in turn entails that Iπs is already determined

by the restriction of sπs to z× Cu(H), which we determine below.

This restriction is the support function for the momentum set of the restriction

of πs to the subgroup Û(H) ∼= T × U(H) (Proposition 4.7(iii)), which is a direct

sum of the representations on the subspaces Sn(H), on which we have

πs(z, g)(v1 ∨ · · · ∨ vn) = zgv1 ∨ · · · ∨ gvn for v1, . . . , vn ∈ H.
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For the representation of U(H) on Sn(H), the momentum set I
U(H)
Sn(H) is simply

given by

I
U(H)
Sn(H) = nI

U(H)
H

(Example 7.3(b)), so that

I
bU(H)
πs

= conv

( ⋃

n∈N0

{1} × nI
U(H)
H

)
,

which is a convex cone with vertex (1, 0), and for x ∈ u(H), we have

sπs(t, x) =

{
−t for ix ≤ 0

∞ else.
(38)

The representation of Ŝpres(H) on S(H) decomposes into two irreducible pieces

Seven(H) = ⊕̂n∈N0S
2n(H) and Sodd(H) = ⊕̂n∈N0S

2n+1(H)

(Remark 9.4). Writing π± for the corresponding representations, we obtain

I
bU(H)
π+

= I
bU(H)
πs

= conv

( ⋃

n∈N0

{1} × 2nI
U(H)
H

)

and

I
bU(H)
π− = conv

( ⋃

n∈N0

{1} × (2n+ 1)I
U(H)
H

)
.

Now it is easy to derive that Wπ± =Wπs , sπ+ = sπs , and that

sπ−(t, x) = −t+ sup(Spec(ix)) for ix ≤ 0.

Theorem 9.10. The metaplectic representation (πs, S(H)) of Ŝpres(H)) is semi-

bounded with

Wπs =W bspres(H) := q−1(Wspres(H)).

Proof. From Example 4.10 we know that

sπs(x) ≤ 0 for x ∈ Cu(H), so that sπs(t, x) = −t+ sπs(x) <∞
for (t, x) ∈ z × Cu(H). From the invariance of sπs under the adjoint action and

Theorem 6.7(ii) it now follows that

Ad(Ŝpres(H))(z × Cu(H)) = q−1(Ad(Spres(H))Cu(H)) = q−1(Wspres(H)) ⊆ B(Iπs)

(39)

(cf. Theorem 6.7(ii)). In particular, B(Iπs) has interior points, so that πs is semi-

bounded with W bspres(H) ⊆Wπs .

To prove equality, we note that (38) in Remark 9.9 implies that

Wπs ∩ u(H) ⊆ {x ∈ u(H): sπs(x) <∞} = {x ∈ u(H): ix ≤ 0} = Cu(H).
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As Wπs is invariant under the projection pk: ŝpres(H) → û(H) onto the fixed point

space of the compact group eRad I (Proposition 2.11), we obtain for each x ∈ Wπs

the relation ipk(Oq(x)) ≤ 0, so that Lemma 9.8 leads to q(x) ∈Wspres(H). As Wπs is

open and Wspres(H) coincides with the interior of its closure (Lemma 2.8), it follows

that

q(Wπs) ⊆Wspres(H).

Combining this with (39), we obtain q(Wπs) =Wspres(H).

As the center z ∼= R of ŝpres(H) acts by multiples of the identity on S(H), we

have z ⊆ H(Wπs), which finally leads to Wπs = q−1(q(Wπs)) =W bspres(H).

9.4. The momentum set of the metaplectic representation

Now that we have determined the cone Wπs for the metaplectic representation, we

now apply the tools from Sec. 5 to determine the momentum set for the represen-

tation of the central extension ĤSpres(H) acting on S(H). In particular, we show

that the momentum set is the closed convex hull of a single coadjoint orbit.

Definition 9.11. We define ĤSpres(H) as the quotient of the semidirect product

Heis(H)�α Ŝpres(H), α(g, u)((t, v)) := (t, gv),

by the central subgroup

S := {(t, (1, z1)) ∈ R× Z: eitz = 1} ∼= R

which acts trivially on S(H). This means that ĤSpres(H) is a central extension of

H� Spres(H) by T. The corresponding Lie algebra cocycle is given by

((v, x), (v′, x′)) �→ Im〈v, v′〉+ η(x, x′) = Im〈v, v′〉+ 1

2
Im tr(x2x

′
2)

(cf. Theorem 9.3).

Remark 9.12. The representations W of Heis(H) and πs of Ŝpres(H) combine

to a representation, also denoted πs of ĤSpres(H) on S(H). Since (W,S(H)) is

irreducible, the extension to ĤSpres(H) is also irreducible. To see that it is smooth,

it suffices to show that the function

Heis(H)� Ŝpres(H) → C, (h, g) �→ 〈W (h)πs(g)Ω,Ω〉 = 〈πs(g)Ω,W (h)−1Ω〉
is smooth (Theorem A.3). This follows from the smoothness of the vector Ω for

Heis(H) and Ŝpres(H) (cf. (30) and Theorem 9.3).

Proposition 9.13. The metaplectic representation (πs, S(H)) of ĤSpres(H) is

semibounded with

Wπs = q−1(H×Wspres(H)) = Ad(ĤSpres(H))(z × Cu(H)),

where q: ĥspres(H) → H � spres(H) is the quotient map whose kernel is the center

z ∼= R.
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Proof. Let

p: hspres(H) = heis(H)� spres(H) → H� spres(H), (t, v, x) �→ (v, x)

denote the quotient map, so that Theorem 6.7(iv) implies that

Whspres(H) = p−1(Wspres(H)) = Ad(HSpres(H))Wspres(H).

Modulo the center, this relation leads to

H�Wspres(H) = Ad(H� Spres(H))Wspres(H) = Ad(H � Spres(H))Cu(H). (40)

From Theorem 9.10 we know that sπs(x) is finite if x ∈ z× Cu(H), so that (40)

implies that it is also finite if q(x) ∈ H�Wspres(H), i.e.

Wπs ⊇ q−1(H �Wspres(H)).

This already proves that πs is semibounded becauseWπs has interior points (Propo-

sition 2.2). We further conclude that heis(H) ⊆ H(Wπs), so that we obtain with

Theorem 9.10 that

Wπs = heis(H) + (Wπs ∩ ŝpres(H)) ⊆ heis(H) + q−1(Wspres(H))

= q−1(H×Wspres(H)).

This proves the desired equality.

Finally, we note that (40) implies that every element x ∈ Wπs is conjugate to

an element y ∈ q−1(Cu(H)), which means that y ∈ z× Cu(H).

Theorem 9.14. The momentum set Iπs of the metaplectic representation of

ĤSpres(H) is the closed convex hull of the coadjoint orbit of λ := Φπs([Ω]), and

this linear functional is given by

λ(t, x) = t on ĥspres(H) = R⊕ (H � spres(H)).

Proof. Since the metaplectic representation of G := ĤSpres(H) is irreducible, we

want to apply Theorem 5.11. For the subgroup K := Û(H) ⊆ G with Lie algebra

k = z⊕ u(H), we have

gC ∼= p+ ⊕ kC ⊕ p−, where p± = ker(ad I ∓ i1)⊕ ker(ad I ∓ 2i1),

I ∈ u(H) is the multiplication with i on H,

heis(H)C = zC ⊕H+ ⊕H−, H± := ker(ad I ∓ i1) ⊆ HC.

Since the Lie algebra k of K is complemented by the closed subspace H ⊕ p2
in g, the coset space G/K carries the structure of a Banach homogeneous space.

Moreover, the closed K-invariant subalgebra kC⊕p+ determines on G/K the struc-

ture of a complex manifold for which the tangent space in the base point can be

identified with gC/(kC + p+) ∼= p− ([6, Theorem 6.1]).

Let Ω ∈ S0(H) ⊆ S(H) be the vacuum vector. Then Ω is a smooth vector

(Remark 9.12), which is an eigenvector for K. On S(H), the operator −idπ(I) is
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diagonal, and Sn(H) is the eigenspace corresponding to the eigenvalue n. As −i ad I
acts on p− with the eigenvalues −1 and −2, it follows that dπs(p−)Ω = {0}, so that

Theorem 5.11 provides a holomorphic equivariant map

η:G/K → P(S(H)′), g �→ 〈·, πs(g)−1Ω〉

and a realization of (πs, S(H)) by holomorphic sections of a complex line bundle

over G/K. Since the representation (πs, S(H)) of G is irreducible, Ω is a cyclic

vector.

It remains to show that for each x ∈ Wπ the flow generated by −x on G/K

extends holomorphically to C+. Since every such element x is conjugate to an

element of z× Cu(H), we may w.l.o.g. assume that x ∈ Cu(H).

To get more information on G/K, we note that the choice of the complex struc-

ture implies that G/K contains Heis(H)/(K ∩Heis(H)) ∼= H− ∼= H′ as a complex

submanifold. The translation action of Heis(H) by (t, v).z := v + z on H factors

through an action of the additive group H and extends naturally to a holomorphic

action of the complexified group HC ∼= H+×H−. As the G-action on G/K induces

a transitive action on the set of Heis(H)-orbits on G/K, the action of Heis(H)

extends to a holomorphic action of Heis(H)C on G/K. Therefore the action of the

one-parameter group t �→ exp(−tx) extends to a holomorphic action of C+ on G/K

if and only if the same holds for the action on the quotient space Spres(H)/U(H).

As we have seen in Example 3.2(h), this space can be identified with the symmetric

Hilbert domain

Ds = {z ∈ B2(H): z� = z, zz∗ � 1},

but here it is endowed with the opposite complex structure.

The group U(H) acts on Ds by u.z = uzu�, and for x ∈ Cu(H) we obtain for our

choice of complex structure the relation e−ix.z = eixveix
�
. Now ‖eix‖ = ‖eix�‖ < 1

implies that the action of the one-parameter group t �→ exp(−tx) extends to C+,

and this completes the proof.

Finally, we derive from Theorem 5.11(b) that Iπs = conv(Oλ) holds for

λ(x) = −i〈dπs(x)Ω,Ω〉.

On k = û(H) we have λ(t, x) = t, and λ vanishes on pC because p− annihilates Ω,

and 〈dπs(p+)Ω,Ω〉 = 〈Ω, dπs(p−)Ω〉 = 0. This completes the proof.

With similar and even easier arguments as in the proof of the preceding theorem,

we also obtain:

Theorem 9.15. The momentum set Iπ+
s

of the even metaplectic representation

(π+
s , S

even(H)) of Ŝpres(H) is the closed convex hull of the coadjoint orbit of

Φπ+
s
([Ω]).
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10. The Spin Representation

In this section we take a closer look at the spin representation (πa,Λ(H)) of the

central extension Ôres(H) of Ores(H) on the fermionic Fock space Λ(H). This rep-

resentation arises from self-intertwining operators of the Fock representation of

the C∗-algebra CAR(H). Here we also show that πa is semibounded and deter-

mine the corresponding coneWπa . For the irreducible representation of the identity

component on the even part Λeven(H), we show that the momentum set is the

weak-∗-closed convex hull of a single coadjoint orbit.

10.1. Semiboundedness of the spin representation

LetH be a complex Hilbert space and write {a, b} := ab+ba for the anticommutator

of two elements of an associative algebra. The CAR-algebra of H is a C∗-algebra
CAR(H), together with a continuous antilinear map a:H → CAR(H) satisfying

the canonical anticommutation relations

{a(f), a(g)∗} = 〈g, f〉1 and {a(f), a(g)} = 0 for f, g ∈ H (41)

and which is generated by the image of a. This determines CAR(H) up to natural

isomorphism ([14, Theorem 5.2.8]). We also write a∗(f) := a(f)∗, which defines a

complex linear map a∗:H → CAR(H).

The orthogonal group O(H) of the underlying real Hilbert space

(HR, β), β(v, w) = Re〈v, w〉,
acts by automorphisms on this C∗-algebra as follows. Writing a real linear isometry

as g = g1 + g2, where g1 is linear and g2 is antilinear, the relations gg∗ = g∗g = 1

turn into

g1g
∗
1 + g2g

∗
2 = 1 = g∗1g1 + g∗2g2 and g1g

∗
2 + g2g

∗
1 = 0 = g∗2g1 + g∗1g2.

These relations imply that

ag:H → CAR(H), f �→ a(g1f) + a∗(g2f)

satisfies the same anticommutation relations, so that the universal property of

CAR(H) implies the existence of a unique automorphism αg with

αg(a(f)) = ag(f) for f ∈ H.
These automorphisms of the CAR(H) are called Bogoliubov automorphisms. They

define an action of O(H) on CAR(H). In particular, the unitary group U(H) ⊆
O(H) acts on CAR(H) by αg(a(f)) = a(gf) for f ∈ H.

Remark 10.1. The C∗-algebra CAR(H) has a natural irreducible representation

(π0,Λ(H)) on the antisymmetric Fock space Λ(H) ([14, Proposition 5.2.2(3)]). The

image a0(f) := π0(a(f)) acts by a0(f)Ω = 0 and

a0(f)(f1 ∧ · · · ∧ fn) =
n∑

j=1

(−1)j−1〈fj , f〉f1 ∧ · · · ∧ fj−1 ∧ fj+1 ∧ · · · ∧ fn.
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Accordingly, we have

a∗0(f)Ω = f and a∗0(f)(f1 ∧ · · · ∧ fn) = f ∧ f1 ∧ · · · ∧ fn.

Let Iv = iv denote the complex structure on H. The action of the restricted

orthogonal group

Ores(H): = {g ∈ O(H): ‖[g, I]‖2 <∞}

on CAR(H) preserves the equivalence class of the representation π0, so that there

is a projective unitary representation πa: Ores(H) → U(Λ(H)), called the spin

representation, satisfying

πa(g)π0(A)πa(g)
∗ = π0(αgA) for g ∈ Ores(H), A ∈ CAR(H) (42)

(cf. [77, Theorem 3, p. 35], [97]).

In analogy with Theorem 9.3 we here obtain:

Theorem 10.2. Ôres(H) is a Lie group and the spin representation is smooth. A

Lie algebra cocycle η defining ôres(H) as an extension of ores(H) by R is given by

η(x, y) = − 1

2i
tr([x2, y2]).

Proof. With completely analogous arguments as in the proof of Theorem 9.3 we

find with Appendix D that any g ∈ Ores(H) for which g1 is invertible has a unique

lift πa(g) ∈ U(Λ(H)) with

πa(g)Ω = c(g)e−
bT (g) for T (g) := g2g

−1
1 ∈ Aherm(H)a, c(g) = ‖e−bT(g)‖−1

(cf. Lemma D.3).

This implies that Ôres(H) is a Lie group, its representation πa on Λ(H) is

smooth, and that Ω is a smooth vector. Since Ores(H) acts smoothly on CAR(H),

the space Λ(H)∞ of smooth vectors is invariant under π0(CAR(H)), so that the

irreducibility of the representation of CAR(H) on Λ(H) implies the smoothness

of πa.

For the Lie algebra cocycle defining ôres(H), we find as in the proof of

Theorem 9.3 with Lemma D.3(iii)

η(x, y) = 2Im〈x̂2, ŷ2〉 = −Im tr(x2y2) = − 1

2i
tr([x2, y2]).

Remark 10.3. As in Sec. 9.2, we obtain a Banach–Lie group

O1,2(H) := {g = g1 + g2 ∈ O(H): ‖g2‖2 <∞, ‖1− g1‖1 <∞}

with

Ores(H) ∼= (O1,2(H)�U(H))/N, N ∼= U(H) ∩O1,2(H) = U1(H)
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(cf. [63, Definition IV.7]). From [63, Remark IV.14] we recall that Ores(H) has two

connected components and that its fundamental group is trivial. On the other hand,

π0(O1,2(H)) ∼= Z/2Z ∼= π1(O1,2(H))

([81, Proposition 12.4.2], [63, Proposition III.15]), so that there exists a simply

connected 2-fold covering group q: Spin1,2(H) → O1,2(H)0 (cf. [33] for a discus-

sion of the smaller group Spin1(H) covering SO1(H) = O1(H)0). As the inclusion

U1(H) → O1,2(H) induces a surjective homomorphism

π1(U1(H)) ∼= Z → π1(O1,2(H)) ∼= Z/2,

Û1(H) := q−1(U1(H)) is the unique 2-fold connected covering of U1(H) from

Sec. 9.2.

We further have an embedding

σ: o1,2(H) → ôres(H), σ(x) :=

(
− 1

2i
tr(x1), x

)
(43)

of Banach–Lie algebras. On the subgroup Û1(H) ⊆ Spin1,2(H), σ integrates to a

group homomorphism σG(g) := (g,
√
det(g)−1πs(g)) (cf. Sec. 9.2) and σ integrates

to a morphism of Banach–Lie groups σG: Spin1,2(H) → Ôres(H). Combining this

map with the canonical inclusion U(H) ↪→ Ôres(H), the equivariance of σG under

conjugation with unitary operators implies the existence of a homomorphism

µ: Spin1,2(H)�U(H) → Ôres(H), (g, u) �→ σG(g)u.

The following proposition is proved as Proposition 9.5, using the representation

πa instead of πs.

Proposition 10.4. The homomorphism µ factors through an isomorphism

µ: (Spin1,2(H)�U(H))/ kerµ→ Ôres(H)0

of connected Banach–Lie groups with kerµ ∼= SU1(H).

Remark 10.5. The embedding o1,2(H) ↪→ ôres(H) restricts in particular to an

embedding o1(H) ↪→ ôres(H). One can show that the operators dπa(x) are bounded

for x ∈ o1(H) (cf. [2], [59, Sec. V]), so that we obtain a morphism of Banach–Lie

algebras

o1(H) → u(Λ(H)), x �→ dπa(x)−
1

2
tr(x1)1.

Definition 10.6. To determine the open cone Wπa for the spin representation, we

have to take a closer look at natural cones in ores(H). Let u∞(H) denote the ideal of

compact skew-hermitian operators in u(H) and recall the Calkin algebra Cal(H) :=

B(H)/B∞(H), where B∞(H) denotes the ideal of compact operators in the C∗-
algebra B(H). Then the surjection B(H) → Cal(B(H)) induces an isomorphism

u(H)/u∞(H) ∼= u(Cal(H)).



March 9, 2010 15:50 WSPC/251-CM 1793-7442 S1793744210000132

Semibounded Representations and Invariant Cones in Infinite Dimensional Lie Algebras 113

Next we note that {x ∈ ores(H): x∗ − x ∈ u∞(H)} is a closed ideal of ores(H)

which defines a quotient morphism q: ores(H) → u(Cal(H)). We thus obtain an

open invariant cone in ores(H) by

Wores(H) := q−1(Cu(Cal(H))) = {x ∈ ores(H): − iq(x) � 0}

(cf. Example 6.1). We write Wbores(H) for its inverse image in the central extension

ôres(H).

Theorem 10.7. The spin representation (πa,Λ(H)) of the connected Lie group

Ôres(H) is semibounded with Wπa =Wbores(H).

Proof. First we note that under Û(H) ∼= T×U(H) the spin representation decom-

poses into the irreducible subspaces Λn(H) with

πa(z, g)(v1 ∧ · · · ∧ vn) = zgv1 ∧ · · · ∧ gvn for v1, . . . , vn ∈ H.

If ix ≤ 0, then the corresponding operator on Λn(H) ⊆ H⊗n is also ≤ 0, and this

implies that

sπa(t, x) = −t+ sπa(x) ≤ −t <∞ for x ∈ Cu(H).

Writing z ∼= R for the center of ôres(H), we thus find that z× Cu(H) ⊆ B(Iπa ).

Next we consider the decomposition of g = ôres(H) = k⊕p2, where k = z×u(H)

and p2 = {x ∈ ores(H): Ix = −xI}. For the map

F : k× p2 → g, (x, y) �→ ead yx we then have dF (x, 0)(a, b) = a+ [b, x],

which is invertible if and only if adx: p2 → p2 is invertible. This is in particular the

case for x = I, the complex structure of H. Therefore the image of (z×Cu(H))× p2
has interior points, and since it is contained in the invariant subset B(Iπa), the

cone Wπa = B(Iπa)
0 is non-empty. With Proposition 2.2 we now see that the

representation (πa,Λ(H)) is semibounded.

To determine the coneWπa , we recall from Remark 10.5 that for each x ∈ o1(H),

the corresponding operator dπa(x) on Λ(H) is bounded. This means that o1(H) ⊆
B(Iπa) ⊆Wπa , and since H(Wπa) is a closed ideal (Lemma 2.9(v)), it follows that

n := z⊕ u∞(H)⊕ p2 ⊆ H(Wπa).

In view of ôres(H) = u(H) + n, this proves that

Wbores(H) = Cu(H) + n ⊆Wπa = n+ (Wπa ∩ u(H)).

It therefore remains to show that

Wπa ∩ u(H) ⊆ Cu(H) + u∞(H).

To verify this assertion, let A = A∗ be a hermitian operator on H and dπa(A)

denote the corresponding operator on Λn(H). Suppose that there exists an ε > 0
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such that the range of the spectral projection P ([ε,∞[) is infinite dimensional. Then

there exists for each n an orthonormal subset v1, . . . , vn in this space. We then have

〈dπa(A)(v1 ∧ · · · ∧ vn), v1 ∧ · · · ∧ vn〉

=

n∑

j=1

〈v1 ∧ · · · ∧Avj ∧ · · · ∧ vn, v1 ∧ · · · ∧ vn〉 =
n∑

j=1

〈Avj , vj〉 ≥ nε,

and this implies that dπa(A) is not bounded from above. If, conversely, for every

ε > 0 the spectral projection P ([ε,∞[) has finite dimensional range, then A =

A−+A+, where A− ≤ 0 and A+ is compact, i.e. iA ∈ Cu(H)+u∞(H). This implies

that the open cone Wπa ∩ u(H) is contained in Cu(H) + u∞(H).

Remark 10.8. (a) With a similar argument as in Remark 9.4, one argues that

under the action of the identity component Ôres(H)0 on the space Λ(H) decomposes

into two irreducible subrepresentations Λeven(H) and Λodd(H). However, the action

of the full group Ôres(H) is irreducible because the elements g ∈ Ôres(H) not

contained in the identity component exchange the two subspaces Λeven(H) and

Λodd(H) ([81, p. 239]).

(b) There is also an analog of the Banach–Lie algebra hspres(H) acting irre-

ducibly on Λ(H) in the fermionic case. Here it is an infinite dimensional analog of

the odd orthogonal Lie algebra so2n+1(R). To see this Lie algebra, we define linear

and antilinear rank-one operators on H by

Pv,w(x) := 〈x,w〉v and P v,w(x) := 〈w, x〉v
and observe that P ∗

v,w = Pw,v and P
∗
v,w = Pw,v. Therefore Qv,w := Pv,w − Pw,v ∈

u1(H), and a direct calculation yields

dπa(Qv,w) = a∗0(v)a0(w) − a∗0(w)a0(v).

As tr(Qv,w) = 2i Im〈v, w〉, we obtain with the map σ from (43) (Remark 10.3)

dπa(σ(Qv,w)) = dπa(−Im〈v, w〉, Qv,w).

For the antilinear operators Qv,w := P v,w − Pw,v we have Qv,w ∈ o1(H) ⊆
o1,2(H) and

dπa(Qv,w) = a∗0(v)a
∗
0(w) − a0(w)a0(v) = a∗0(v)a

∗
0(w) + a0(v)a0(w).

Next we observe that the operators ρ(v) := 1√
2
(a0(v)− a∗0(v)) satisfy

[ρ(v), ρ(w)] =
1

2
[a0(v)− a∗0(v), a0(w) − a∗0(w)]

= (a0(v)a0(w) + a∗0(v)a
∗
0(w)) + (a∗0(w)a0(v)− a∗0(v)a0(w)) + i Im〈v, w〉

= dπa(Im〈v, w〉, Qv,w −Qv,w) = dπa(σ(Qv,w −Qv,w)).

This calculation implies that we obtain on the direct sum H⊕o1,2(H) a Banach–Lie

algebra structure with the bracket

[(v,X), (v′, X ′)] := (Xv′ −X ′v, [X,X ′] +Qv,w −Qv,w),
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and

(v,X) �→ ρ(v) + dπa(σ(X))

defines a representation by unbounded operators on Λ(H), where the subalgebra

H ⊕ o1(H) is represented by bounded operators. A closer inspection shows that

H ⊕ o1(H) ∼= o1(H ⊕ R) is an infinite dimensional version of o2n+1(R) (cf. [59,

p. 215]).

Definition 10.9. Let Iβ ⊆ GL(HR) be the set of orthogonal real-linear complex

structures on the real Hilbert space HR. This set parametrizes the complex Hilbert

space structures on HR compatible with the given real Hilbert space structure.

Lemma 10.10. The following assertions hold :

(i) Iβ = O(H)∩o(H) = {g ∈ GL(HR): g� = g−1 = −g} is a submanifold of O(H).

(ii) The conjugation action of O(H) on Iβ leads to a diffeomorphism Iβ ∼=
O(H)/U(H).

(iii) Ires
β := Ad(Ores(H))I = {J ∈ Iβ : ‖I− J‖2 <∞} ∼= Ores(H)/U(H).

Proof. (i) It only remains to show that Iβ is a submanifold of O(H). For J ∈ Iβ
we parametrize a neighborhood of J by the map o(H) → O(H), x �→ Jex which is a

diffeomorphism on some open 0-neighborhood U ⊆ o(H), which we may assume to

be invariant under Ad(J). That Jex is a complex structure is equivalent to

−Jex = (Jex)−1 = e−xJ−1 = −Je−J−1xJ ,

which is equivalent to Jx = −xJ . We conclude that Iβ is a submanifold of O(H)

whose tangent space can be identified with the set of J-antilinear elements in o(H).

(ii) Let I ∈ Iβ be the canonical complex structure given by Iv = iv and J ∈ Iβ .
Then H = (HR, I) and (HR, J) are two complex Hilbert spaces whose underlying

real Hilbert spaces are isomorphic. This implies that they have the same complex

Hilbert dimension, i.e. there exists a unitary isomorphism g: (HR, I) → (HR, J),
i.e. g ∈ O(H) with gI = Jg. Therefore O(H) acts transitively on Iβ and the

stabilizer of I is the subgroup U(H) (cf. [5, Lemma 1]). Since its Lie algebra u(H)

is complemented by the closed subspace

p := {x ∈ o(H): Ix = −xI},

it follows that O(H)/U(H) is a Banach homogeneous space diffeomorphic to Iβ .
(iii) For g = g1 + g2 ∈ O(H) the operator [I, g] = [I, g2] = 2Ig2 is Hilbert–

Schmidt if and only if g2 is, i.e. g ∈ Ores(H). This in turn is equivalent to gIg−1−I =
[g, I]g−1 being Hilbert–Schmidt, so that

Ores(H) = {g ∈ O(H): ‖gIg−1 − I‖2 <∞}

and therefore (ii) implies (iii).
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Remark 10.11. A priori, the C∗-algebra CAR(H) depends on the complex struc-

ture onH, but it can also be expressed as the C∗-algebra generated by the hermitian

elements b(f) := 1√
2
(a(f) + a∗(f)) satisfying

{b(f), b(g)} =
1

2
{a(f), a∗(g)}+ 1

2
{a∗(f), a(g)} =

1

2
(〈g, f〉+ 〈f, g〉)1 = β(f, g)1.

In this sense it is the C∗-envelope of the Clifford algebra of (HR, β). From this point

of view it is even more transparent why the group O(H) acts by automorphisms.

Now we can think of the Fock representation π0 as depending on the complex

structure I on H, and any other representation π0 ◦ αg is the Fock representation

corresponding to the complex structure gIg−1 ∈ Iβ . We thus obtain a map of Iβ
into the set Ext(S(CAR(H))) of pure states of CAR(H), mapping J := gIg−1 to

ωJ(A) := 〈π0(α−1
g (A))Ω,Ω〉. These states are called the Fock states of CAR(H), and

in [5, Theorem 3] they are essentially characterized as the pure quasi-free states (cf.

Sec. 10.2 below).

Theorem 10.12. For the irreducible subrepresentation (π+
a ,Λ

even(H)) of Ôres(H),

the momentum set is the closed convex hull of the coadjoint orbit of λ := Φπa([Ω]).

This functional is given by

λ(t, x) = t on ôres(H) = R⊕ ores(H).

Proof. We want to apply Theorem 5.11. For the subgroup K := Û(H) ⊆ G :=

Ôres(H)0 with Lie algebra k = z⊕ u(H), we have

gC ∼= p+ ⊕ kC ⊕ p−, where p± = ker(ad I ∓ 2i1)

and I ∈ u(H) is the multiplication with i on H.

Since the Lie algebra k of K is complemented by the closed subspace p2 of

antilinear elements in g, the coset space G/K carries the structure of a Banach

homogeneous space (cf. Lemma 10.10). Moreover, the closed K-invariant subalge-

bra kC ⊕ p+ determines on G/K the structure of a complex manifold for which

the tangent space in the base point can be identified with gC/(kC + p+) ∼= p−
([6, Theorem 6.1]).

In view of (3), we obtain with [63, Proposition V.8, Remark V.10(c)] that the

group Ores(H) acts transitively on the homogeneous space Ores(HC, βC)/P, where
P is the stabilizer of the subspace H ⊕ {0} ⊆ HC (cf. Example 3.2(d),(i)). From

P ∩Ores(H) = U(H) it now follows that the action of the Banach–Lie group G on

G/K actually extends to a holomorphic action of a complex group.

Let Ω ∈ Λ0(H) be the vacuum vector. Then Ω is a smooth vector which is

an eigenvector for K. On Λ(H), the operator −idπ(I) is diagonal, and Λn(H) is

the eigenspace corresponding to the eigenvalue n. As −iad I acts on p− with the

eigenvalue −2, it follows that dπa(p−)Ω = {0}, so that Theorem 5.11 provides a

holomorphic equivariant map

η:G/K → P(Λ(H)′), g �→ 〈·, πa(g)−1Ω〉
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and a realization of (πa,Λ
even(H)) by holomorphic sections of a complex line bundle

over G/K. Since the representation (πa,Λ
even(H)) of G is irreducible, Ω is a cyclic

vector. As we have argued above, the action of every one-parameter subgroup of

G extends to a holomorphic action of C on G/K, so that Theorem 5.11(c) implies

that Iπ is the closed convex hull of the coadjoint orbit of λ. That λ has the desired

form follows as in the proof of Theorem 9.14.

10.2. Quasi-free representations

Let P = P ∗ = P 2 be an orthogonal projection on H, H− := imP , H+ := kerP ,

and Γ:H → H be an isometric antilinear involution commuting with P . Then

τP := (1−P )+ΓP ∈ O(H). We write a0:H → B(Λ(H)) for the map corresponding

to the Fock representation of CAR(H) (Remark 10.1). Twisting with the Bogoliubov

automorphism defined by τP , we obtain an irreducible representation (πP ,Λ(H))

of CAR(H) by

aP (f) := a0((1− P )f) + a∗0(ΓPf) = π0(aτP (f)) for f ∈ H,
i.e. πP = π0◦ατP . These representations are called quasi-free. For P = 0, we recover

the Fock representation defined by a0. Two quasi-free representations aP and aQ
are equivalent if and only if ‖P −Q‖2 <∞ ([80]).

Remark 10.13. The physical interpretation of P is that its range H− consists

of the negative energy states and its kernel H+ consists of the positive energy

states. For f ∈ H+ we have aP (f)Ω = 0 and likewise a∗P (f)Ω = 0 for f ∈ H−.
This is interpreted in such a way that the creation operator a∗P (f) cannot create

an additional negative state from Ω because all negative states are already filled

(Pauli’s Principle). Likewise, the annihilation operator aP (f), corresponding to the

positive energy vector f , cannot extract any positive energy state from Ω.

The restricted unitary group Ures(H, P ) (cf. Example 3.2(c)) is a sub-

group of O(H), and for all projections Q = gPg−1, g ∈ Ures(H, P ) we have

‖P −Q‖2 <∞, so that the equivalence of aP and aQ leads to a projective unitary

representation of Ures(H) on Λ(H) determined by

πP
a (g)aP (f)π

P
a (g)

∗ = aP (gf), f ∈ H, g ∈ Ures(H).

Let Ûres(H) denote the corresponding central extension and write πP
a for its unitary

representation on Λ(H). To see that we thus obtain a semibounded representation

of a Lie group, we first note that we have an embedding

ι: U(H) → O(H), g �→ τPgτP

for which Ures(H, P ) is precisely the inverse image of Ores(H) and that for g ∈
Ures(H, P ) we have

πa(τP gτP )aP (f)πa(τP gτP )
∗ = πa(τP gτP )π0(ατP a(f))πa(τP gτP )

∗

= π0(ατP ga(f)) = πP (ag(f)) = aP (gf),
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so that the projective representation of Ures(H, P ) on Λ(H) coincide with πa ◦ ι
(cf. [77, p. 53]). It follows in particular that Ûres(H, P ) ∼= ι∗Ôres(H) is a Lie group,

πP
a is a smooth representation, and since im(L(ι)) intersects the cone Cu(H) ⊆Wπa ,

the representation πP
a is semibounded (cf. Proposition 4.7(iv)). More precisely, each

element x = (x+, x−) ∈ u(H+) ⊕ u(H−) with ix+ � 0 and ix− � 0 lies in WπP
a
.

This holds in particular for τpIτp = I(1− 2P ).

In the physics literature, the corresponding self-adjoint operator

Q := −idπP
a (I) = dπa(1− 2P )

is called the charge operator and 1 − 2P the one-particle charge operator. Its

1-eigenspace is H+ and its −1-eigenspace is H−.

Remark 10.14. The situation described above can be viewed as a “second quan-

tization” procedure that can be used to turn a self-adjoint operator A on the single

particle space H into a non-negative operator Â on the many-particle space. In

fact, let P := P (]−∞, 0[) denote the spectral projection of A corresponding to

the open negative axis. Then iA generates a strongly continuous one-parameter

group γA(t) := eitA of U(H+) × U(H−) ⊆ Ures(H, P ), and πP
a (γA(t)) = eit

bA is a

one-parameter group of U(Λ(H)) whose infinitesimal generator Â has non-negative

spectrum.

For more details on the complex manifolds Ores(H)/U(H) (the isotropic

restricted Grassmannian) and Ures(H, P )/(U(P (H)) × U(H+)) (the restricted or

Sato–Segal–Wilson Grassmannian) we refer to [81] and [98], where one also finds

a detailed discussion of the corresponding complex line bundles, the Pfaffian line

bundle Pf over Ores(H)/U(H) whose dual permits the even spin representation

as a space of holomorphic sections, and the determinant line bundle Det over the

restricted Grassmannian whose dual provides a realization of the representations of

Ûres(H, P ) mentioned above. Physical aspects of highest weight representations of

Ures(H) are discussed in [17].

11. Perspectives

Classification problems. In the preceding sections we mainly discussed three

prototypical classes of semibounded representations: highest weight representations

of the Virasoro group, the metaplectic representation on the bosonic Fock space and

the spin representation on the fermionic Fock space.

These representations are of fundamental importance in mathematical physics

and homomorphisms from a Lie group G to Spres(H), Ores(H) or Ures(H, P ) can be

used to obtain semibounded representations of a central extension by pulling back

the representations discussed above. This construction has been a major source

of (projective) representations for loop groups G = C∞(S1,K) and Diff(S1) (cf.

[88, 81, 15, 17]).
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What still remains to be developed is a better global perspective on semibounded

representations, including classification results on irreducible ones and the existence

of direct integral decompositions.

Problem 11.1. Classify all irreducible semibounded unitary representations of the

groups Ŝpres(H), Ôres(H) and Ûres(H, P ), where H is a complex Hilbert space and

P an orthogonal projection on H.

These classification problems are special cases of the more general problem

of the classification of the projective semibounded unitary representations of the

automorphism groups of hermitian Hilbert symmetric spaces. For the three groups

above, the corresponding spaces of Ires
ω , Ires

β , resp., the restricted Grassmannian

Grres(H, P ) := {gPg−1: g ∈ Ures(H, P )}. A crucial difference between these spaces

is that the first one is equivalent to a symmetric Hilbert domain (of negative cur-

vature) and the latter two are positively curved spaces. This difference is also

reflected in the difference between the cones Wπs and Wπs in ŝpres(H) and ôres(H)

(Theorems 9.10 and 10.7).

An even larger class of groups arises as automorphism groups of Hilbert flag

manifolds such as the orbit of a finite flag in H under the group U2(H). For a

systematic discussion of these manifolds and the topology of the corresponding real

and complex groups we refer to [63, Sec. V] and for corresponding representations

to [65].

For loop groups of the form C∞(S1,K), K a compact connected Lie group, the

irreducible projective positive energy representations can be identified as highest

weight representations ([81, Theorem 11.2.3], [62, Corollary VII.2], and in particular

[88, Proposition 3.1] for K = T). With the convexity theorems in [3] and [40] it

should be possible to show that these representations are semibounded and one can

hope for an analog of Theorem 8.22 asserting that every irreducible semibounded

representation of the corresponding double extension either is a highest weight

representation or its dual. In [69] it is shown on the algebraic level that there also

exist many interesting unitary representations of infinite rank generalizations of

twisted and untwisted loop algebras, resp., their double extensions (so-called locally

affine Lie algebras). On the group level they correspond to (double extensions of)

groups of the form C∞(S1,K), where K is a Hilbert–Lie group, such as U2(H). It

seems quite likely that all these representations are semibounded with momentum

sets generated by a single coadjoint orbit.

New sources of semibounded representations. Although many interesting

classes of semibounded representations are known, a systematic understanding of

the geometric sources of these representations is still lacking. As we have seen above,

on the Lie algebra level the existence of open invariant cones in a trivial central

extension is necessary (Remark 4.8). However, as the example V(S1) shows, it is

not sufficient (Theorem 8.7).
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Clearly, the circle S1 plays a special role in many constructions, as the rich

theory for central extensions of loop groups and the Virasoro group shows. Beyond

S1, it seems that Lie algebras of conformal vector fields (as generalizations of V(S1))
(cf. Example 6.13, [51] and [93]) and Lie algebras of sections of vector bundles over

Lorentzian manifolds (or more general “causal” spaces, [38]) are natural candidates

to be investigated with respect to the existence of semibounded representations.

The latter class of Lie algebras is a natural generalization of loop algebras. Here

an interesting point is that, although the conformal groups Conf(S1) = Diff(S1) of
the circle and the conformal group Conf(S1,1) of the Lorentzian torus are infinite

dimensional, for Lorentzian manifolds of dimension ≥ 3, the conformal groups are

finite dimensional (cf. [86]). In particular, it is contained in the list of [51]. This

leads to the well-studied class of hermitian Lie groups (see in particular [93,95,38]).

Coadjoint orbits. There is a symplectic version of semibounded representations,

namely Hamiltonian actions σ:G ×M → M with a momentum map Φ:M → g′

for which the image of the momentum map is semi-equicontinuous. If G is finite

dimensional and Φ(M) is closed, then Proposition 2.7 implies that there exists

an x ∈ g for which the Hamiltonian function Hx(m) := Φ(m)(x) is proper. In

particular, Φ is a proper map. In this sense the semi-equicontinuity of the image

of Φ is a weakening of properness, which is a useful property as far as convexity

properties are concerned ([37]).

Even though we do not know in general to which extent coadjoint orbits of

infinite dimensional Lie groups are manifolds, the orbit Oλ can always be viewed as

the range of a momentum map Φ:G → g′, g �→ Ad∗(g)λ corresponding to the left

action of G on itself preserving the left invariant closed 2-form Ω with Ω1(x, y) =

λ([x, y]). This action is semibounded if and only if Oλ is semi-equicontinuous.

Since the momentum sets of semibounded representations always consist of

semi-equicontinuous orbits, the identification of the set g′seq of semi-equicontinuous

coadjoint orbits of a given Lie algebra is already a solid first step towards the under-

standing of corresponding semibounded representations. As we have seen in many

situations above, a useful tool to study convexity properties of coadjoint orbits are

projection maps pt: g → t, where t ⊆ g is a “compactly embedded” subalgebra, i.e.

the action of eadt on g factor through the action of a compact Abelian group. As we

have seen in Sec. 9, sometimes one does not want to project to Abelian subalgebras

and one has to study projections pk: g → k, where k is a subalgebra for which ead k

leaves a norm on g invariant.

This is of particular interest to understand open invariant conesW ⊆ g because

they often have the form

W = Ad(G)(W ∩ k) with pk(W ) =W ∩ k

(cf. Theorem 6.7). In this situation on needs convexity theorems of the type

pk(Ox) ⊆ conv(Ad(NG(k))x) + C,
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where C is a certain invariant convex cone in k and NG(k) ⊆ G is the normalizer of

k in G (cf. [60] for finite dimensional Lie algebras). If k = t is Abelian, then NG(t)

is an analog of the Weyl group.

For infinite dimensional Lie algebras, not many convexity theorems are known.

Of relevance for semibounded representations is the particular case of affine Kac–

Moody Lie algebras ([3,40]), and for Lie algebras of bounded operators on Hilbert

spaces the infinite dimensional version of Kostant’s Theorem by A. Neumann ([75])

is crucial. What is still lacking is a uniform framework for results of this type.

A. Smooth Vectors for Representations

Let G be a Lie group with Lie algebra g and exponential function expG : g → G.

Further, let V be a locally convex space and π:G → GL(V ) be a homomorphism

defining a continuous action of G on V . We write πv(g) := π(g)v for the orbit

maps and

V∞ := {v ∈ V :πv ∈ C∞(G, V )}

for the space of smooth vectors. In this Appendix we collect some results of [71]

that are used in the present paper. Let

dπ: g → End(V∞), dπ(x)v :=
d

dt

∣∣∣∣
t=0

π(exp tx)v

denote the derived action of g on V∞. That this is indeed a representation of g

follows by observing that the map V∞ → C∞(G, V ), v �→ πv intertwines the action

of G with the right translation action on C∞(G, V ), and this implies that the

derived action corresponds to the action of g on C∞(G, V ) by left invariant vector

fields (cf. [62, Remark IV.2] for details).

Definition A.1. Let G be a Banach–Lie group and write P(V ) for the set of

continuous seminorms on V . For each p ∈ P(V ) and n ∈ N0 we define a seminorm

pn on V∞ by

pn(v) := sup{p(dπ(x1) · · · dπ(xn)v): ‖xi‖ ≤ 1}

and endow V∞ with the locally convex topology defined by these seminorms.

Theorem A.2. If (π, V ) is a representation of the Banach–Lie group G on the

locally convex space V defining a continuous action of G on V, then the action

σ(g, v) := π(g)v of G on V∞ is smooth. If V is a Banach space, then V∞ is

complete, i.e. a Fréchet space.

Theorem A.3. If (π,H) is a unitary representation of a Lie group G, then v ∈ H
is a smooth vector if and only if the corresponding matrix coefficient πv,v(g) :=

〈π(g)v, v〉 is smooth on a 1-neighborhood in G. If, in addition, v is cyclic, then the

representation is smooth.
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In the following we write ū for the image of a unitary operator u ∈ U(H) in the

projective unitary group PU(H) := U(H)/T1.

Theorem A.4. Let G be a connected Lie group, H a complex Hilbert space

and π:G → U(H) be a map with π(1) = 1 for which the corresponding map

π:G→ PU(H) is a group homomorphism.

If there exists a v ∈ H for which the function (g, h) �→ 〈π(g)π(h)v, v〉 is smooth

on a neighborhood of (1,1) in G×G, then the central extension

Ĝ := π∗U(H) = {(g, u) ∈ G×U(H): π(g) = u}
of G by T is a Lie group and v is a smooth vector for the representation (π̂,H) of

Ĝ by π̂(g, u) := u.

Proof. To exhibit Ĝ as a Lie group, we have to show that there exists a section

σ:G→ Ĝ for which the corresponding 2-cocycle

fσ(g1, g2) = σ(g1)σ(g2)σ(g1g2)
−1

is smooth in a neighborhood of (1,1) ([64, Proposition 4.2]). Here we use that G is

connected. A particular section σ:G→ Ĝ is given by σ(g) = (g, π(g)).

Let U ⊆ G be an open 1-neighborhood such that

〈π(g)v, π(h)−1v〉 �= 0 for g, h ∈ U.

Its existence follows from our continuity assumption. If U ′ ⊆ U is an open 1-

neighborhood with U ′U ′ ⊆ U , we then have for g1, g2 ∈ U ′

fσ(g1, g2)〈π(g1g2)v, v〉 = 〈π(g1)π(g2)v, v〉,
which leads to

fσ(g1, g2) =
〈π(g1)π(g2)v, v〉
〈π(g1g2)v, v〉

.

Therefore fσ is smooth in a neighborhood of (1,1). This shows that Ĝ is a Lie

group and the multiplication map G × T → Ĝ, (g, t) �→ (g, tπ(g)) is smooth in a

neighborhood of 1 ([64, Proposition 4.2]). The representation π̂ now satisfies

〈π̂(g, tπ(g))v, v〉 = 〈tπ(g)v, v〉 = t〈π(g)v, v〉,
which is smooth in a neighborhood of 1. Now Theorem A.3 implies that v is a

smooth vector for the representation π̂.

Remark A.5. The assumption that G is connected in the preceding theorem can

be removed if G is a Banach–Lie group. In this case we assume, in addition, that

π is continuous in the sense that all functions g �→ |〈π(g)v, w〉| on G are continu-

ous (cf. [52, p. 175]). Then Ĝ is the pullback of a central extension of topological

groups U(H) → PU(H), hence in particular a topological group with respect to

the topology inherited from G × U(H). Under the assumptions of Theorem A.4,
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the central extension Ĝ0 of the identity component G0 of G carries a natural Lie

group structure compatible with the given topology on Ĝ. For each g ∈ Ĝ, the

conjugation map cg induces a continuous automorphism of the Banach–Lie group

Ĝ0, and since continuous homomorphisms of Banach–Lie groups are automatically

smooth ([66, Theorem IV.1.18]), cg also defines a Lie automorphism of Ĝ0. This

implies that Ĝ carries a unique Lie group structure which coincides on the open

subgroup Ĝ0 with the given one (see also [64, Remark 4.3]).

Remark A.6. In the situation of Theorem A.4, the Lie algebra cocycle defining

the central extension ĝ = L(Ĝ) of g by R in the sense that

ĝ = R⊕η g, [(t, x), (t′, x′)] = (η(x, x′), [x, x′])

can be calculated as follows.

If dπ: g → End(H∞) is the map obtained from the representation dπ̂ via

dπ(x) := dπ̂(0, x), then we have for each unit vector v ∈ H∞ the relation

[dπ(x), dπ(y)]v = dπ([x, y])v + iη(x, y)v,

so that

η(x, y) = Im〈[dπ(x), dπ(y)]v, v〉 − Im〈dπ([x, y])v, v〉
= 2 Im〈dπ(x)v, dπ(y)v〉 + i〈dπ([x, y])v, v〉.

B. The Cone of Positive Definite Forms on a Banach Space

Let V be a Banach space and Sym2(V,R) be the Banach space of continuous sym-

metric bilinear maps β:V × V → R, endowed with the norm

‖β‖ := sup{|β(v, v)|: ‖v‖ ≤ 1}.
Clearly, the set Sym2(V,R)+ of positive semidefinite bilinear maps is a closed convex

cone in Sym2(V,R).

Lemma B.1. The cone Sym2(V,R)+ has interior points if and only if V is topo-

logically isomorphic to a Hilbert space. If this is the case, then its interior consists of

all those positive definite forms β for which the norm ‖v‖β :=
√
β(v, v) is equivalent

to the norm on V .

Proof. Suppose first that V carries a Hilbert space structure β. Replacing the

original norm by an equivalent Hilbert norm, we may assume that V is a real Hilbert

space. Then Sym2(V,R) can be identified with the space Sym(V ) of symmetric

operators on V by assigning to A ∈ Sym(V ) the form βA(v, v) = 〈Av,w〉, satisfying
|βA(v, v)| = |(Av, v)| ≤ ‖A‖‖v‖2, so that ‖βA‖ ≤ ‖A‖.

The polarization identity

(Av,w) = βA(v, w) =
1

4
(βA(v + w, v + w) − βA(v − w, v − w))
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further implies that ‖A‖ ≤ 2βA, so that the Banach spaces Sym(V ) and Sym2(V,R)
are topologically isomorphic. The identity idV = 1 is an interior point in the cone

of positive operators, Sym2(V,R)+ has interior points.

Suppose, conversely, that β ∈ Sym2(V,R)+ is an interior point. Then

β − Sym2(V,R)+ is a 0-neighborhood in Sym2(V,R), which implies the existence of

some c > 0 such that ‖γ‖ ≤ c implies γ(v, v) ≤ β(v, v) for all v ∈ V . Fixing v0 ∈ V ,

we pick α ∈ V ′ with ‖α‖ = 1 and α(v0) = ‖v0‖. Then γ(v, w) := cα(v)α(w) is a

symmetric bilinear form with ‖γ‖ = c‖α‖2 = c. We therefore obtain

c‖v0‖2 = γ(v0, v0) ≤ β(v0, v0) ≤ ‖β‖‖v0‖2,
showing that β is positive definite and that the norm

√
β(v, v) is equivalent to the

norm on V .

Remark B.2. Let (V, ω) be a weakly symplectic Banach space, i.e. ω is a non-

degenerate skew-symmetric bilinear form. Then

sp(V, ω) := {X ∈ B(V ): (∀ v, w ∈ V )ω(Xv,w) + ω(v,Xw) = 0}
is the corresponding symplectic Lie algebra. In particular, X ∈ B(V ) belongs to

sp(V, ω) if and only if the bilinear form ω(Xv,w) is symmetric. The corresponding

quadratic function HX(v) := 1
2ω(Xv, v) is called the Hamiltonian function defined

by X .

If there exists an X ∈ sp(V, ω) for which (v, w) := ω(Xv,w) defines a Hilbert

space structure on V , then each continuous linear functional α ∈ V ′ is of the form

ivω for some v ∈ V . This means that (V, ω) is strongly symplectic, i.e. the map

Φω:V → V ′, v �→ ivω is surjective, hence a topological isomorphism by the Open

Mapping Theorem. We further see that X is injective. To see that it is also surjec-

tive, let u ∈ V and represent the continuous linear functional iuω as (w, ·) for some

w ∈ V . Then ω(u, v) = (w, v) = ω(Xw, v) for all v ∈ V , and thus Xw = u. Hence

X is a topological isomorphism, satisfying ω(u, v) = (X−1u, v) for v, w ∈ V . This

further implies that X is skew-symmetric.

Proposition B.3. Let (V, ω) be a strongly symplectic Banach space. Then the

convex cone {X ∈ sp(V, ω):HX ≥ 0} has interior points if and only if V is topolog-

ically isomorphic to a Hilbert space. If this is the case, then there exists a complex

structure I ∈ sp(V, ω) for which HI defines a compatible Hilbert space structure on

V, i.e.

ω(v, w) = Im〈v, w〉
for the underlying complex Hilbert space.

Proof. (cf. [1, Theorem 3.1.19]) If β:V ×V → R is a symmetric bilinear form, then

Φβ :V → V ′, v �→ ivβ also is a continuous linear map, and B := Φ−1
ω ◦ Φβ :V → V

is continuous linear with

ω(Bv, v) = Φω(Bv)(v) = Φβ(v)(v) = β(v, v),
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so that every symmetric bilinear form can be represented by an element of sp(V, ω),

and we obtain a topological isomorphism sp(V, ω) ∼= Sym2(V,R). Combining this

with Lemma B.1 proves the first assertion.

We now assume that V is a real Hilbert space with the scalar product (v, w) =

ω(Xv,w), where X is as above. Then A := X−1 is an invertible skew-symmetric

operator with ω(v, w) = (Av,w). Then the complex linear extension AC to the com-

plex Hilbert space VC yields a self-adjoint operator iAC. The complex conjugation

σ of VC with respect to V now satisfies σ ◦ iAC ◦ σ = −iAC, so that Spec(iAC) is a
compact symmetric subset of R, not containing 0. We therefore have an orthogonal

decomposition VC = V+ ⊕ V− into the positive and negative spectral subspaces of

iAC. Since σ(V±) = V∓, we obtain an isomorphism V ∼= V+, and hence a complex

structure I on V , corresponding to multiplication by i on V+. This means that

v+ ∈ V+ with v = v+ + σ(v+) satisfies

ω(Iv, v) = (AIv, v) = (AI(v+ + σ(v+)), v+ + σ(v+))

= (AC(iv+ − iσ(v+)), v+ + σ(v+)) = i(AC(v+ − σ(v+)), v+ + σ(v+))

= i((ACv+, v+)− (v+, ACv+)) = 2(iACv+, v+),

so we obtain a complex structure I on V for which the Hamiltonian HI defines a

Hilbert structure on V . Since I is skew-symmetric, (V, I) inherits the structure of

a complex Hilbert space with respect to the scalar product

〈v, w〉 := ω(Iv, w) + iω(Iv, Iw) = ω(Iv, w) + iω(v, w).

Therefore our assumption leads to the representation of ω as ω(v, w) = Im〈v, w〉
for a complex Hilbert space structure on V .

C. Involutive Lie Algebras with Root Decomposition

Definition C.1. (a) We call an Abelian subalgebra t of the real Lie algebra g a

compactly embedded Cartan subalgebra if t is maximal Abelian and ad t is simultane-

ously diagonalizable on the complexification gC with purely imaginary eigenvalues.

Then we have a root decomposition

gC = tC +
∑

α∈∆

gαC,

where gαC = {x ∈ gC: (∀h ∈ tC)[h, x] = α(h)x} and

∆ := {α ∈ t∗C\{0}: gαC �= {0}}

is the corresponding root system.

If σ: gC → gC denotes the complex conjugation with respect to g, we write

x∗ := −σ(x) for x ∈ gC, so that g = {x ∈ gC:x∗ = −x}. We then have

(I1) α(x) ∈ R for x ∈ it.

(I2) σ(gαC) = g−α
C for α ∈ ∆.
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Lemma C.2. For 0 �= xα ∈ gαC the subalgebra gC(xα) := span{xα, x∗α, [xα, x∗α]} is

σ-invariant and of one of the following types :

(A) The Abelian type: [xα, x
∗
α] = 0, i.e. gC(xα) is two-dimensional Abelian.

(N) The nilpotent type: [xα, x
∗
α] �= 0 and α([xα, x

∗
α]) = 0, i.e. gC(xα) is a three-

dimensional Heisenberg algebra.

(S) The simple type: α([xα, x
∗
α]) �= 0, i.e. gC(xα) ∼= sl2(C). In this case we dis-

tinguish the two cases :

(CS) α([xα, x
∗
α]) > 0, i.e. gC(xα) ∩ g ∼= su2(C), and

(NS) α([xα, x
∗
α]) < 0, i.e. gC(xα) ∩ g ∼= su1,1(C) ∼= sl2(R).

Proof. First we note that, in view of x∗α ∈ g−α
C , [59, Lemma I.2] applies, and

we see that gC(xα) is of one of the three types (A), (N) and (S). We note that

α([xα, x
∗
α]) ∈ R because of (I2) and [xα, x

∗
α] ∈ it. Now it is easy to check that

gC(xα) ∩ g is of type (CS), resp., (NS), according to the sign of this number.

The following proposition provides useful information for the analysis of invari-

ant cones and orbit projections. Here we write pt: g → t for the projection along

[t, g] =
∑

α(g
α
C + g−α

C ) ∩ g, and pt∗ : g
∗ → t∗ for the restriction map.

Proposition C.3. Let x ∈ t, xα ∈ gαC and λ ∈ t∗. Then the following assertions

hold :

(i) pt(e
Rad(xα−x∗

α)x) = x+





R+α(x)[x∗α, xα] for α([xα, x
∗
α]) ≤ 0,

[0, 2]
α(x)

α([xα, x∗α])
[x∗α, xα] for α([xα, x

∗
α]) > 0.

(ii) pt∗(e
Rad∗(xα−x∗

α)λ) = λ+





R+λ([x∗α, xα])α for α([xα, x
∗
α]) ≤ 0,

[0, 2]
λ([x∗α, xα])
α([xα, x∗α])

α for α([xα, x
∗
α]) > 0.

Proof. (i) is an immediate consequence of [60, Lemma VII.2.9], and (ii) follows

from (i) and the relation pt∗(λ)(e
ad yx) = λ(pt(e

ad yx)).

D. Some Facts on Fock Spaces

Let H be a complex Hilbert space. We endow the n-fold tensor product with the

canonical Hilbert structure defined by

〈v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wn〉 :=
n∏

j=1

〈vj , wj〉,

and form the Hilbert space direct sum T (H) :=
⊕̂

n∈N0
H⊗n. In H⊗n we write

Sn(H) for the closed subspace generated by the symmetric tensors and Λn(H) for

the closed subspace generated by the alternating tensors. We thus obtain subspaces

S(H) :=
⊕̂

n∈N0

Sn(H) and Λ(H) :=
⊕̂

n∈N0

Λn(H)
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of T (H) and write Ps, resp., Pa for the corresponding orthogonal projections:

Ps(f1 ⊗ · · · ⊗ fn) =
1

n!

∑

σ∈Sn

fσ(1) ⊗ · · · ⊗ fσ(n)

and

Pa(f1 ⊗ · · · ⊗ fn) =
1

n!

∑

σ∈Sn

sgn(σ)fσ(1) ⊗ · · · ⊗ fσ(n).

The dense subspace S(H)0 :=
∑

n≥0 S
n(H) of S(H) carries an associative alge-

bra structure, given by

f1 ∨ · · · ∨ fn :=
√
n!Ps(f1 ⊗ · · · ⊗ fn)

and likewise Λ(H)0 :=
∑

n≥0 Λ
n(H) inherits an algebra structure defined by

f1 ∧ · · · ∧ fn :=
√
n!Pa(f1 ⊗ · · · ⊗ fn).

A unit vector Ω in the one-dimensional space S0(H) = Λ0(H) is called a vacuum

vector.

Lemma D.1. We have

T ∨ S =

√(
n+m

n

)
Ps(T ⊗ S) for T ∈ Sn(H), S ∈ Sm(H) (44)

and

T ∧ S =

√(
n+m

n

)
Pa(T ⊗ S) for T ∈ Λn(H), S ∈ Λm(H). (45)

Proof. For the symmetric case we first note that fn =
√
n!f⊗n, so that

fn ∨ gm =
√
(n+m)!Ps(f

⊗n ⊗ g⊗m) =

√(
n+m

n

)
Ps(f

n ⊗ gm).

Since the elements fn generate Sn(H) topologically, (44) follows.

For the alternating case we obtain for T = f1 ∧ · · · ∧ fn and S = g1 ∧ · · · ∧ gm
the relation

1√
(n+m)!

T ∧ S = Pa(f1 ⊗ · · · ⊗ gm)

= Pa(Pa(f1 ⊗ · · · ⊗ fn)⊗ Pa(g1 ⊗ · · · ⊗ gm))

=
1√
n!m!

Pa(T ⊗ S).

Remark D.2. (a) For the norms of the product of T ∈ Sn(H) and S ∈ Sm(H),

we obtain with (44)

1√
(n+m)!

‖T ∨ S‖ =
1√

n!
√
m!

‖Ps(T ⊗ S)‖ ≤ 1√
n!
√
m!

‖T ⊗ S‖ =
‖T ‖√
n!

‖S‖√
m!
.
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From that we derive for T ∈ Sk(H) and n ∈ N the relation

1√
(kn)!

‖T n‖ ≤
(

1√
k!
‖T ‖
)n

,

and for T ∈ S2(H) we find in particular

‖eT ‖2 =
∞∑

n=0

1

(n!)2
‖T n‖2 ≤

∞∑

n=0

(2n)!

(n!)22n
‖T ‖2n, (46)

which converges for ‖T ‖2 < 1
2 .

(b) For T ∈ Λn(H) and S ∈ Λm(H) we likewise obtain with (45)

1√
(n+m)!

‖T ∧ S‖ ≤ ‖T ‖√
n!

‖S‖√
m!
,

which leads for T ∈ Λ2(H) to

‖eT ‖2 =

∞∑

n=0

1

(n!)2
‖T n‖2 ≤

∞∑

n=0

(2n)!

(n!)22n
‖T ‖2n. (47)

Lemma D.3. Let A be an antilinear Hilbert–Schmidt operator on H and define

A∗ by 〈A∗v, w〉 = 〈Aw, v〉. If A∗ = A, then there exists a unique element Â ∈
S2(H) with

〈Â, f1 ∨ f2〉 = 〈Af1, f2〉f for f1, f2 ∈ H,

and if A∗ = −A, there exists a unique element Â ∈ Λ2(H) with

〈Â, f1 ∧ f2〉 = 〈Af1, f2〉 for f1, f2 ∈ H.

Moreover, the following assertions hold :

(i) ‖Â‖2 = 1
2‖A‖22.

(ii) If A and B are hermitian and antilinear, then 〈Â, B̂〉 = 1
2 tr(AB).

(iii) If A and B are skew-hermitian and antilinear, then 〈Â, B̂〉 = − 1
2 tr(AB).

Proof. (a) First we consider the case where A∗ = A. Let (ej)j∈J be an orthonormal

basis of H. Then we have in S2(H) the relations

‖e2j‖2 = 2‖ej⊗ej‖2 = 2 and ‖ej∨ek‖2 = 2

∥∥∥∥
1

2
(ej ⊗ ek + ek ⊗ ej)

∥∥∥∥
2

= 1, j �= k.

If < denotes a linear order on J , we thus obtain the orthonormal basis

1√
2
e2j , ej ∨ ek, j < k, of S2(H).
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This leads to

‖Â‖2 =
∑

j

1

2
|〈Â, e2j〉|2 +

∑

j<k

|〈Â, ej ∨ ek〉|2

=
∑

j

1

2
|〈Aej , ej〉|2 +

∑

j<k

|〈Aej , ek〉|2 =
1

2
‖A‖22.

For A∗ = −A we similarly get

‖Â‖2 =
∑

j<k

|〈Â, ej ∨ ek〉|2 =
∑

j<k

|〈Aej , ek〉|2 =
1

2
‖A‖22.

(b) Let Herm2(H)a denote the complex subspace of hermitian antilinear Hilbert–

Schmidt operators. Then the prescription 〈A,B〉 := tr(AB) = tr(AB∗) defines a

sesquilinear form on this space with

tr(AB) = tr((AB)∗) = tr(B∗A∗) = tr(BA),

so that it is hermitian. Its restriction to the diagonal satisfies

〈A,A〉 = tr(A2) =
∑

j∈J

〈A2ej , ej〉 =
∑

j∈J

〈Aej , Aej〉 = ‖A‖22.

In view of (a), polarization implies that tr(AB) = 〈A,B〉 = 2〈Â, B̂〉 for A,B ∈
Herm2(H)a.

(c) For the space Aherm2(H)a of skew-hermitian antilinear Hilbert–Schmidt

operators the same argument works with 〈A,B〉 := −tr(AB) = tr(AB∗).
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