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École Normale Supérieure, 45 rue d’Ulm,

75230 Paris Cedex 05, France
andre@dma.ens.fr

Received 3 December 2008
Revised 25 March 2009

Many slope filtrations occur in algebraic geometry, asymptotic analysis, ramification
theory, p-adic theories, geometry of numbers . . . . These functorial filtrations, which are
indexed by rational (or sometimes real) numbers, have a lot of common properties.

We propose a unified abstract treatment of slope filtrations, and survey how new ties
between different domains have been woven by dint of deep correspondences between
different concrete slope filtrations.

Keywords: Quasi-Abelian category; slope filtration; semistable; Newton polygon; quasi-

tannakian category.

AMS Subject Classification: 11G, 14D, 18E, 34E, 34K

Contents

0. Introduction 2

1. General Theory of Slope Filtrations 4

1.1. Brief review of five basic examples . . . . . . . . . . . . . . . . . . . 4

1.2. Proto-Abelian and quasi-Abelian categories . . . . . . . . . . . . . . 7

1.3. Slope functions and the “yoga” of semistability . . . . . . . . . . . . 18

1.4. Slope filtrations and Newton polygons . . . . . . . . . . . . . . . . . 23

1.5. Exactness properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6. Slope filtrations and triangulated categories . . . . . . . . . . . . . . 38

2. Behaviour of Slope Filtrations with Respect to a Tensor Product 40

2.1. Quasi-tannakian categories . . . . . . . . . . . . . . . . . . . . . . . 41

2.2. Invertible objects and determinantal slope filtrations . . . . . . . . . 44

2.3. ⊗-multiplicative slope filtrations . . . . . . . . . . . . . . . . . . . . 51

2.4. ⊗-bounded slope filtrations . . . . . . . . . . . . . . . . . . . . . . . 55

3. A Catalogue of Determinantal Slope Filtrations 61

3.1. Vector bundles and filtrations of Harder–Narasimhan type . . . . . . 62

1



May 15, 2009 17:59 WSPC/251-CM 00002

2 Y. André
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0. Introduction

0.1. Slope filtrations occur in algebraic and analytic geometry, in asymptotic anal-

ysis, in ramification theory, in p-adic theories, in geometry of numbers . . . . Five basic

examples are the Harder–Narasimhan filtration of vector bundles over a smooth

projective curve, the Dieudonné–Manin filtration of F -isocrystals over the p-adic

point, the Turrittin–Levelt filtration of formal differential modules, the Hasse–Arf

filtration of finite Galois representations of local fields, and the Grayson–Stuhler

filtration of Euclidean lattices.

Despite the variety of their origins, these filtrations share a lot of similar features.

In this paper of bourbachic inspiration, we develop a unified and systematic

abstract treatment of slope filtrations, with the aim of freeing the “yoga of stability”

from any ad hoc property of the underlying category. This should not only clarify

the analogies, but also allow to replace the pervasive adaptations of arguments from

one context to another by a single formal argument.

Such an argument may supplant some quite nonformal arguments in the lit-

erature. For instance, it is sometimes considered that proving that the slopes of

subobjects are bounded from above is a required preliminary step in the construc-

tion of a slope filtration. An a priori proof of boundedness may be difficult in

specific instances (cf. e.g. [24]), but the general theory shows that it is unnecessary:

boundness rather appears as a corollary.

0.2. Loosely speaking, (descending) slope filtrations are filtrations of objects M

of a given additive category C by subobjects F≥λM indexed by real numbers. The

filtration F≥.M is supposed to be functorial in M , and to be left-continuous and

locally constant in λ: it comes from a finite flag

0 ⊂ F≥λ1 M ⊂ · · · ⊂ F≥λr M =M,

where the λ1 > · · · > λr are the breaks of the filtration.

On the other hand, it is assumed that objects of C have a well-defined rank in

N (typically they are linear objects with some extra structure, and the rank refers
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to the underlying linear structure). This allows one to attach to any object M its

Newton polygon: the polygon which lies below the concave piecewise linear curve

Np(M) emanating from the origin, whose breaks (including endpoints) are at the

abscissa 0, . . . , rkF≥λi M, . . . , rkM , and which has slope λi between the abscissa

rkF≥λi−1 and rkF≥λi .

The “principle” is that, in the presence of slope filtrations, one can “unscrew”

objects M according to their Newton polygons, functorially in M . In almost all

“natural examples”, this principle is enhanced by the combinatorial constraints

coming from the fact that the coordinates of the vertices of Newton polygons are

integers.

When the underlying category is tannakian, this is a powerful tool to compute

tannakian groups (see e.g. how N. Katz [57] uses the Turrittin–Levelt slope filtration

to compute differential Galois groups).

0.3. The degree degM is the ordinate of the right endpoint of Np(M) (with

abscissa rkM).

The degree function deg on Ob C which is attached in this way to F≥. satisfies
some simple axioms (cf. Definition 1.3.1 below). We show that, conversely, any

function on Ob C satisfying these axioms is the degree function attached to a unique

slope filtration on C (Theorem 1.4.7).

This general fact synthesizes (and supersedes) the numerous constructions of

concrete slope filtrations of Harder–Narasimhan type found in the literature.

0.4. In most examples, the category C is additive, but quite often non-Abelian.

We show that the right context is that of quasi-Abelian categories: additive cate-

gories with kernels and cokernels in which Ext(−,−) is bifunctorial (this notion

goes back to Yoneda [110]). However, the categories of hermitian coherent sheaves

which occur in the context of Arakelov geometry are not additive, and we have to

introduce a non-additive version of quasi-Abelian categories (which we call proto-

Abelian categories) in order to deal with these examples on an equal footing.

We also analyse in detail the exactness properties of slope functions (Theo-

rem 1.5.9), and we indicate how slope filtrations are related to stability structures

on triangulated categories (in the sense of Bridgeland).

0.5. Usually, the underlying quasi-Abelian category C is endowed with a natural

tensor product ⊗. This leads us to develop the notion of a quasi-tannakian category.

One can distinguish two radically different behaviours of slope filtrations with

respect to ⊗.
In the first type of slope filtrations, the breaks of M ⊗ N are the sums of a

break ofM and a break of N (⊗-multiplicative filtrations: e.g. Harder–Narasimhan,

Dieudonné–Manin).

In the second type, the breaks ofM⊗N are bounded by the maximum of breaks

of M and N (⊗-bounded filtrations: e.g. Turrittin–Levelt, Hasse–Arf). We analyse

these two types of slope filtrations in general (Theorems 2.2.8, 2.3.3 and 2.4.3).
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0.6. The paper begins with a review of the five slopes filtrations mentioned above,

and its last portion consists in a reasoned catalogue of slope filtrations in a variety

of mathematical domains, underlining a number of links between them.

It ends with a review of some semicontinuity results for Newton polygons in

families (with respect to the Harder–Narasimhan, Dieudonné–Manin, Turrittin–

Levelt filtrations respectively).

We hope that this unified setting will inspire some further transfers of ideas

from one domain to another.

1. General Theory of Slope Filtrations

1.1. Brief review of five basic examples

1.1.1. Harder–Narasimhan filtration of vector bundles

Let X be the smooth connected projective curve over C. The classification of vector

bundles of given rank and degree on X is not straightforward: in order to construct

nice moduli schemes, one should either rigidify them, or consider only those vector

bundles that Mumford called (semi)stable.

LetN be nonzero vector bundle. Its degree degN is the degree of its determinant

line bundle. Its slope is the ratio µ(N) = degN
rkN .

N is stable (resp. semistable) if and only if for any nonzero subbundleM , µ(M) <

µ(N) (resp. µ(M) ≤ µ(N)).

Any semistable bundle N of slope λ is a successive extension of stable bundles

of slope λ.

Any bundle N is a successive extension of semistable bundles of increasing

slopes: more preciselyN has a unique descending filtration, the Harder–Narasimhan

filtration [51]

0 ⊂ F≥λ1 N ⊂ · · · ⊂ F≥λr N = N

for which λ1 > · · · > λr, and the graded pieces grλi N = F≥λi N/F>λi N are

semistable bundles of slope λi. Moreover, degN coincides with the degree attached

to this filtration in the sense of 0.

Narasimhan and Seshadri [78] have described stable bundles in terms of mon-

odromy representations; stable bundles of degree 0 correspond irreducible unitary

representations of π1(X(C)).

1.1.2. Dieudonné–Manin filtration of φ-modules

In Dieudonné theory of formal groups and crystalline cohomology, one encounters

finite dimensional vectors spaces over a p-adic field, endowed with an injective

semilinear endomorphism. The classification of these objects is due to Dieudonné

and Manin [36, 69].
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Let K be a complete valued field of characteristic 0, with residue field k of

characteristic p > 0. Let φ be a lifting of some fixed positive power of the Frobenius

endomorphism of k. In particular, φ is an isometric endomorphism of K.

Let N be a φ-modulea over K, i.e. a finite-dimensional K-vector space N

endowed with an isomorphism ΦN : N ⊗K,φ K
∼=→ N . The determinant detN

is a rank one φ-module; in a given basis, ΦdetN is given by an element a ∈ K×,
well-defined up to multiplication by an element of the form b/φ(b), b ∈ K×. Thus
the valuation of ΦdetN is well-defined (i.e. as the valuation of a).

Let us define µ(N) to be − v(Φdet N )
rkN ,b and say that N is isoclinic if and only if

for any nonzero φ-submodule M , µ(M) = µ(N).

There is a unique descending filtration, the Dieudonné–Manin filtrationc

0 ⊂ F≥λ1 N ⊂ · · · ⊂ F≥λr N = N

for which λ1 > · · · > λr, and gr
λi N is isoclinic of slope λi.

Moreover, if k is perfect, φ is bijective and the Dieudonné–Manin filtration

splits.d If k is algebraically closed, simple φ-modules N can be described explicitly:

v(ΦdetN ) is prime to rkN , and N admits a cyclic basis (with respect to Φ) such

that the image of the last vector is the first vector multiplied by �v(Φdet N ) (where

� denotes an uniformizer of K).

1.1.3. Turrittin–Levelt filtration of formal differential modules

In the field of analytic linear differential equations, the classical opposition singular

versus irregular singularities goes back to Fuchs.

The derivation ∂ = x d
dx acts on K = C((x)), respecting the valuation ordx. A

linear differential operator P = ∂n − an−1∂
n−1 − · · · − a0 is regular if the “Fuchs

number”

irP = max(0,max(−ordxai)) (1.1)

is zero. Actually, this number depends only on the associated differential modulee

N = K〈∂〉/K〈∂〉P , and is called the irregularity of N and denoted by irN .

Let us define µ(N) to be ir(M)
rkN and say that N is isoclinic if and only if for any

nonzero differential submodule M , µ(M) = µ(N).

Any regular differential module is a successive extension of rank one (regular)

differential modules of the form K〈∂〉/K〈∂〉(∂ − c), c ∈ C.

aAlso called F -isocrystals (over the point), after Grothendieck.
bUnlike the usual convention, we have put a sign in order to get a descending filtration, which fits
into the general convention of this paper to deal with descending filtrations. See Remarks 1.4.4
and 1.4.19 for the easy dictionary between descending and ascending slope filtrations.
cOr, rather, the descending version of the original Dieudonné–Manin filtration.
dAlthough the category of φ-modules need not be semisimple.
eA differential module over K is a K〈∂〉-module of finite length (equivalently, of finite K-
dimension).
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Any differential module N has a unique descending filtration, the Turrittin–

Levelt filtration,

0 ⊂ F≥λ1 N ⊂ · · · ⊂ F≥λr N = N

for which λ1 > · · · > λr , and gr
λi N is isoclinic of slope λi. In fact, the filtration

splits canonically (cf. [107, 65], and also [68, 7, Sec. 2]).

Moreover, irN coincides with the degree attached to this filtration in the sense

of 0; the highest slope of the Newton polygon is called the Poincaré–Katz rank of N .

Simple differential modules N can be described explicitly: irN is prime to r =

rkN , and N is induced by a rank one differential module over K ′ = C((x1/r)), of
the form

K ′〈∂〉/K ′〈∂〉(∂ − f), f ∈ K ′[x−1/r], degx−1/r f = irN.

1.1.4. Hasse–Arf filtration of local Galois representations

Let (K, v) be a complete discretely valued field with perfect residue field k, and

let GK = Gal(Ksep/K) be its absolute Galois group. By analysing the “norm” of

g − id acting on finite extensions L/K, ramification theory provides a decreasing

sequence of normal subgroups

G
(λ)
K � GK , λ ∈ Q+.

Let F be a field of characteristic zero, and let M be an F -linear representation of

GK with finite image. Then the filtration G
(λ)
K gives rise to a descending filtration

of M indexed by rational numbers, the Hasse–Arf filtration. In fact, the filtration

splits canonically.

The degree attached to this filtration in the sense of 0 is the so-called Swan

conductor ofM . This is an integer (Hasse–Arf theorem [52,11], cf. also [97, IV, VI]).

To be more concrete, consider the case K = k((x)). If chark = 0, then elements

of Ksep are just Puiseux series, and the Hasse–Arf filtration is trivial. If char k =

p > 0, Puiseux seriesf form only the so-called tame partKtame ofKsep (for instance,

there is no solution of the Artin–Schreier equation yp−y = 1/x in terms of Puiseux

series); the wild subgroup of GK ,

Gal(Ksep/Ktame) =
⋃

λ>0

G
(λ)
K ,

is a pro-p-group.

1.1.5. Grayson–Stuhler filtration of Euclidean lattices

Let N be a Euclidean lattice, i.e. a Z-lattice together with a scalar product on its

real span. Its degree is defined by

deg N = − log vol(N ⊗ R/N). (1.2)

fWith p-integral exponents, by separability.
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If N �= 0, its slope is the ratio µ(N) = degN
rkN .

Any Euclidean lattice N is a successive extension of semistable lattices of

increasing slopes: more precisely,N has a unique descending filtration, the Grayson–

Stuhler filtration [48, 101],

0 ⊂ F≥λ1 N ⊂ · · · ⊂ F≥λr N = N

for which λ1 > · · · > λr, and the graded pieces grλi N = F≥λi N/F>λi N are

semistable bundles of slope λi. The breaks are related to the successive minima in

the sense of Minkovski’s geometry of numbers [18].

In the previous examples, the underlying categories were additive (vector bun-

dles, φ-modules, differential modules, Galois representations). Here, this is no longer

the case: in the underlying category of Euclidean lattices, morphisms are additive

maps of norm ≤ 1.

1.2. Proto-Abelian and quasi-Abelian categories

Our aim is to study slope filtrations independently of the particular context in

which they arise.

In order to do so, one is at once faced with the problem of choosing a class of

categories which covers the majority of examples in the literature, without being

too general. As is shown by the first basic example, Abelian categories are not

enough (vector bundles on a curve do not form an Abelian category).

A convenient class of additive categories to work with is the class of quasi-

Abelian categories (cf. Sec. 1.2.7). It allows to treat all concrete examples of slope

filtrations on additive categories.

However, it is too restrictive, since it excludes the category of Euclidean lattices

with contracting morphisms, and other non-additive categories arising in Arakelov

geometry.

A close inspection of the logical network involved in each example shows that

it is indeed possible to drop additivity, and that the right class of categories

to consider in order to develop a general theory of slope filtrations is the class

of proto-Abelian categories (a non-additive version of quasi-Abelian categories,

cf. Sec. 1.2.4).

1.2.1. Kernels and cokernels

We begin with three reminder subsections, using MacLane’s terminology [67,

p. 191].

Let C be a category with a null object 0, i.e. an object that is both initial

and terminal. For any pair M,N of objects of C, the 0 morphism is the composed

morphism M → 0→ N .

For any morphism M
f→ N , a kernel ker f of f is a morphism with codomain

M such that f ◦ ker f = 0, that is universal for this property (hence unique up to

unique isomorphism).
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By common abuse of language, one also calls “kernel of f” the domain of ker f

(which we denote by Ker f in order to prevent confusion).

Any monicg has kernel 0 (the converse is not true in general).

Any kernel is monic, and is called strict monich; its domain is called a strict

subobject of its codomain.

Dually, a cokernel coker f of f is a morphism with domain M such that

(coker f) ◦ f = 0, that is universal for this property (hence unique up to unique

isomorphism). By common abuse of language, one also calls “cokernel of f” the

codomain of coker f (which we denote by Coker f).

Any epii has cokernel 0.

Any cokernel is epi, and is called strict epi; its domain is called a strict quotient

of its domain.

A short exact sequence,j denoted by

0→M
f→ N

g→ P → 0,

is a pair (f, g) of composable morphisms such that

f = ker g, g = coker f.

One says that N is an extension of P by M , and one writes P = N/M .

A functor is exact if it preserves short exact sequences.

1.2.2. Categories with kernels and cokernels

Let C be a category with kernels and cokernels, i.e. with a null object, and such that

any morphism has a kernel and a cokernel. For a morphism M
f→ N , one sets

coim f = coker ker f, im f = ker coker f

and one denotes the codomain of coim f by Coim f and the domain of im f by Im f

or f(M).

One then has ([67, p. 193])

coker im f = coker f, ker coim g = ker g,

whence the equivalence, for morphisms M
f→ N, N

g→ P , between

• f is strict monic (resp. g is strict epi)

• f = im f (resp. g = coim g),

• there is a morphism N
g→ P (resp. M

f→ N) such that 0→M
f→ N

g→ P → 0 is

a short exact sequence.

gI.e. left cancellable.
hSome authors say “admissible” or “normal” instead of “strict”.
iI.e. right cancellable.
jSome authors say “strictly exact”.
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Any f has a unique factorization as

f = im f ◦ f̄ ◦ coim f

(where f̄ may have nonzero kernel or cokernel in generalk). For any factorization

f = m ◦ f ′ ◦ e,
where e is strict epi and m is strict monic, there are unique factorizations (cf. [67,

p. 193])

coim f = eg, im f = hm, f̄ = hf ′g.

Let M
f→ N

g→ P be composable morphisms. One has:

• ker g = 0⇒ ker gf = ker f and coim gf = coim f ,

• coker f = 0⇒ coker gf = coker g and im gf = im g.

1.2.3. Pull-backs and push-outs

Let P
f→ Q

g← N be a pair of morphisms with a common codomain. A pull-back

square (or Cartesian square) is a commutative square

M
f ′

−−−−→ N

g′
�

�g

P
f−−−−→ Q,

(1.3)

built on (f, g), that is universal. One says that f ′ (resp. g′) is the pull-back of f by

g (resp. f). Pull-back squares may be composed.

Dually, for a pair P
g′←M

f ′
→ N of morphisms with a common domain, one has

the notion of push-out.

Let us assume that C has kernels and cokernels. Then for any pull-back square

(1.3), the natural morphisms

Ker f ′ → Ker f, Ker g′ → Ker g

are isomorphisms (inverses are provided by the universal property).

Dually, for any push-out square (1.3), the natural morphisms

Coker f ′ → Coker f, Coker g′ → Coker g

are isomorphisms.

The pull-back of a strict monic f always exists and is strict monic.

Indeed, take f ′ = ker((cokerf) ◦ g) (which is strict monic); then because f =

ker coker f , there is a canonical factorization g ◦ f ′ = f ◦ g′, and any morphism

h : L → N such that gh factors through f satisfies (coker f) ◦ g ◦ h = 0, hence

kThis occurs even in the additive case, cf. [91].
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factors through f ′. This shows that f ′ is the pull-back of f . One has ker gf ′ = ker g′

and coim gf ′ = coim g′.
If g is also strict monic, one writes M = N ∩ P . If Q ↪→ Q′ is monic and N,P

are strict subobjects of Q′, the pull-back of P → Q′ ← N is N ∩ P .
One has

N ∩ P = Ker(N → Q/P ) = Ker(P → Q/N).

Dually, the push-out of a strict epi g′ always exists and is strict epi: g = coker(f ′◦
ker g′). One has coker gf ′ = coker g′ and im gf ′ = im g′.

If g′ is also strict epi, so that N = M/N ′, P = M/P ′, one writes (abusively)

Q =M/(N ′ + P ′). One has

M/(N ′ + P ′) = Coker(N ′ →M/P ′) = Coker(P ′ →M/N ′).

Lemma 1.2.1. Assume that C has kernels and cokernels.

(1) Let M
f→ N

g→ P be composable morphisms.

If gf is strict monic and g is monic, then f is strict monic.

If gf is strict epi and f is epi, then g is strict epi.

(2) Any pull-back square (1.3) in which g is strict epi and g′ is epi is also a push-

out square. Dually, any push-out square (1.3) in which f ′ is strict monic and f is

monic is also a pull-back square.

Proof. (1) By duality, it suffices to treat the first case. Let us consider the pull-back

square

L
h′

−−−−→ N

g′
�

�g

M
gf−−−−→ P.

(1.4)

Since g is monic, gh′ = gfg′ implies h′ = fg′, and since h′ is monic, so is g′. On the

other hand, applying the pull-back property to (idM , f), one gets a right-inverse to

g′, hence g′ is an isomorphism. Therefore f is strict monic like h′ = fg′.

(2) If (1.3) is a pull-back square, the natural morphism Ker g′
f ′′
→ Ker g is an isomor-

phism. In particular, for any pair of morphisms P
u→ Q′ v← N such that ug′ = vf ′,

the composition v ◦ ker g = vf ′ ◦ ker g′ ◦ (f ′′)−1 is 0, hence v factors through

Coker ker g, which is g since g is strict epi. Let us write v = wg and set u′ = wf .

Then u′g′ = vf ′ = ug′, and since g′ is epi, u = u′ = wf . This shows that (1.3) is a

push-out square.

Examples 1.2.2. (1) The category of groups has kernels and cokernels, and even

pull-backs and push-outs. One has: monic= injective, strict epi= epi= surjective,

strict subobject= normal subgroup (cf. [67, ex. 5, p. 21]). For composable
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morphisms G
f→ G′ g→ G′′,

• if gf is strict monic, f is monic but not strict in general,

• if f and g are strict monic, gf is monic but not strict in general,

• if gf is strict monic and g is monic, g is not strict in general.

(2) The category of hermitian (finite-dimensional real or complex) vector spaces,

with linear maps of norm ≤ 1 as morphisms, has kernels and cokernels. One has:

monic= injective, epi= surjective. A subobject (resp. quotient) is strict if its norm

is the induced (resp. quotient) norm.

This category has finite coproducts (the usual orthogonal sum) and even push-

outs. But the self product of a nonzero object does not exist (since the diag-

onal map has norm > 1); a fortiori, pull-backs do not exist in general in this

category.

(3) The category of Euclidean lattices (with additive maps of norm ≤ 1 as mor-

phisms) has kernels and cokernels. One has: monic= injective, epi= surjective on

the real span. A subobject is strict if it is cotorsion-free and if its norm is the

induced norm, a quotient is strict if its norm is the quotient norm. Any epi-monic

is the composition (in either order) of an isometric epi-monic and a morphism which

is identity on the underlying lattice.

1.2.4. Proto-Abelian categories

Definition 1.2.3. A category C with kernels and cokernels is proto-Abelian if

(1) any morphism with zero kernel (resp. cokernel) is monic (resp. epi),

(2) the pull-back of a strict epi by a strict monic is strict epi, and the push-out of

a strict monic by a strict epi is strict monic.

Axiom (2) allows one to deal with strict subquotients without ambiguity.

Examples 1.2.4. (1) Any Abelian category is proto-Abelian. In fact, a proto-

Abelian category is Abelian if and only if it has finite products and coproducts,

and any epi-monic is an isomorphism.l

(2) The category of (finite dimensional) hermitian vector spaces is proto-Abelian:

on a subquotient space, the quotient norm of the induced norm is the norm induced

by the quotient norm.

(3) The category of Euclidean lattices is proto-Abelian.

(4) On the other hand, the category of groups fails to be proto-Abelian: it satisfies

neither (1) nor (2).

lIndeed, a category with kernels and cokernels is Abelian if and only if it has finite products
and coproducts and any morphism with zero kernel and cokernel is an isomorphism (this implies

additivity), cf. [67, p. 201].
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Let C be a proto-Abelian category.

Lemma 1.2.5. (1) any pull-back square

M
f ′

−−−−→ N

g′
�

�g

P
f−−−−→ Q

(1.5)

in which f is strict monic and g is strict epi is also a push-out square in which

g′ is strict epi and f ′ is strict monic, and conversely. It extends to a commutative

diagram with exact rows and columns

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0
�

�
�

�
�

0 −−−−→ Ker g′
f ′′

−−−−→ Ker g −−−−→ 0 −−−−→ 0
�

�
�

�
�

0 −−−−→ M
f ′

−−−−→ N −−−−→ N/M −−−−→ 0
� g′

�
�g

�
�

0 −−−−→ P
f−−−−→ Q −−−−→ Q/P −−−−→ 0

�
�

�
�

�

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0.

(1.6)

(2) If M
f→ N

g→ P are strict monic (resp. strict epi), so are M
gf→ P and

N/M→P/M (resp. and Ker(M → P ) → Ker(N → P )). In fact, one has short

exact sequences

0→ N/M→P/M → P/N → 0 (1.7)

0→ Ker(M → N)→ Ker(M → P )→Ker(N → P )→ 0. (1.8)

(3) If the pair of composable morphisms M
f→ N

g→ P satisfies gf = 0, there is a

short exact sequence

0→ Ker g/f(M)→ Coker f → Coim g → 0.

(4) In the canonical factorization

f = im f ◦ f̄ ◦ coim f

of any f, f̄ is epi-monic.

Proof. (1) Follows from item (2) of Lemma 1.2.1, duality, and the second axiom

of proto-Abelian categories.
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(2) Let M
f→ N

g→ P be strict monic, and let us consider the push-out

N
g−−−−→ P

h=coker f

�
�h′

N/M
g′−−−−→ Q.

(1.9)

By item (1), g induces an isomorphism M = Kerh ∼= Kerh′, hence the sequence

0→M
gf→ P

h′
→ Q→ 0

is exact, which proves that gf is strict, as well as N/M
g′→ Q = P/M . In fact,

since (1.9) is a push-out square, Coker g ∼= Coker g′, which gives the short exact

sequence (1.7).

The other part of the assertion follows by duality.

(3) Since coker g ◦ g ◦ f is zero and factors through the epi im f , f(M)→ Coker g is

zero, hence f(M)→ N factors through g = ker coker g. Item (3) then follows from

item (2) applied to f(M)→ Ker g → N .

(4) By item (2), coim f̄ ◦ coim f is strict epi, hence equal to coim f by universality

of the canonical factorization. This implies ker f̄ = 0. By duality, coker f̄ = 0. By

axiom (1), f̄ is therefore epi-monic.

1.2.5. Flags

Let C be a proto-Abelian category.

Definition 1.2.6. A flag of length r on N is a finite sequence

F : 0 = N0 ↪→ N1 ↪→ · · · ↪→ Nr = N

of strict subobjects of N , with Ni �= Ni−1 for 1 ≤ i ≤ r.

Note that by Lemmas 1.2.1 and 1.2.5, it amounts to the same as saying that

the Ni are strict subobjects of N , or Ni ↪→ Ni+1 are strict monic. In particular, it

makes sense to consider the graded pieces Ni/Ni+1.

The following lemma will allow us to make some induction arguments.

Lemma 1.2.7. Let

0→M → N
e→ P → 0

be a short exact sequence with M �= 0.

(1) Let

F : 0 ↪→ P1 ↪→ · · · ↪→ Pr = P
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be a flag of length r on P . Then the (step-by step) pull-back

e∗F : 0 ↪→ N1 ↪→ · · · ↪→ Nr+1 = N

is a flag of length r + 1 on N, and N1 =M, Pi = Ni+1/N1.

(2) Conversely, let

G : 0 ↪→ N1 ↪→ · · · ↪→ Nr+1 = N

be a flag of length r + 1 on N with N1 =M . Then the (step-by step) push-out

e∗G : 0 ↪→ P1 ↪→ · · · ↪→ Pr+1 = P

is a flag of length r on P, and Pi = Ni+1/N1.

Proof. This follows from Lemma 1.2.5.

Lemma 1.2.8. Any two flags (of equal or unequal length) on N admit a common

refinement.

Proof. A common refinement of the flags (Ni) and (Nj) is given by the following

non-decreasing sequence of strict subobjects of N (with respect to the lexicographic

order):

Nij := (Ni ∩N ′
j) +Ni−1

(defined by the push-out of Ni ∩N ′
j → N ← Ni−1, Ni ∩N ′

j being the pull-back of

Ni ← N → N ′
j).

1.2.6. Rank function

Assume that C is essentially small, let sk C be the set of isomorphism classes of

objects of C (skeleton). Taking sk C as set of generators and short exact sequences

as relations, one builds the Grothendieck group K0(C).

Definition 1.2.9. A rank function on C is a function

rk : sk C → N

that is additive on short exact sequences and takes the value 0 only on the 0 object.

In particular, a rank function gives rise to a group homomorphism still

denoted by

rk : K0(C)→ Z.

Remark 1.2.10. The length of any flag on N is bounded by rkN . It follows that

any Abelian category with a rank function is noetherian and artinian, and that the

Jordan–Hölder length (given, for any object, by the maximal length of a flag on this

object) is a rank function. Any nonzero subobject of N of minimal rank is simple.
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Example 1.2.11. If C is the category of finitely generated torsion-free modules

over a domain R, the usual rank (i.e. the dimension of the vector space obtained

by tensoring with the fraction field of R) provides a rank function.

1.2.7. The additive situation: quasi-Abelian categories

Recall that an additive category with kernels and cokernels has all finite limits and

colimits, in particular all pull-backs and push-outs [67, p. 113].

Definition 1.2.12. An additive category with kernels and cokernels is quasi-

Abelian if every pull-back of a strict epi is strict epi, and every push-out of a strict

monic is strict monic.

If C is essentially small, this amounts to requiring that the set Ext(P,M) of

isomorphism classes of extensions of an object P by an object M is bifunctorial.

It is immediate that any quasi-Abelian category is proto-Abelian.m In particular,

in the canonical factorization of any morphism f = im f ◦ f̄ ◦ coim f , f̄ is always

epi-monic (item (4) of Lemma 1.2.5).n

Examples 1.2.13. (1) The category of torsion-free finitely generated modules over

any domain R is quasi-Abelian.

If R is Dedekind (or more generally Prüfer), this is the category of projective

modules of finite rank. If R is principal (or more generally Bézout), this is the

category of free modules of finite rank.

(2) The category of (finitely generated) reflexive modules over an integrally closed

domain R is quasi-Abelian. Kernel and cokernels in this category are the double

duals of kernels and cokernels taken in the category of R-modules.

If R is regular of dimension 2, this is the category of projective modules of finite

rank.

(3) The category of torsion-free coherent sheaves over a reduced irreducible analytic

space or algebraic variety X is quasi-Abelian. If X is a normal curve, this is the

category of vector bundles (of finite rank).

(4) The category of reflexive coherent sheaves over a normal analytic space or

algebraic variety X is quasi-Abelian.

(5) The category of filtered modules over any ring is quasi-Abelian.

Besides these algebro-geometric examples, there are many examples from func-

tional analysis: various categories of topological vector spaces — Banach and

Fréchet spaces, locally convex and nuclear spaces, bornological spaces of convex

type — are quasi-Abelian.

mWe do not know if, conversely, any additive proto-Abelian category is quasi-Abelian.
nAs we already mentioned, this property is not true in any additive category with kernels and
cokernels [91].
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The notion of quasi-Abelian category seems to go back to Yoneda’s 1950 paper

[110], and has been rediscovered a number of times (with various names, viewpoints

and languages.o From the definition, a quasi-Abelian category is just an exact cat-

egory with kernels and cokernels, in which short exact sequences are defined as

above.

A systematic exposition is due to J.-P. Schneiders [96]. In [17], it is shown that

this notion is equivalent to the notion of cotilting torsion pairs introduced by D.

Happel, I. Reiten and S. Smalo in representation theory [50]. The main result can

be summarized as follows.

Proposition 1.2.14. [96, Sec. 1.2.4] [17, 5.4, App. B] An additive category C is

quasi-Abelian if and only if it can be fully embedded in an Abelian category A with

the following properties :

(1) any object of A is a quotient of an object of C,
(2) there is a strictly full p subcategory T ⊂ A (the “torsion subcategory”) such that

• any object A of A sits in a unique (up to unique isomorphism) short exact

sequence

0→ Ator → A→M → 0

where Ator ∈ Ob T and M ∈ Ob C,
• there is no nonzero morphism from objects of T to objects of C.

Condition (2) implies that any subobject of M in A is (isomorphic to an object) in

C. Together with (1), it characterizes the pair (A, T ).
A short sequence in C

0→M1 →M →M2 → 0

is exact in C if and only if it is exact in A. A morphism in C is monic (resp. strict

epi) if and only if it is monic (resp. epi) in A.

In the sequel, A will be called the left Abelian envelope of C: in [96], A appears

as the heart of the derived category of C with respect to the “left t-structure”, for

which D(C)≤0 is represented by complexes in degree ≤ 0, and D(C)≥0 by complexes

in degree ≥ −1, the morphism d−1 being monic.q

oCf. [55, 84]; the adjective quasi-Abelian, with this meaning, seems to stem from [100]. We refer
to [91, Sec. 2] for a short history of this notion.
pI.e. full and closed by isomorphism.
qThere is also a right t-structure whose heart, the “right Abelian envelope” of C, is the “tilting”
of A, cf. [96, 17].
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The canonical embedding C → A has a left adjoint and induces an equivalence

D(C) ∼= D(A) compatible with the t-structures (the left one on the left-hand side,

the canonical one on the right-hand side), hence an equivalence of categories with

bounded t-structuresDb(C) ∼= Db(A) (actually, this construction already appears in

[16, 1.3.22]). Any object of A is represented by the complex [M → N ], in degrees −1
and 0, associated to a monic in C. One deduces that there is a canonical isomorphism

K0(C) ∼= K0(A).

Remark 1.2.15. In particular, any rank function rk extends to a function

sk A → Z,

and any object of A of rank 0 is in T . In 2.1.1, we will deal with a class of quasi-

Abelian categories in which any object of the left Abelian envelope has non-negative

rank, hence objets of T are precisely the objects of A of rank 0.

Examples 1.2.16. (1) If C is the category of finitely generated torsion-free modules

over a domain R, A is the Abelian category of all finitely generated modules, and

T the full subcategory of torsion modules; a cokernel in C is a cokernel in A divided

out by torsion.

(2) If C is the category of reflexive modules over an integrally closed domain R,

A is the localization of the Abelian category of all finitely generated modules with

respect to pseudo-isomorphisms [21, Chap. 7], i.e. morphisms which are isomor-

phisms outside a closed subset of codimension 2 of SpecR.

Lemma 1.2.17. An object of A belongs to T if and only if it is the cokernel in A
of a epi-monic in C.

Proof. Let Q be an object of T . By Proposition 1.2.14, there is an epi N → Q

and an epi M → KerA(N → Q), with N,M ∈ Ob C. Replacing M by its C-image

in N , one may assume that M
f→ N is monic. By construction Q = CokerA f . Let

N
g→ P be a morphism in C such that gf = 0. Then g factors through Q, and since

P has no torsion, g = 0. Hence f is epi.

Conversely, let us write Q = CokerA f as an extension of P ∈ Ob C by R ∈ Ob T .
The composed morphism M

f→ N → P is zero. Since f is epi, N → P is zero, i.e.

coker f factors through R. Hence Q = R.

Lemma 1.2.18. Any strict subobjects N,P of an object Q of C are also strict

subobjects of their sum N+P (in the sense of Sec. 1.2.3) and the natural morphism

N/(N ∩ P )→ (N + P )/P
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is an isomorphism. In fact, one has a commutative diagram with exact rows and

columns
0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0
�

�
�

�
�

0 −−−−→ N ∩ P −−−−→ N −−−−→ N/(N ∩ P ) −−−−→ 0
�

�
�

�
�

0 −−−−→ P −−−−→ Q −−−−→ Q/P −−−−→ 0
�

�
�

�
�

0 −−−−→ P/(N ∩ P ) −−−−→ Q/N −−−−→ Q/(N + P ) −−−−→ 0
�

�
�

�
�

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0.

(1.10)

Proof. Indeed, N ∩ P is the kernel of M→M/N ⊕ M/P, N + P is the image

of N ⊕ P → Q, and the natural morphism N/(N ∩ P ) → (N + P )/P in C is an

isomorphism since it is so in A; (1.10) has exact rows and columns in A, hence
in C.

Remark 1.2.19. This does not hold in a proto-Abelian category in general (in the

category of hermitian vector spaces, a counterexample is constructed by taking N

and P to be non-orthogonal supplementary subspaces).

1.3. Slope functions and the “yoga” of semistability

In this section, we introduce the yoga of (semi)stability with respect to a slope

function µ in a proto-Abelian category.

In the sequel, C stands for an essentially small proto-Abelian category equipped

with a rank function rk.

In addition, we fix a totally ordered, uniquely divisible, Abelian group Λ (in

practice, this will be Q, or a Q-subspace of R).

1.3.1. Slope functions and degree functions

Definition 1.3.1. A slope function on C, with values in Λ, is a map

µ: sk C\{0} → Λ

that satisfies the following two conditions:

(1) for any epi-monic M → N , one has µ(M) ≤ µ(N),

(2) the associated degree function

deg = µ · rk : sk C → Λ

(taking value 0 at the 0 object) is additive on short exact sequences.
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Of course µ and deg determine each other, and the latter induces a group homo-

morphism

deg : K0(C)→ Λ.

Remarks 1.3.2. (1) If C is Abelian, condition (1) is empty. If C is Abelian semisim-

ple, to give a slope function amounts to attaching to every simple object (up to

isomorphism) a label in Λ.

(2) If C is Abelian, one can define, up to isomorphism, the semi-simplification Nssi
of any object N . Then µ(N) = µ(Nssi) by additivity of the degree.

(3) If µ is a slope function on C, then −µ is a slope function on Cop.
(4) Degree functions form a convex cone in the Q-vector space Hom(K0(C),Λ).

Examples 1.3.3. (1) Let C (resp. A) be the category of torsion-free coherent

sheaves (resp. all coherent sheaves) on a polarized normal connected projective

variety (X,O(1)). Take Λ = Q. Then the quotient µ = deg
rk , where deg and rk have

their usual meaning, is a slope function on C (Mumford–Takemoto [77, 102]r).

When dimX > 1, a more refined choice of slope function on C is the following

(Gieseker–Maruyama), which is more useful in moduli problems cf. e.g. [46]. Take

Λ = Q[t], with the total order given by P ≥ Q if P (t) ≥ Q(t) for t � 0.s The

function which associates to any nonzero torsion-free coherent sheaf its Hilbert

polynomial divided by its rank is a slope function on C (this follows from the fact

that the Hilbert polynomial is additive on short exact sequences in A, being an

Euler characteristic in the large, and has non-negative leading coefficient).

(2) Let C be the category of Euclidean lattices (with additive maps of norm ≤ 1 as

morphisms), cf. Example 1.2.2(3). Take Λ = R. Then the quotient µ = deg
rk , where

deg is minus the logarithm of the covolume, is a slope function on C (Grayson–

Stuhler [48, 101]).

Lemma 1.3.4. (1) For any short exact sequence 0→M → N → P → 0 of nonzero

objects, one has

min((µ(M), µ(P )) ≤ µ(N) ≤ max(µ(M), µ(P )),

both inequalities being strict unless µ(M) = µ(N) = µ(P ).

(2) More generally, for any flag 0 = M0 ↪→ M1 ↪→ · · · ↪→ Mr = M with nonzero

quotients Mi/Mi−1, one has

min(µ(Mi/Mi−1)) ≤ µ(M) ≤ max(µ(Mi/Mi−1)),

both inequalities being strict unless all the µ(Mi/Mi−1) are equal to µ(M).

rIntroduced by Mumford for dimX = 1, Takemoto generalized to dimX > 1.
sThis is the lexicographical order on the coefficients.
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Proof. Item (1) follows immediately form the additivity of deg, and item (2) fol-

lows from the first by induction.

Lemma 1.3.5. Let θ : C → C′ be a faithful exactt functor between proto-Abelian

categories. Then any slope function µ on C′ induces a slope function θ∗µ on C.

Proof. θ∗µ(M) := µ(θ(M)) satisfies the two axioms of a slope function: (1)

because θ preserves epi-monics by faithfulness, (2) because θ is exact.

1.3.2. (Semi)stability

Let C, rk,Λ be as above, and let µ be a slope function on C with values in Λ.

Definition 1.3.6. A nonzero object N of C is called µ-semistable (resp. µ-stable)

if for any nonzero subobject M �= N , µ(M) ≤ µ(N) (resp. µ(M) < µ(N)).

If there is no ambiguity on µ, one just says semistable (resp. stable).

The next lemma deals with the behaviour of semistability with respect to monic

and/or epi morphisms.

Lemma 1.3.7. Let N be a nonzero object.

(1) N is semistable if and only if for any nonzero strict subobject M of N, µ(M) ≤
µ(N).

(2) N is semistable if and only if for any nonzero quotient (resp. strict quotient) P

of N, µ(P ) ≥ µ(N).

(3) If N is semistable of slope λ, any nonzero subobject M with µ(M) = λ (resp.

quotient P with µ(P ) = λ) is semistable of slope λ.

(4) If N is semistable of slope λ, any nonzero direct summand of N is semistable

of slope λ.

(5) Any nonzero strict subobject M (resp. strict quotient P ) of N of minimal rank

with µ(M) ≥ µ(N) (resp. µ(P ) ≤ µ(N)) is semistable.

In particular, any object of rank 1 is semistable.

(6) If N is semistable, any nonzero subobject (resp. quotient) with the same slope

is semistable.

(7) Let 0→M → N → P → 0 be a short exact sequence. If two of the three objects

are semistable of slope λ, so is the third, unless it is zero.

In particular, in the additive case, a direct sum of semistable objects of slope λ

is semistable of slope λ.

Proof. (1) Letm :M ↪→ N be the given monic. Then m̄ :M → Im m is monic-epi,

hence µ(M) ≤ µ(Im m), and the assertion follows.

tI.e. which preserves short exact sequences, cf. Sec. 1.2.1.
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(2) Let e : N → P be the given epi. Then ē : Coim e → P is monic-epi, hence

µ(Coim e) ≤ µ(P ), and it suffices to show that N is semistable if and only if

µ(P ) ≥ µ(N) for any nonzero strict quotient P .

Let us denote by M the kernel (which we may assume to be nonzero). Then

Lemma 1.3.4 shows that µ(P ) ≥ µ(N) ⇔ µ(M) ≤ µ(N) and µ(P ) < µ(N) ⇔
µ(M) > µ(N), from which the assertion follows (by item (1)).

(3) Any subobject M ′ of M is a subobject of N , hence µ(M ′) ≤ λ; therefore M is

semistable of slope λ. Any quotient P ′ of P is a quotient of N , hence µ(P ′) ≥ λ;

therefore P is semistable of slope λ by item (2).

(4) and (6) follow immediately from the definition and (2).

(5) There is no proper strict subobject of M (resp. proper strict quotient of P ) of

slope ≥ µ(M) (resp. ≤ µ(M)) by minimality of the rank. The assertion then follows

immediately from (1) and (2), taking into account the fact the composition of strict

monic (resp. epi) morphisms is strict.

(7) By Lemma 1.3.4, if two of the objects are of slope λ, so is the third. It follows

that if N and either M or P is semistable of slope λ, so is the third one, by (6).

Let us next assume that M and P are semistable of slope λ. If N is not

semistable, there is a semistable strict subobject N ′ of N with µ(N ′) > λ = µ(N)

(by items (1) and (5) above). By item (6), the induced morphism N ′ → P is zero,

hence N ′ ⊂M . Since M is semistable, µ(N ′) ≤ µ(M) = λ, a contradiction.

Lemma 1.3.8. For any nonzero morphism M
f→ N with M and N semistable,

µ(M) ≤ µ(N).

Proof. Let us consider the canonical factorization M → Coim f ↪→ N . Then

µ(M) ≤ µ(Coim f) ≤ µ(N) by semistability ofM and N , taking into account item

(2) of the previous lemma.

Lemma 1.3.9. (1) Let f : M → N be a morphism between semistable objects of

the same slope λ. Then Ker f, Im f,Coker f,Coim f are either zero or semistable of

slope λ.

(2) Let C(λ) be the full subcategory of C consisting of 0 and the semistable objects

of slope λ. Then C(λ) is proto-Abelian, and the notion of short exact sequence is

compatible with the one in C.

Proof. Since M and N are semistable of slope λ, one has λ ≤ µ(Coim f) ≤
µ(Im f) ≤ λ, whence equality of slopes, which implies µ(Ker f) = µ(Coker f) = λ.

The assertion then follows from items (3) and (7) of Lemma 1.3.7.

Remarks 1.3.10. (1) Stable objects need not exist in general. If M is simple

(i.e. irreducible), it is stable. The converse is not true, even if C is Abelian, cf.

Example 2.2.12. See, however, Corollary 1.5.10.
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(2) The analog of item (1) for stability (as opposed to semistability) is not true

in general (e.g. for objects of rank one). See, however, Proposition 2.2.11 for a

condition under which it holds.

(3) See Corollary 1.4.10 and Proposition 2.2.11 for a condition under which C(λ) is
Abelian.

(4) Let L ↪→M ↪→ N be strict monic, with L and N semistable of the same slope

λ. If M is semistable, then µ(M) = λ, and conversely. But it may happen that

µ(M) < λ. An example is given by the sequence of vector bundles

OP1

ι1
↪→ OP1 ⊕OP1(−1) id⊕ι↪→ OP1 ⊕OP1 ⊕OP1

on the projective line, with respect to the Harder–Narasimhan filtration.

(5) µ-(semi)stable objects in C are the same as (−µ)-(semi)stable objects in Cop.

1.3.3. Universal destabilizing subobject

Let N be a nonzero object of C.

Definition 1.3.11. A universal destabilizing subobject of N (with respect to µ) is

a nonzero strict subobject M ↪→ N such that for any nonzero strict subobject M ′

of N ,

(i) µ(M ′) ≤ µ(M),

(ii) if µ(M ′) = µ(M), then M ′ ↪→ N factors through M .

In order to check these conditions, one may assume that M ′ is semistable by

virtue of Lemma 1.3.7(3).

Lemma 1.3.12. A universal destabilizing subobject exists and is unique. Moreover,

it is semistable.

Proof. Uniqueness follows from universality. Semistability follows from condition

(i) (and Lemma 1.3.7(1)).

Let us prove the existence by induction on rkN .

If N is semistable, M = N works. Otherwise, let P be a strict quotient of N of

minimal rank with µ(P ) ≤ µ(N), and set N ′ := Ker(N → P ). By Lemma 1.3.7(5),

P is semistable, and by Lemma 1.3.4, one has

µ(P ) ≤ µ(N) ≤ µ(N ′), rkN ′ < rkN.

LetM be the universal destabilizing subobject for N ′; in particular,M is semistable

of slope ≥ µ(N). In case of equality, N ′ would be semistable of slope µ(N), so would

be P by Lemma 1.3.4 and N by Lemma 1.3.7(7) contrary to assumption. Therefore

µ(M) > µ(N).

Let M ′ be a semistable strict subobject of N .
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If the composed morphism M ′ → P is nonzero, we have µ(M ′) ≤ µ(P ) by

Lemma 1.3.8, hence µ(M ′) ≤ µ(N) < µ(M).

OtherwiseM ′ is a strict subobject of N ′. Therefore µ(M ′) ≤ µ(M), with equal-

ity only ifM ′ is a subobject ofM . In both cases, this shows thatM is the universal

destabilizing subobject for N .

1.4. Slope filtrations and Newton polygons

In this section, we introduce the concept of a slope filtration (a functorial filtration

of objects of C by strict subobjects, satisfying some conditions).

We establish a one-to-one correspondence between slope filtrations and slope

functions µ, which synthesizes a lot of (more or less ad hoc) constructions of slope

filtrations in the literature.

We then discuss Newton polygons, and examine in some detail the exactness

properties of slope filtrations.

1.4.1. Filtrations by strict subobjects

As usual, we may consider the (totally) ordered set Λ as a small category.

A decreasing functorial filtration on C by strict subobjects, indexed by Λ, is a

functor

F≥.(·) : Λop × C → C

which sends any object (λ,M) to a strict subobject F≥λM of M .

It is separated (resp. exhaustive) if for any M ,

lim←− F≥λM = 0, lim−→ F≥λM =M.

It is left continuous if for any object

F≥λM = lim←−
λ′<λ

F≥λ′
M.

Using the fact that the ranks bound the length of any flag, it is easy to see that

for any separated, exhaustive, left continuous filtration, and any object M , there is

a partition of Λ by intervals

Ir = ]−∞, λr], . . . , I2 = ]λ2, λ1], I1 = ]λ1,+∞[

such that F≥λM is constant on each of these intervals, and a flagu of length r

F(M) : 0 ↪→M1 = F≥λ1M ↪→ · · · ↪→Mr = F≥λrM =M.

Definition 1.4.1. The elements λ1 > λ2 > · · · > λr are called the breaksv of M

(with respect to the filtration F≥.).

uSometimes called the Harder–Narasimhan flag of M , with Example 1.3.3 in mind.
vWe refrain from calling them the slopes of M , in order to prevent confusion with µ(M).
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From F≥., one also gets another descending functorial filtration F>. by strict

subobjects, indexed by Λ, by setting

F>λM := lim−→
λ′>λ

F≥λ′
M.

The colimit exits: indeed, F>λM = F≥λ′
M for λ′ > λ close enough to λ, hence is

a strict subobject of F≥λM , so that there is a short exact sequence in C:

0→ F>λM → F≥λM → grλM → 0.

We set grM := ⊕ grλM = grλ1 M ⊕ · · · ⊕ grλr M. This is functorial in M .

Definition 1.4.2. The multiplicity of the break λ (in M) is the rank of grλM .

Remark 1.4.3. (1) The data of the filtration F≥. is equivalent to the data of the

filtration F>., thanks to the formula

F≥λM = lim←−
λ′>λ

F>λ
′
M.

The filtration F>λM is right continuous: F>λM = lim−→λ′>λ
F>λ

′
M.

Remark 1.4.4. In the literature, one also encounters increasing filtrations by strict

subobjects F≤.. They are defined in the same way as decreasing filtrations by strict

objects, except that Λop is replaced by Λ, and left continuity by right continuity.

In practice, the distinction between descending and ascending filtrations is not

essential: one passes from one to the other by changing λ into −λ, more precisely,

by setting

F≤λM = F≥−λM,

and by reversing all inequalities in the definition of slope functions and

(semi)stability. It is therefore just a matter of convention on the signs of slopes. For

uniformity, we concentrate on descending filtrations in the sequel.

1.4.2. Slope filtrations

Given a descending filtration by strict subobjects as before, one defines functions

deg : sk C → Λ, degM =
∑

λ

λ · rk grλM

and

µ : sk C\{0} → Λ, µ(M) =
degM

rkM
.

Definition 1.4.5. A descending slope filtration F≥. on C (indexed by Λ) is a sep-

arated, exhaustive, left continuous decreasing functorial filtration on C by strict
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subobjects, that satisfies

(1) for any λ, the filtration of F≥λN (resp. N/F≥λN) is induced by the filtration

of N ,

(2) the associated function µ is a slope function in the sense of Definition 1.3.1.

The trivial slope filtration is the one attached to the 0 slope function: F 0M =

M, F>0M = 0.

Proposition 1.4.6. Let F≥. be a slope filtration on C and let N be a nonzero

object of C.
(1) The flag F(N) attached to F≥.N is the unique flag on N (up to unique

isomorphism) whose graded pieces are semistable of slopes arranged in decreasing

order :

µ(N1) > µ(N2/N1) > · · · > µ(Nr/Nr−1).

In particular, N is semistable if and only if it has a unique break (which is then

µ(N)).

(2) In fact, N1 is the universal destabilizing subobject of N . More generally, Ni is

the pull-back by N → N/Ni−1 of the universal destabilizing subobject of N/Ni−1.

(3) Under axiom (2) of slope filtrations, axiom (1) is equivalent to:

(1)′ for any λ, grλ ◦ grλ = grλ.

Proof. (1) and (2). Functoriality of F≥. implies thatN is semistable if N = grλ N .

Assume either axiom (1) or (1)′. Then, by the inequality of Lemma 1.3.4, the

converse holds: if N is semistable, N = grλ N . It follows that the graded pieces of

F(N) are semistable of slopes equal to the breaks of N , in decreasing order (taking

into account the condition gr ◦ gr = gr).

Let

F ′ : 0 = N ′
0 ↪→ N ′

1 ↪→ · · · ↪→ N ′
s = N

be a flag on N with N ′
i/N

′
i+1 semistable of slope λ′i and λ

′
i > λ′i+1.

We prove at the same time equality F ′ = F and assertion (2) by showing that

N ′
i is the pull-back by N ′ → N ′/N ′

i−1 of the universal destabilizing subobject of

N ′/N ′
i−1. By induction on the rank, it is enough to deal with i = 1.

Let M be the universal destabilizing subobject of N . One has λ′1 ≤ µ(M), and

equality only if N ′
1 ⊂M .

Let j ≥ 1 be the first index for which M ↪→ N factors through N ′
j. The com-

position N1 → N ′
j/N

′
j−1 is a nonzero morphism between semistable objects, hence

µ(M) ≤ λ′j by Lemma 1.3.8.

One concludes that j = 1, µ(M) = λ′1 and M = N ′
1.

(3) Assume (1)′. Then the graded pieces of the subflag F(N)∩F≥λN (resp. quotient

flag F(N)/F≥λN) of F(N) are semistable of slopes arranged in decreasing order,

hence F(N) ∩ F≥λN = F(F≥λN) (resp. F(N)/F≥λN = F(N/F≥λN)) by item

(1) of the proposition.
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Conversely, let us assume axiom (1). Then the filtration of the subquotient grλN

of N is induced by the filtration of N , hence grλN = F≥λ grλN = grλ grλN .

The following theorem digests most of the avatars found in the literature of exis-

tence theorems for filtrations of Harder–Narasimhan type and their functoriality.

Theorem 1.4.7. The rule F≥. �→ µ induces a bijection between slope filtrations

(up to unique isomorphism) and slope functions on C.

Proof. Let us fix a slope function µ. By item (2) of the previous proposition, we

know the right candidate for the first notch N1 of F(N) (the notch of maximal

slope): it is the universal destabilizing subobject N1 (which depends only on N

and µ).

Let us show the existence of a flag F(N) with the property that Ni/Ni−1 is

semistable of slope λi := µ(Ni/Ni−1), with λi > λi+1 (i = 1, . . . , r). We proceed

by induction on rkN . We consider such a flag F(N/N1) for N/N1. The pull-back

of F(N/N1) by N → N/N1 is a flag F(N) (Lemma 1.2.7) and the corresponding

morphisms Ni → (N/N1)i are strict epi; moreover Ni/Ni−i ∼= (N/N1)i/(N/N1)i−1

is semistable for i ≥ 1. It is then clear that F(N) has the desired properties.

Let us set

F≥λN = N if λ ≤ λr, F≥λN = Ni if λ ∈ ]λi+1, λi], F≥λN = 0 if λ > λ1.

It is clear that this is a separated, exhaustive, left continuous decreasing fil-

tration on C by strict subobjects, indexed by Λ, which satisfies grλ ◦ grλ = grλ.

Moreover, the associated degree (resp. slope) function is the original one.

Let us finally prove functoriality, i.e. that any morphism f : M → N sends

F≥λ(M) to F≥λ(N). By descending induction, we may assume that F>λ(M)→ N

factors through F>λ(N), and we have to prove that grλ M → N/F>λ(N) factors

through grλ N . Since grλ M is semistable of slope λ, its image P in N/F>λ(N)

has µ(P ) ≥ λ, hence is contained in grλ N by construction of the filtration.

This proves the surjectivity of F≥. �→ µ.

Injectivity follows from item (1) of the previous proposition.

Corollary 1.4.8. Let C be a full subcategory of a proto-Abelian category C′, such
that any strict subquotient in C′ of an object of C is an object of C (so that C is

proto-Abelian, and the embedding C ↪→ C′ is exact). Let rk be a rank function on C′.
Let µ be a slope function on C′, and µ|C be the slope function on C induced by µ

(cf. Lemma 1.3.5). Then the slope filtration attached to µ|C is the restriction to C
of the slope filtration attached to µ.

Indeed, these two slope filtrations on C have slope function µ, hence coincide.

Remarks 1.4.9. (1) Up to now, the additivity of deg on short exact sequences 0→
M → N → P → 0 has been used only via the inequalities of Lemma 1.3.4(1). One
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could thus weaken the definition of slope functions and slope filtrations, retaining

these inequalities instead of degN = degM + degP .

In [90], a formalism of stability is developed where these inequalities are taken

as an axiom, but only in the context of Abelian categories.

(2) The slope filtration F̌≥. on Cop corresponding to the slope function −µ is

given by

F̌≥λM =M/F>−λM.

Let C be quasi-Abelian, with left Abelian envelope A. Recall that K0(C) =

K0(A), which contains the subgroup generated by the torsion classes [Q], Q ∈ Ob T .

Corollary 1.4.10. If C is quasi-Abelian, the rule F≥. �→ deg induces a bijection

between slope filtrations on C (up to unique isomorphism) and homomorphisms

K0(A)→ Λ

that are non-negative on torsion classes [Q], Q ∈ Ob T .
If, moreover, deg is positive on nonzero torsion classes, and if all torsion classes

have rank 0, then the full subcategory C(λ) of C consisting of 0 and the semistable

objects of slope λ is Abelian (hence artinian and noetherian by Remark 1.2.10).

Proof. For the first assertion, it only remains to see that an additive map deg :

K0(A)→ Λ is a degree function, i.e. satisfies

∀ M → N epi-monic in C, degM/ rkM ≤ degN/ rkN

if and only if

∀ Q ∈ Ob T , degQ ≥ 0.

This follows immediately from Lemma 1.2.17.

For the second assertion, one has to see that for any epi-monic M
f→ N in C

with M and N semistable of the same degree is an isomorphism. By Lemma 1.2.17

again, one has a short exact sequence in A

0→M
f→ N → Coker f → 0

with Coker f ∈ T , and deg Coker f = degN − degM = 0. Hence Coker f = 0 by

assumption.

Examples 1.4.11. (1) In the case of Example 1.3.3 (torsion-free coherent sheaves

on a polarized normal connected variety (X,O(1))), the filtration attached to µ (in

either the Mumford–Takemoto or the Gieseker–Maruyama version) is the Harder–

Nararasimhan filtration which is generally used in the study of moduli spaces (at

least when X is smooth), which extends, as is well known, to the Abelian category

A of coherent sheaves. The assumptions of Corollary 1.4.10 are satisfied.

Note that, in the construction of the slope filtration, we have not used the

fact that the slope function on subsheaves of a given torsion-free coherent sheaf is
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bounded from above. Rather, this fact appears as an immediate corollary of the

construction.

(2) Let C be the quasi-Abelian category of finite flat commutative group schemes

over a p-adic field (K, v), of p-primary order. The height ht provides a rank function

on C. In [42], L. Fargues considers the following degree function deg: if the conormal

sheaf ωG decomposes as ⊕OK/aiOK , degG =
∑
v(ai). He shows that µ = deg

ht

satisfies the axioms of a slope function (and takes values in [0, 1]), and studies the

associated slope filtration on C. Moreover, by [42, Prop. 2] and Lemma 1.2.17, the

assumptions of Corollary 1.4.10 are satisfied.

Corollary 1.4.12. If C is Abelian, any slope filtration on its socle Cssi (i.e. the

full subcategory of C consisting of semisimple objects) comes from a unique slope

filtration on C.

Proof. The degree function on Cssi to a degree function on C since K0(C) =

K0(Cssi). The corresponding slope filtration on C then extends that on Cssi by

Corollary 1.4.8.

1.4.3. Highest break function

The highest break of the slope filtration defines a function

ρ : sk C\{0} → Λ

Of course, µ ≤ ρ.

Remark 1.4.13. In the case of the Turrittin–Levelt filtration, the highest break

is called the Poincaré–Katz rank and can be interpreted as a spectral radius; it

is commonly denoted by ρ, whence the choice of this symbol; another common

notation is µmax.

Proposition 1.4.14. (1) An object N is semi-stable of slope λ if and only if for

any nonzero strict quotient P, ρ(N) ≤ ρ(P ).
(2) A slope filtration is determined by its highest break function.

Proof. (1) If N is semistable, one has ρ(N) = µ(N) ≤ µ(P ) ≤ ρ(P ) by item 2 of

Lemma 1.3.7. Conversely, let ν be the lowest break of P . Then Q = grν P is a strict

quotient of N which is semistable of slope ρ(Q) = ν. By assumption, ρ(N) ≤ ρ(Q),

hence µ(N) ≤ ν ≤ µ(P ).
(2) By item (1), for two slope filtrations with the same highest break function, an

object M is semistable of slope λ for one filtration if and only if it is so for the

other filtration. By the characterization of Proposition 1.4.6 of the canonical flags,

the filtrations coincide.
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1.4.4. Newton polygons

To fix ideas, we assume in this subsection that

Λ ⊂ R.

Let F≥. be a descending slope filtration with values in Λ, and let deg and µ be as

before the associated degree and slope functions.

To any object M , we attach its Newton polygon in R2 whose slopes are the

breaks of F≥.M . Since we are dealing with a descending filtration, the natural

convention is to arrange the slopes in decreasing order (from left to right), thus

giving rise to concave piecewise affine functions.w More precisely, let us introduce

the following definition.

Definition 1.4.15. (1) The polygonx P (F) of a flag

F : 0 =M0 ↪→M1 ↪→ · · · ↪→Mr =M

is the convex hull of the points with coordinates

(x = rkMi, y ≤ degMi).

(2) The Newton polygon of M is the polygon of the flag F(M) attached to F≥.M

NP (M) := P (F(M)).

Lemma 1.4.16. The endpoints of NP (M) are (0, 0) and (rkM, degM). The slope

of the segment linking these points is the slope µ(M) of M .

The points (x = rkMi, y ≤ degMi) are extremal points of NP (M). The slopes

of the edges of NP (M) are the breaks λ of M, and the horizontal length of such an

edge is rk grλM .

This is immediate.

Lemma 1.4.17. If C is additive, and N = M ⊕ P, then the breaks of N are the

breaks of M and of N, counted with multiplicities. A fortiori NP (N) = NP (M) +

NP (P ) (in the sense of the Minkovsky sum of convex sets).

Proof. Indeed, for any λ, the additive functor grλ preserves ⊕, hence grλN =

grλM ⊕ grλ P .

wThis is the usual convention in the context of stability for vector bundles.
xStricto sensu, this is not a polygon, since this convex set is unbounded from below; but the
terminology is traditional.
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Proposition 1.4.18. The polygon of any flag F (of any length) ending with M

lies below NP (M), with the same endpoints.

Proof. Let F ′ and F ′′ be other flags on M . If F ′′ is a refinement of F ′, then
P (F ′) lies below P (F ′′). On the other hand, for any refinement F ′′ of F(M),

P (F ′′) = NP (M). Indeed, if 0 ⊂ Mi−1 ⊂ N ⊂ Mi is a flag, then the point

(rkN, degN) lies below the segment joining the points (rkMi−1, degMi−1) and

(rkMi, degMi) since Mi/Mi−1 is semistable.

One concludes by using a common refinement of F(M) and F ′, cf. Lemma 1.2.8.

In the context of vector bundles, this characterization of NP (M) was given by

Shatz [98].

Remark 1.4.19. If one deals with ascending slopes filtrations, it is then natural

to define P (F) as the convex hull of the points with coordinates (x = rkMi, y ≥
degMi), which gives rise to a convex piecewise affine function.y The endpoints

are again (0, 0) and (rkM, degM). Passing to the associated descending filtration

(F≥λ = F≤−λ) results in changing the polygon of a flag on M by a symmetry with

respect to the horizontal axis (and changing the sign of degM).

On the other hand, if one insists on dealing with convex piecewise affine functions

in the presence of a descending slope filtration,z one may consider the sequence of

strict epis aa

M ′
r =M →→M ′

r−1 =M/M1 →→ · · · →→M ′
1 =M/Mr−1 →→M ′

0 = 0.

associated to the flag F and redefine the polygon of F to be the convex hull of the

points with coordinates (x = rkM ′
i , y ≥ degM ′

i). The endpoints are (0,− degM)

and (rkM, 0). The relation with the polygon defined in Definition 1.4.15 is a sym-

metry through the point ( rkM2 , 0).

1.4.5. The topological space of all slope filtrations

Let us endow Λ with the canonical topology generated by the open intervals.

By Theorem 1.4.7, slope filtrations are in bijection with degree functions

deg : K0(C)→ Λ.

Endowing Hom(K0(C),Λ) with its natural linear (weak) topology, the space of

degree functions (which is defined by the linear inequalities

deg([N ]− [M ]) ≥ 0

yThis is the usual convention in the context of p-adic Frobenius slopes.
zThis is the usual convention in the context of ramification theory and asymptotic analysis of
differential equations.
aaThat is nothing but the flag on M with respect to the dual slope filtration F̌≥., cf.
Remark 1.4.9(2).
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if there is a monic-epi from M to N) is a convex cone,bb whose apex corresponds

to the trivial slope filtration. It is in fact a closed convex cone.

Given a nonzero object N , the condition that N is µ-semistable (i.e. the set of

linear inequalities

rkM. deg[N ]− rkN. deg[M ] ≥ 0

if there is a monic from M to N) defines a closed convex subcone.

Example 1.4.20. Let us compute the space of all slope filtrations on the quasi-

Abelian category of vector bundles on a smooth connected projective curve X of

genus g.

Since rk is additive in short exact sequences and rkM ≤ rkN whenever there

is a monic M ↪→ N , any constant function on Sk C\{0} is a slope function. By

addition of a constant, we may consider only slope functions µ with µ(OX) = 0.

Among them, there is the canonical (Mumford) slope function µcan.

One has a group isomorphism

K0(C) ∼= K0(X)
(det,rk)→ Pic(X)⊕ Z,

and the obvious mapping Pic(X) → K0(X) is a set-theoretic section of the pro-

jection K0(C) det→ Pic(X). Therefore µ · rk factors through this projection, and is

determined by its value on Pic(X) ⊂ K0(X). Moreover, for any L,L′ ∈ Pic(X),

one has, µ(L ⊗ L′) = µ(det(L⊕ L′)) = (µ · rk)(L ⊕ L′) = µ(L) + µ(L′).
On the other hand, there is an exact sequence

0→ Pic0(X)→ Pic(X)
µcan→ Z.

Let us show that µ vanishes on Pic0(X). Indeed, for any L,L′ ∈ Pic(X) of degree 0

and d ≥ g respectively, and for any integer n, there is, by Riemann–Roch, a monic

L⊗n ↪→ L′. This implies µ(L⊗n) = nµ(L) ≤ µ(L′), whence µ(L) = 0, µ(L′) ≥ 0.

Therefore µ factories through a non-negative multiple of µcan on Pic(X).

In conclusion, any slope function on C is of the form

λ · µcan + λ′, λ ∈ Λ≥0, λ
′ ∈ Λ.

1.4.6. Rees deformation from grM to M

Assume that C consists of modules (or sheaves of modules) over some domain R,

with some extra structure. For a given objectM , let ΛM ⊂ Λ be a finitely generated

sub-semigroup such that the associated group is free and equal to the subgroup of

bbI.e. is stable under linear combinations with non-negative coefficients.
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Λ generated by the breaks of M (for instance, if Λ = Q, one may choose ΛM = 1
dN

to be the semigroup generated by the inverse of the common denominator d of

the breaks). Without loss of generality, one may assume that Z[[xΛM ]] is a regular

algebra and that the least nonzero element of ΛM is less or equal to the positive

differences between breaks.

Then one can form the following variant of the Rees module over R[[xΛM ]]:

R(M) = RΛM (M) =
∑

λ

F≥λM · x−λR[[xΛM ]]

(as a submodule of x−νM ⊗R R[[xΛM ]]). The generic fiber is isomorphic to M ,

whereas the special fiber is isomorphic to grM (variant: one could work withR[xΛM ]

instead of R[[xΛM ]]).

This construction is functorial: any f ∈ C(M,N) gives rise, for suitable ΛM,N ,

to a morphism R(M)→ R(N) whose special fiber is gr f .

1.5. Exactness properties

1.5.1. Exact filtrations

Let F≥. be a separated, exhaustive, left continuous decreasing filtration by strict

subobjects on the proto-Abelian category C, as in Sec. 1.4.1.

Definition 1.5.1. A morphism f : M → N is strictly compatible with F≥. if for
any λ, the canonical (strict) monic

f(F≥λM) ↪→ f(M) ∩ F≥λN

is an isomorphism.

This is equivalent to saying that in the canonical factorization of f = m ◦ e as

a strict epi e : M →→ Coim f followed by a monic m, both e and m are strictly

compatible with F≥. (the composed monic

f(F≥λM) ↪→ m(F≥λeM) ↪→ m(eM) ∩ F≥λN = f(M) ∩ F≥λN

being an isomorphism if and only if so are the two intermediate monics).

Caution: the composition of two morphisms that are strictly compatible with F≥.

is not necessarily strictly compatible with F≥..

Definition 1.5.2. F≥. is exact (resp. strongly exact) if any strict morphismcc

(resp. any morphism) is strictly compatible with F≥..

ccI.e. a composition of a strict epi followed by a strict monic. Note, on the other hand, that in the
additive case, any morphism can be factored, in the opposite order, as e ◦ m where m is a strict
monic and e a strict epi; take m = (id, f) : M → M ⊕ N and e = pr2 and note that there is a

short exact sequence 0 → M
(id,f)→ M ⊕N

f◦pr1−pr2→ N → 0.
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If C is Abelian, there is no difference between these two notions, of course.

Examples 1.5.3. (1) Among our five basic examples, it turns out that the

Turritin–Levelt, Hasse–Arf and Dieudonné–Manin slope filtrations are exact, but

the Harder–Narasimhan slope filtration is not, as the consideration of the standard

short exact sequence of vector bundles

0→ OP1(−1)→ O2
P1 → OP1(1)→ 0 (1.11)

shows. The Grayson–Stuhler filtration is also non-exact, as the consideration of the

standard short exact sequence of Euclidean lattices

0→ (1, 1) · Z→ Z2 →
(
1

2
,−1

2

)
· Z→ 0 (1.12)

shows.

(2) On the proto-Abelian category of vector bundles of rank ≤ 1 on a smooth

connected projective curve, the standard slope filtration is exact but not strongly

exact. However, we do not know any example of an exact, but not strongly exact,

slope filtration on a quasi-Abelian category.

In the sequel, we assume that C is quasi-Abelian.

Definition 1.5.4. ([96, 1.1.18]) A functor θ between quasi-Abelian categories is

exact (resp. strongly exact) if it preserves short exact sequences (resp. if it preserves

kernels and cokernels).

It follows from [96, 1.1.15, 1.1.16] that θ is strongly exact if and only if it is

exact and preserves epi-monics. This is the characterization that we shall use

Lemma 1.5.5. The following properties are equivalent :

(1) F≥. is exact (resp. strongly exact),

(2) for every λ, F≥λ is an exact functor (resp. strongly exact functor),

(3) for every λ, grλ is an exact functor (resp. strongly exact functor),

(4) the “dual filtration” F̌≥. on Cop (given by F̌≥λN = N/F>−λN) is exact (resp.

strongly exact).

Proof. (1) ⇔ (2) is straightforward: the strict compatibility of any strict epi and

any strict monic (resp. and also any epi-monic) with F≥. implies that for every λ,

F≥λ is an exact functor (resp. and preserves epi-monics), and conversely.
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(2) ⇔ (3): let 0 → M → N → P → 0 be a short exact sequence. Let us consider

the following commutative diagram in C with exact columns:

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0
�

�
�

�
�

0 −−−−→ F>λM −−−−→ F>λN −−−−→ F>λP −−−−→ 0
�

�
�

�
�

0 −−−−→ F≥λM −−−−→ F≥λN −−−−→ F≥λP −−−−→ 0
�

�
�

�
�

0 −−−−→ grλM −−−−→ grλN −−−−→ grλP −−−−→ 0
�

�
�

�
�

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0.

If F≥. is exact, the second and third rows are exact. By the snake lemma in the

left Abelian envelope A, cf. Proposition 1.2.14, it follows that the fourth row is also

exact in A, hence in C. This shows that gr is exact.

For the converse, we argue by descending induction on λ: we assume that the

second row of the diagram is exact. If gr is exact, the fourth line is exact, and it

follows that the third is also exact.

It remains to prove that F≥λ preserves epi-monics for any λ if and only if so does

grλ for any λ. Let us note that F≥λ and F>λ always preserve monics (independently

of exactness).

Let M
f→ N be epi-monic in C and let us consider the following commutative

diagram in A with exact columns:

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0
�

�
�

�
�

0 −−−−→ F>λM −−−−→ F>λN −−−−→ T = F>λN/F>λM −−−−→ 0
�

�
�

�
�

0 −−−−→ F≥λM −−−−→ F≥λN −−−−→ T ′ = F≥λN/F≥λM −−−−→ 0
�

�
�

�
�

0 −−−−→ grλM −−−−→ grλN −−−−→ T ′/T −−−−→ 0
�

�
�

�
�

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0.
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If F≥λf and F>λf are epi-monic in C, grλ f is epi in C and the second and third

rows are exact in A. By the snake lemma, it follows that the fourth row is also

exact in A, hence grλ f is epi-monic in C.
For the converse, we argue by descending induction on λ: we assume that F>λf

and grλ f are epi, then the composition F>λN → F≥λN → CokerF≥λf factors

through a morphism grλN → CokerF≥λf whose composition with the epi grλ f is

0, hence is itself 0. Therefore F≥λf is epi.

(1)⇔ (4) follows from (1)⇔ (3) since grλF = gr−λ
F̌

.

Corollary 1.5.6. Any strongly exact functorial decreasing separated exhaus-

tive left-continuous filtration by strict subobjects (indexed by Λ) is a slope

filtration.

A fortiori, if C is Abelian, any exact functorial decreasing separated exhaustive

left-continuous filtration (indexed by Λ) on objects of C is a slope filtration.

Proof. Indeed, exactness implies that for any λ, the filtration of F≥λN (resp.

N/F≥λN) is induced by the filtration of N . On the other hand, strong exactness

implies, via item (3) of the previous lemma, that the function M �→ degM =∑
λ λ · rk grλM is additive with respect to short exact sequences.

Example 1.5.7. In the Abelian category of rational mixed Hodge structures

(Deligne), the decreasing filtration attached to the (increasing) weight filtration

(which is exact [33])

F≥λM =W[−λ]M

is an exact slope filtration. It also induces a strongly exact slope filtration on the

quasi-Abelian category of (torsion-free) integral mixed Hodge structures, hence also

on the full quasi-Abelian subcategory of 1-motives over C, cf. [34]. The left Abelian
envelope of the latter category was considered in [14].

Remarks 1.5.8. (1) The Newton polygons associated to an exact slope filtration

are additive in short exact sequences.

(2) For any morphism f : M → N , it follows from Lemma 1.3.9 that Ker gr f =

grKer gr f , whence a canonical morphism

grKer f → Ker gr f,

which is neither injective nor surjective in general (as one can see in the short exact

sequence (1.11)). It is an isomorphism for strongly exact filtrations.

1.5.2. Characterization of (strongly) exact slope filtrations

We now assume that F≥. is a slope filtration.
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Theorem 1.5.9. The following properties are equivalent :

(1) F≥. is exact (resp. strongly exact),

(2) any nonzero strict subobject (resp. any nonzero subobject) of a semistable object

has the same slope,

(3) any nonzero strict quotient (resp. any nonzero quotient) of a semistable object

has the same slope,

(4) there is no nonzero strict morphism (resp. nonzero morphism) between

semistable objects of different slopes.

Items (2) and (3) of the theorem justify the common use of the terminology

isoclinic or pure (of slope λ) instead of semistable, in the case of a strongly exact

filtration.

Corollary 1.5.10. If F≥. is a strongly exact slope filtration, then the stable objects

are the simple objects of C.

This follows from item (2) of Theorem 1.5.9.

Proof. (2) ⇔ (3) follows from the fact that F≥. and its dual F̌≥. are simulta-

neously exact (resp. strong exact) or not. Note that in these items, the subobject

(resp. quotient) is necessarily semistable (by item (6) of Lemma 1.3.7).

(2) + (3) ⇒ (4): Let f : L → M be a strict morphism (resp. a morphism)

between semistable objects of slopes λ and ν respectively. Let L
e→→M ↪→ N be its

canonical factorization, with e strict epi. Then (2) + (3) imply µ(M) = λ = ν.

(4) ⇒ (2): Let N be a semistable object of slope ν, M be a nonzero strict

subobject (resp. subobject) of N , and L be the universal destabilizing subobject

of M . Then µ(L) = µ(Im(L)) = ν by (4). In particular, ImL and N/ ImL are

semistable of slope ν (or zero). Again, the universal destabilizing subobject ofM/L,

which is a subobject N/ ImL, has slope ν if it is nonzero, but this contradicts the

definition of L. Thus M = L is semistable of slope ν.

(1)⇔ (2) It suffices to prove that the following two assertions (in their respective

avatars).

(i) If any monic (resp. strict monic) is strictly compatible with F≥., then any

nonzero subobject (resp. strict subobject) of a semistable object is semistable of

the same slope.

(ii) If any nonzero subobject (resp. strict subobject, resp. strict quotient) of

a semistable object is semistable of the same slope, then any monic (resp. strict

monic, resp. strict epi) is strictly compatible with F≥..

Proof of (i). If f :M ↪→ N is monic (resp. strict monic), withN semistable of slope

λ, the functoriality of F≥. implies that F>λM = 0, and the strict compatibility of

f with F≥. implies that f(F>λM) = f(M) ∩ F>λN = M . Hence M = grλ M is

zero or semistable of slope λ.
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Proof of (ii). Let f : M ↪→ N be a nonzero monic. Arguing by descending

induction on λ, we assume that f(F>λM) = f(M)∩F>λN and have to show that

f(F≥λM) = f(M) ∩ F≥λN . Then grλ M → grλ N is monic (resp. strict monic),

being a push-out of F≥λM → F≥λN by a strict epi, and that the natural morphism

f(M) ∩ F≥λN
f(F≥λM)

→ F≥λN
f(F≥λM) + F>λN

=
grλ N

Im(grλ M → grλ N)

is monic (resp. strict monic). By assumption, this implies that f(M)∩F≥λN
f(F≥λM)

is zero

or semistable of slope λ. Since

f−1(F≥λN)

F≥λM
→ f(M) ∩ F≥λN

f(F≥λM)

is epi-monic and f−1(F≥λN)
F≥λM

has slopes ≤ λ, we conclude that f(F≥λM) = f(M)∩
F≥λN .

Let g : N →→ P be a nonzero strict epi, with kernel denoted by f : M ↪→ N .

Taking into account the previous step, we know that f is strictly compatible with

F≥. Arguing by ascending induction on λ, we assume that F≥λP = g(F≥λN) and

have to show that F>λP = g(F>λN). One has a commutative diagram with exact

rows and columns

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0
�

�
�

�
�

0 −−−−→ F>λM −−−−→ F>λN −−−−→ F>λN
F>λM

−−−−→ 0
�

�
�

�
�

0 −−−−→ F≥λM −−−−→ F≥λN −−−−→ F≥λP −−−−→ 0
�

�
�

�
�

0 −−−−→ grλM −−−−→ grλN −−−−→ grλ N
grλ M

−−−−→ 0
�

�
�

�
�

0 −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ 0.

We have to show that the natural strict monic F>λN
F>λM

→ F>λP is an isomor-

phism, or equivalently, that the natural strict epi grλ N
grλ M

→ grλ P is an isomor-

phism. By assumption, grλ N
grλ M is zero or semistable of slope λ. Thus the morphism

F≥λP → grλ N
grλ M factors through grλ P .

1.5.3. Split slope filtrations

Definition 1.5.11. A slope filtration F≥. is split if gr ∼= id (as a functor).

In other words, the canonical flag F(M) splits, functorially in M .
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Examples 1.5.12. (1) Among our four basic “additive examples”, the Turrittin–

Levelt and Hasse–Arf filtrations are split (see Sec. 2.4.1 below for an explanation

of this fact), as well as the Dieudonné–Manin filtration if φ is bijective.

(2) Any vector bundle on a smooth connected projective curve of genus ≤ 1 is

a direct sum of semistable bundles, i.e. gr is the (isomorphic to the) identity on

objects; however, it is not identity on morphisms, and, as we have seen, the Harder–

Narasimhan filtration is not exact.

(3) Exact slope filtrations may be non-split, even in the Abelian case, cf. Exam-

ples 1.5.7 or 2.2.12.

Lemma 1.5.13. (1) Any split slope filtration is strongly exact.

(2) In the presence of a split slope filtration, the additive groups of morphisms

C(M,N) are naturally graded.

Proof. (1) follows from item (3) of Lemma 1.5.5. (2) is immediate.

1.6. Slope filtrations and triangulated categories

1.6.1. Extension of a slope filtration from C to its left Abelian envelope

We set

Λ̄ = Λ ∪ {∞}
(totally ordered set with maximum ∞).

Let C be a quasi-Abelian category, with left Abelian envelope A. According to

Corollary 1.4.10, to give a slope filtration indexed by Λ on C (with respect to a

fixed rank function rk) is equivalent to giving a homomorphism

deg : K0(A)→ Λ

that is non-negative on torsion classes [Q], Q ∈ Ob T .
Let us assume that T consists precisely of objects of rank 0. One can extend the

slope function µ = deg / rk to a function

µ : SkA → Λ̄

which is ∞ exactly on Sk T .
The slope filtration on C then extends to a unique decreasing separated exhaus-

tive functorial left-continuous filtration on A indexed by Λ̄: with the notation of

Proposition 1.2.14, for any A ∈ ObA, F≥λA is the pull-back of F≥λ(A/Ator) by

A→ A/Ator, and F
≥∞A = Ator.

1.6.2. Stability structures on a triangulated category

Let D be an essentially small triangulated category, and let

rk : K0(D)→ Z
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be a group homomorphism. The following definition is a slight reformulation of

Bridgeland’s notion of “stability condition”.

Definition 1.6.1. A stability structure (or s-structure) on D consists of a group

homomorphism

deg : K0(D)→ Λ

called the degree function, and full additive subcategories C(λ) for each λ ∈ Λ̄, such

that

(1) the values of rk on C(λ)\0 are positive if λ ∈ Λ (resp. rk = 0 on C(∞)),

(2) one has deg = λ · rk on C(λ)\0 if λ ∈ Λ (resp. deg ∈ Λ>0 on C(∞)),

(3) for any E ∈ C(λ) and E′ ∈ C(λ′), one has

D(E[n], E′[n′]) = 0 if (n, λ) > (n′, λ′)

(with respect to the lexicographic order in Z× Λ̄),

(4) for any nonzero object E of D, there is a finite sequence

(n1, λ1) > · · · > (nr, λr) in Z× Λ̄

and a collection of triangles (Postnikov tower)

0 = E0 −→ E1 −→ E2 → · · · → Er−1 −→ Er = E
+1

↖ F1 ↙
+1

↖ F2 ↙
+1

↖ Fr ↙

with Fj ∈ C(λj)[nj ].

Remark 1.6.2. For Λ = R, this corresponds to Bridgeland’s notion of “stability

condition” modulo the following dictionary. Bridgeland’s “central charge” is

Z(E) = − degE +
√
−1, rkE ∈ C.

The categories P(φ), φ ∈ R, from [22, Def. 1.1] are the shifts C(λ)[n], according to

the rule

(n, λ) �→ φ = n+
1

π
Arctg

(
− 1

λ

)
,

which induces an increasing bijection Z × Λ̄ ∼= R (here, Arctg takes its values in

]0, π]). By working directly with the totally ordered set Z × Λ̄ instead of R, all
arguments of [22] apply, mutatis mutandis, without assuming Λ = R.

For any interval I ⊂ Λ̄, we denote by C(I) the smallest strictly full extension-

closed subcategory of D containing the objects of C(λ), λ ∈ I. This is nothing but

the full subcategory of D consisting of objects that admit a Postnikov tower as

above with nj = 0, λj ∈ I.
Similarly, for any interval J ⊂ Z × Λ̄, we denote by D(J) the smallest strictly

full extension-closed subcategory of D containing the objects of C(λ)[n], (n, λ) ∈ J .
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Lemma 1.6.3. (1) A Postnikov tower as in (4) is unique (up to unique

isomorphism).

(2) The subcategories C(λ) are Abelian, and all the subcategories C(I) are quasi-

Abelian. The short exact sequences in C(I) are the triangles in D whose vertices

belong to C(I).

Proof. (1): cf. [47, 4.1].

(2): cf. [22, 5.2, 4.3].

Theorem 1.6.4. (Bridgeland) To give an s-structure on D is equivalent to giving

• a bounded t-structure on D,
• a quasi-Abelian full subcategory C of the heart A of this t-structure, such that

A is the left Abelian envelope of C and the associated torsion subcategory T (cf.

Proposition 1.2.14) consists of the objects of A of rank 0, and

• a slope filtration on C whose degree function

deg : K0(D) = K0(A) = K0(C)→ Λ

is positive on nonzero torsion classes [Q], Q ∈ Ob T .
In fact, the t-structure attached to a given s-structure is

D≤0 = D(N× Λ̄), D≥0 = D((−N) × Λ̄),

one has

A = C(Λ̄), C = C(Λ)
and C(λ) is the full subcategory of C consisting of 0 and the semistable objects of

slope λ.

Proof. cf. [22, 5.3].

Examples 1.6.5. The Harder–Narasimhan filtration on vector bundles (Mumford

or Gieseker version, cf. Example 1.3.3) on a polarized smooth normal connected

projective variety X satisfies the assumption of the corollary and induces a canon-

ical s-structure on the bounded derived category Db(OX). We refer to [47] for a

discussion of this s-structure and more exotic ones.

Remark 1.6.6. Actually, Bridgeland [22] allows rank functions K0(D) → R with

real values as well; the set of such s-structures then acquires a GL+
2 (R)-action,

coming from the homographic action of GL+
2 (R) on pairs (rk, deg).

2. Behaviour of Slope Filtrations with Respect to a Tensor

Product

In our first four basic examples, the underlying quasi-Abelian categories are

endowed with a natural tensor product ⊗, and the slope filtrations exhibit rather
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different behaviours with respect to ⊗ and duality: in the Turrittin–Levelt and

Hasse–Arf cases, the slopes are non-negative and invariant under duality; in the

Dieudonné–Manin and Harder–Narasimhan cases, the slopes are changed to their

opposite by duality.

In these two types of slope filtrations, the breaks remain bounded or grow lin-

early, respectively, when one takes arbitrarily large tensor (or symmetric) powers.

The aim of this chapter is to analyze these two types (which we call ⊗-bounded
and ⊗-multiplicative respectively) in the general context of quasi-tannakian cate-

gories, that are quasi-Abelian generalizations of tannakian categories.

2.1. Quasi-tannakian categories

2.1.1. Quasi-tannakian categories and rank function

Let F be a field of characteristic 0.

Definition 2.1.1. An F -linear symmetric monoidal category (C,⊗) is quasi-

tannakian over F if

(1) it is quasi-Abelian,

(2) it is rigid (i.e. any object has a (strong) dual, cf. [93]),

(3) End1 = F (where 1 denotes the unit object),

(4) there is an exact faithful (symmetric) rigid monoidal functor ω from C to the

monoidal category V ecF ′ of finite-dimensional vector spaces over some fixed exten-

sion F ′/F .

Remarks 2.1.2. If one replaces (1) by the stronger condition

(1)′ it is Abelian,

one recovers the definition of a tannakian category over F .

On the other hand, it is well known that ω is automatically compatible with

duality (cf. [93, I.5.2.2]). Note that the functor ()∨ : Cop → C being an equiva-

lence, it respects monics and epis, kernels and cokernels, images and coimages. Note

also that ω can be used to detect when a morphism in C is nonzero, resp. monic,

resp. epi.

2.1.2. Quasi-tannakian rank

By rigidity, there is a notion of trace of any endomorphism, and of rank

rk M := tr idM .

One has rk M = dimF ′ ω(M), which is a natural integer (here, the fact that

charF = 0 is essential). This shows that rk takes the value 0 only on the zero

object, and is additive on short exact sequences (since ω is exact). Thus rk is a

rank function in the sense of Definition 1.2.9.



May 15, 2009 17:59 WSPC/251-CM 00002

42 Y. André

Tensor product and duality make K0(C) into a commutative ring with involu-

tion, and rk defines a ring homomorphism

rk : K0(C)→ Z

with rkM = rkM∨.
In the sequel, C will be an essentially small quasi-tannakian category over F,

equipped with its canonical rank function rk.

2.1.3. The semisimple tannakian quotient category

Being quasi-Abelian, C is pseudo-Abelian,dd and since charF = 0, it is possible to

define symmetric and exterior powers of an object as direct summands of its tensor

powers.

Condition (4) implies

(4)′ For any object M,

rkM+1∧
M = 0.

Essentially small pseudo-Abelian F -linear symmetric monoidal categories sat-

isfying (2), (3) and (4)′ have been studied in [10] and by P. O’Sullivan (indepen-

dently).

Proposition 2.1.3. [10, Sec. 9] [80] Assume C satisfies (2), (3), (4)′. Then the

maximal ⊗-ideal N of C is locally nilpotent, C̄ = C/N is a semisimple tannakian

category (with the same objects as C). The canonical ⊗-functor C → C̄ is conserva-

tive (i.e. any morphism f in C is an isomorphism if ω(f) is an isomorphism) and

full, and sk C = sk C̄.

2.1.4. O’Sullivan’s description

In fact, O’Sullivan went further and elucidated the structure of ⊗-categories satis-
fying (2), (3) and (4)′. Although we will make little use of it, we briefly survey this

enlightening viewpoint (cf. [80] and [6, 3.7] for more detail).

The functor C → C̄ actually admits a ⊗-section σ.
Let us first assume that F ′ = F . Then ω ◦ σ induces an equivalence

C̄ ∼= RepH,

where RepH denotes the tannakian category of finite-dimensional representations

of the proreductive group H = Aut⊗(ω ◦ σ) over F . Moreover, there is an integral

affine scheme X = SpecA with H-action, with AH = F , a F -point x ∈ X fixed

under H , and an equivalence

C ∼= V ec(H,X)

between C and the category of H-equivariant vector bundles on X , such that the

projection C → C̄ corresponds to the functor “fiber at x”: V ec(H,X) → RepH it

ddI.e. idempotent endomorphisms have kernels.
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turns out that, in this situation, any object of V ec(H,X) is of the form V ⊗ OX
for some object V ∈ RepH .

In general, the result is similar: A becomes an integralee algebra in Ind C̄, x an

augmentation A→ 1, V ec(H,X) is replaced by the category ProjA whose objects

are those of C and whose morphisms are given by HomA-linear
Ind C̄ (M ⊗A,N ⊗A).

Examples 2.1.4. (1) The quasi-tannakian category of finite-dimensional F -vector

spaces with a (separated exhaustive) Z-filtration is ⊗-equivalent to V ec(Gm,A1)

(for the natural action of Gm on A1 by homotheties).

(2) The quasi-tannakian category of vector bundles over P1 is ⊗-equivalent to

V ec(Gm,A2) (this is a reformulation of Grothendieck’s theorem).

(3) The tannakian category of finite-dimensional F -vector spaces with a nilpo-

tent endomorphism is ⊗-equivalent to V ec(SL2,A2) (this is a reformulation of the

Jacobson–Morozov theorem).

The latter embeds as a full subcategory in the Abelian category Mod(SL2,A2)

of SL2-equivariant coherent sheaves on A2. This subcategory is unstable under

taking subobjects or quotients, but monics and epis in V ec(SL2,A2) remain so in

Mod(SL2,A2), respectively. An object ofMod(SL2,A2) lies in V ec(SL2,A2) if and

only if it is reflexive (i.e. isomorphic to its bidual).

Lemma 2.1.5. Let C be a quasi-tannakian category.

(1) ⊗ is exact in both arguments and ()∨ is exact.

(2) a morphism f ∈ C(M,N) is monic (resp. epi) if and only ω(f) is injective (resp.

surjective).

In that case, one has rk M ≤ rk N (resp. rk M ≥ rk N).

Proof. (1) The functor ()∨ : Cop → C preserves kernels and cokernels, hence is

exact.

Let MODA be the Abelian monoidal category of A-modules in Ind C̄ and

MODω(A) be the Abelian monoidal category of ω(A)-modules in Ind V ecF ′ . Notice

that ω extends to a faithful exact monoidal functor MODA → MODω(A). Then,

in view of O’Sullivan’s monoidal equivalence

C ∼= ProjA, M �→M ⊗A,

the bi-exactness of ⊗ in C follows from the exactness of the endofunctors

−⊗ω(A) (ω(M)⊗F ′ ω(A)), (ω(M)⊗F ′ ω(A))⊗ω(A) −

in MODω(A), free ω(A)-modules being flat.

(2) Since ω is faithful, ω(f) injective (resp. surjective) implies f monic (resp. epi).

For the converse, by duality, it suffices to treat the case of a monic f : M ↪→ N

eeIn the idealistic sense.
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in C ∼= ProjA. Let W be the kernel of f in MODA. If W �= 0, there is a nonzero

morphism P →W in Ind C̄ with P in C. Whence a nonzero morphism P ⊗A→W

in MODA, and by composition a nonzero morphism N ⊗ A → M ⊗ A in ProjA
such that the composed morphism P ⊗A→ N ⊗A is zero. This is a contradiction,

thus f remains monic in MODA. Therefore ω(f ⊗ 1A) is also monic in MODω(A),

hence ω(f) is injective.

The last assertion is immediate.

Remarks 2.1.6. (1) In concrete situations, the assertions of the proposition can

be checked direcly, without reference to O’Sullivan’s theory.

If C is Abelian, the proposition is standard and may be obtained directly

using ω.

(2) Items (2) and (3) imply that any constant function µ with values in Λ defines

a slope filtration on C.
(3) The description of quasi-tannakian in terms of equivariant vector bundles (or of

objects of ProjA in the non-neutral case) allows to extend the Rees deformation of

Sec. 1.4.6 to this setting. Applying ω, one gets a finitely generated F ′[[xΛM ]]-module

which is a deformation from ω(grM) to ω(M).

(4) There is a natural surjective ring homomorphism K0(C̄)→ K0(C),ff that can be

identified with the standard morphism R(H)→ KH(X) between the representation

ring and the equivariant K-theory ring, when C ∼= V ec(H,X).

(5) It is an open problem to determine which categories of type V ec(H,X) are

quasi-Abelian.

(6) Any slope function on C induces a slope function on C̄. The corresponding

slope filtrations are compatible if and only if any object M of C is a direct sum of

semistable objects, i.e. M = grM .

2.2. Invertible objects and determinantal slope filtrations

2.2.1. Determinants

The invertible objects with respect to ⊗ are the rank one objects (the inverse being

the dual). Any nonzero morphism between invertible objects is monic-epi.

We denote by Pic C the Picard group of C, i.e. the group of isomorphism classes

of rank one objects, with respect to ⊗. Since sk C = sk C̄, one has PicC = Pic C̄
(which is identified with the group of F -characters of H in case C ∼= V ec(H,X)).

For any nonzero object M , its determinant

detM =
rkM∧

M

ff In fact, K0(C̄) is the Grothendieck group of C with respect to split short exact sequences.
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is an invertible object. One has a canonical isomorphism

M∨ ∼=
(

rkM−1∧
M

)
⊗ (detM)∨. (2.1)

There are two ways to see this. One can use the fact that there is a natural⊗-functor
RepFGL(rkM) → C sending the standard representation to M (cf. e.g. [6, 3.21]),

and that such an isomorphism is already available in RepFGL(rkM). Or one can

use the fact that the functor C → C̄ being conservative and full, it is essentially

injective (i.e. two objects of C are isomorphic if and only if their images in C̄ are

isomorphic), and that such an isomorphism is actually known to be available in any

semisimple tannakian category.

Lemma 2.2.1. The rule M �→ detM induces a surjective group homomorphism

K0(C) det→ PicC
with det([M ]∨) = det[M ]−1. The natural set-theoretic map Pic C → K0(C) is a

section of det.

Proof. In order to establish the existence, one has to see that det is multiplicative

on short exact sequences 0 → M → N → P → 0. This is seen as usual by

introducing the Koszul filtration by strict subobjects

Ki

(
j∧
N

)
= Im

(
i∧
M ⊗

j−i∧
N →

j∧
N

)
(i ≤ j)

with

Ki

(
j∧
N

)/
Ki+1

(
j∧
N

)
∼=

i∧
M ⊗

j−i∧
P.

The surjectivity and the other assertions are straightforward.

Proposition 2.2.2. (1) For any objectsM,N, there is an isomorphism of invertible

objects

det(M ⊗N) ∼= detM⊗ rkN ⊗ detN⊗ rkM .

For any positive integer m, and any positive integer n less than rkN, there are

isomorphisms of invertible objects

det(SmM) ∼= detM⊗r, det

(
n∧
M

)
∼= detN⊗s

with

r =
(m+ rkM − 1)!

(m− 1)! rkM !
, s =

(rkN − 1)!

n!(rkN − n)! .

(2) For any morphism f : M → N that is monic-epi, det f =
∧rkM

f is a epi-

monic morphism of invertible objects.
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(3) A morphism M
f→ N is an isomorphism if and only if rkM = rkN and det f

is an isomorphism.

Proof. (1) is be proven in the same way as (2.1).

(2) By Lemma 2.1.5, ω(f) is a bijective linear map, hence detω(f) = ω(det f) is

nonzero. Therefore, det f is a nonzero morphism between invertible, hence monic-

epi.

(3) If f is an isomorphism, so is det f and rkM = rkN . The converse follows from

the fact that (
∧rkM−1

f)⊗ (det f)−1 is then left inverse to f .

Corollary 2.2.3. Let C′ be a quasi-tannakian category over an extension F ′/F,
and let θ : C → C′ be an F -linear ⊗-functor.

Then θ is conservative if and only if any nonzero monic m : L ↪→ 1 such that

θ(m) is an isomorphism is an isomorphism.

Proof. The “only if ” part is obvious. To prove the “if ” part, let us consider a

morphism f : M → N be a morphism such that θ(f) is an isomorphism. Then

rkM = rkN and θ(det f) = det θ(f) is an isomorphism. Tensoring θ(det f) with

1detN∨ , one gets a nonzero monic m : L ↪→ 1. By assumption, this is an isomor-

phism, hence det f is an isomorphism, and so is f by the last proposition.

Corollary 2.2.4. The following conditions are equivalent :

(1) C is Abelian (hence tannakian),

(2) the unit 1 is simple (i.e. irreducible),

(3) ω is conservative.

Proof. Note that 1 is simple if and only if any object of rank one L is simple

(using ⊗L∨).

(1)⇒ (2): in any tannakian category, any object of rank 1 is simple.

(2)⇒ (3): follows from the previous corollary.

(3) ⇒ (1): let f : M → N be monic-epi. By Lemma 2.1.5, the linear map ω(f) is

bijective. Since ω is conservative, f is an isomorphism.

Proposition 2.2.5. For any slope filtration on the quasi-tannakian category C, the
endofunctor gr of C is conservative.gg

Proof. By Corollary 2.2.3, this reduces to the fact that any nonzero monicm : L ↪→
1 such that gr(m) is an isomorphism is an isomorphism. If gr(m) is an isomorphism,

then L is semistable of slope 0, so that gr(m) = m, and L ∼= 1.

ggBut not essentially injective in general, of course.
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2.2.2. Determinantal slope filtrations

Definition 2.2.6. A slope filtration on C is determinantal if for any object M ,

deg(M) = deg(detM).

In other words, one requires that its degree function

deg = rk ·µ : K0(C)→ Λ

factors through

det : K0(C)→ Pic(C).

It is immediate that the set of determinantal slope filtrations is a convex subcone

of the cone of all slope filtrations.

Examples 2.2.7. (1) Let C be the (quasi-tannakian) category of finite-dimensional

F -vector spaces with a separated exhaustive filtration indexed by Z. Then K0(C) ∼=
Z[t, t−1], with rk(

∑
ant

n) =
∑
an. Moreover, det : K0(C)→ Pic(C) ∼= Z is given by

det(
∑
ant

n) =
∑
nan, and the determinantal slope function with degree function

det is the original filtration.

(2) Let C be the (quasi-tannakian) category of vector bundles over a smooth geomet-

rically connected projective curve X over F . One has Pic(C) = Pic(X). We have

seen in Example 1.4.20 that any slope function µ such that µ(OX) = 0 is determi-

nantal: in fact, it is a non-negative multiple of the standard (Harder–Narasimhan)

slope function.

Let us introduce a partial order on Pic C as follows:

[L] ≤ [L′]⇔ there is a nonzero morphism L→ L′ (clearly, this does not depend on

the choice of representatives L,L′).

This makes Pic C into an ordered Abelian group.

Theorem 2.2.8. Let

δ : Pic C → Λ

be a non-decreasing homomorphism (i.e. δ([L]) ≥ 0 if there is a nonzero morphism

1→ L). Then the function

M �→ µ(M) =
δ(detM)

rkM

is the slope function attached to a (unique) determinantal slope filtration.

Any determinantal slope filtration arises in this way.

Proof. Let f : M → N be a nonzero monic-epi. Then according to item (2)

of Proposition 2.2.2, det f �= 0, hence [detM ] ≤ [detN ]. Therefore δ([detM ]) ≤
δ([detN ]) and µ(M) ≤ µ(N).
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On the other hand, deg(M) = δ(detM) factors through the composed homo-

morphism K0(C)→ Pic C → Λ, hence is additive on short exact sequences. There-

fore δ gives rise to a (unique) determinantal slope filtration via Theorem 1.4.7. The

converse is immediate.

Proposition 2.2.9. Let F≥. be a determinantal slope filtration.

(1) For any nonzero objects M,N,

µ(M ⊗N) = µ(M) + µ(N). (2.2)

In particular, if Λ is a commutative ring, the rule

[M ] �→ rkM + ε degM

induces a ring homomorphism

K0(C)→ Λ[ε]/(ε2).

(2) For any nonzero object M,

µ(M) = −µ(M∨). (2.3)

For any λ, one has

F≥λ(M∨) = (F>−λM)⊥, (F≥λM)∨ =M∨/F>−λM,

and a canonical functorial isomorphism

gr(M∨)
∼=→ (gr M)∨. (2.4)

Thus the breaks of M are the opposite of the breaks of M∨. In particular, M is

semistable of slope λ if and only if M∨ is semistable of slope −λ.
(3) For any positive integer m and any positive integer n less than rkM, one has

µ(SmM) = mµ(M), µ

(
n∧
N

)
= nµ(N). (2.5)

Proof. (1) comes from the isomorphism det(M ⊗N) ∼= detM⊗ rkN ⊗ detN⊗ rkM

of item (1) of Proposition 2.2.2.

(2) One has degM∨ = deg detM∨ = − deg detM = − degM , whence (2.3).

Let us set F̃≥λ(M∨) = (F>−λM)⊥ (that is by definition the kernel of the

strict epi M∨ →→ (F>−λM)∨ dual to F>−λM ↪→ M). This defines a separated,

exhaustive, left continuous decreasing filtration F̄≥. on C by strict subobjects, and

one has a canonical functorial isomorphism

g̃rλM ∼= (gr−λM∨)∨.

In particular, µ(g̃rλM) = λ by (2.3). It follows that F̄≥. is a slope filtration

with slope function µ, hence F̄≥. = F≥. (cf. Theorem 1.4.7), and a canonical

isomorphism (2.4).

(3) comes from the other isomorphisms of item (1) of Proposition 2.2.2.
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Remarks 2.2.10. (1) The formula (F≥λM)∨ = M∨/F>−λM means that the ⊗-
equivalence C → Cop given by duality is compatible with the slope filtration (for

the slope function −µ on Cop, cf. Remark 1.4.9(2)).

(2) We do not know whether, conversely, the formulas (2.2) (or even (2.2) + (2.3))

imply that F≥. is determinantal.

Proposition 2.2.11. Let F≥. be a determinantal slope filtration. The following

properties are equivalent :

(1) δ is (strictly) increasing,

(2) 1 is stable,

(3) for any λ and any object N,N is stable of slope λ if and only if any strict

subobject (resp. subquotient) has slope < λ (resp. > λ).

(4) for any λ, the full subcategory C(λ) of C consisting of 0 and of the semistable

objects of slope λ is Abelian, hence artinian and noetherian (by Remark 1.2.10); its

simple objects are the stable objects of slope λ.

Under these conditions, the simple objects of C(λ) are the stable objects of C of

slope λ. The natural functor from the socle (i.e. the full subcategory consisting of

semisimple objects) C(λ)ssi of C(λ) to C̄ is fully faithful.

Proof. (1)⇔ (2) follows from the fact that any nonzero morphism L→ L′ between
objects of rank 1 is monic, and gives rise to a monic L⊗ (L′)∨ ↪→ 1.

(1) ⇒ (3). Let L
g
↪→ N be any nonzero subobject of the stable object N . In order

to show that µ(L) < λ, let us consider the canonical factorization L
f
↪→ M

h
↪→ N ,

where f is monic-epi, and h is a strict epi. IfM �= N , one has µ(L) ≤ µ(M) < µ(N)

by assumption. If M = N , det f = det g is a nonzero morphism detL→ detN (cf.

item (2) of Proposition 2.2.2), whence µ(detL) < µ(detN) by (1), and µ(L) < µ(N)

after division by rkM = rkN .

(3)⇒ (2) is immediate.

(1) ⇒ (4).hh We already know that C(λ) is quasi-Abelian (cf. Lemma 1.3.9). Let

f : M → N be a nonzero morphism in C(λ), and let us consider its canonical

factorization M →→ Coim f
f̄→ Im f ↪→ N in C. We have λ = µ(M) ≤ µ(Coim f) ≤

µ(Im f) ≤ µ(N) = λ, whence equality. This implies δ(detCoim f) = δ(det Im f).

Assuming that δ is decreasing, we get that det f̄ is an isomorphism, and so is f̄

itself. On the other hand additivity of the degree implies that Ker f (resp. Coker f)

is either 0 or is of slope λ. Using Lemma 1.3.9, one concludes that Ker f and Coker f

belong to C(λ). This shows that C(λ) is Abelian. It is immediate that the simple

objects in C(λ) are the stable objects in C(λ).
The natural functor C(λ)ssi → C̄ is a full, conservative, additive functor between

semisimple categories, hence faithful.

hhAnother, independent, proof is provided by Corollary 1.4.10.
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(4)⇒ (2). By (4), any nonzero monic L ↪→ 1, with L of slope 0, is an isomorphism,

hence 1 is stable.

Examples 2.2.12. Let G ⊂ GL2 be the algebraic group over F consisting of

matrices of the form
(x y
0 1

)
, and let C = RepG be the tannakian category of its

finite-dimensional representations. Then any object of C is the restriction of a rep-

resentation of GL2 and in fact C̄ ∼= RepGL2, cf. [80, C5]. The group Pic C = Pic C̄
is freely generated by the determinant Det : G ↪→ GL2 → Gm. The standard

representation V of G sits in a short exact sequence

0→ Det→ V → 1→ 0.

If one takes δ(Det) = 1, one gets an exact non-split determinantal slope filtration

for which the only stable objects are the powers of Det. Thus C(λ) consists of direct
sums of copies of Det⊗λ if λ is an integer, and is {0} otherwise.

If one takes δ(Det) = −1, one gets a non-exact determinantal slope filtration

for which V is stable of slope −1/2. One can check that C(λ) is {0} if λ is not half

an integer, whereas if λ is half an integer, C(λ) consists of direct sums of copies of

objects of the form Det⊗m ⊗ SnV with λ = −m− n/2, m ∈ Z, n ∈ N.

2.2.3. Integrality

Definition 2.2.13. A slope filtration on a quasi-Abelian category C is said to be

integral if its degree function takes values in Z.

This amounts to saying that the vertices of the Newton polygon of any object

M belong to Z2. One may then assume that Λ = Q.

Most slope filtrations of the literature have this property. This is for instance

the case in our first four basic examples, for which this property is actually trivial,

except for the Hasse–Arf filtration (Hasse–Arf theorem).

The significance of this property is illustrated by the following

Proposition 2.2.14. Let F≥. be an integral slope filtration. Assume either that C
is Abelian, or that C is quasi-tannakian, F≥. is determinantal and 1 is stable.

Then any semistable object N such that degN and rkN are relatively prime is

stable.

Proof. Assume, on the contrary, that N is semistable but not stable. If C is

Abelian, or F≥. is determinantal and 1 is stable, there is a strict nonzero sub-

object M �= N with µ(M) = µ(N), i.e.

rkN · degM = rkM · degN.
By assumption, rkN is prime to degN , hence divides rkM . But rkM < rkN , a

contradiction.

Remark 2.2.15. In many situations, C belongs to a family of quasi-tannakian

categories CY indexed by objects Y of a certain small category Y. Morphisms in Y
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have a degree, that is a natural integer which is multiplicative with respect to

composition of morphisms.

Any morphism φ : Y → Y ′ of degree d in Y gives rise to F -linear functors

φ∗ : CY ′ → CY , φ∗ : CY → CY ′ ,

φ∗ being a ⊗-functor, while φ∗(id⊗ φ∗) = φ∗ ⊗ id and rkφ∗M = d · rkM .

Moreover, the categories CY are endowed with slope filtrations F≥.
Y as in the

proposition, which are related to each others by the conditions

• M ′ ∈ CY ′ is semistable of slope λ′ if and only if φ∗M ′ is semistable of slope dλ′,
• M ∈ CY is semistable of slope λ if and only if φ∗M is semistable of slope λ/d.

One can then use this last condition in order to create objects of non-integral

slopes to which the above proposition applies. See for instance [4] for an application

of this technique (to the p-adic local monodromy theorem conjectured by Crew).

See also Sec. 2.4.2 below.

Examples 2.2.16. This setting occurs in the context of our first four basic exam-

ples. In the Harder–Narasimhan case, Y is the category of finite etale coverings Y

of the curve X (recall that charF = 0). In the other example, Y is the category of

finite unramified extensions of the ground complete discretely valued field.

In the next two sections, C is a quasi-tannakian category over a field F of char-

acteristic zero, and F≥. is a slope filtration on C indexed by the totally ordered

divisible Abelian group Λ.

2.3. ⊗-multiplicative slope filtrations

2.3.1. Definition and characterization

Definition 2.3.1. F≥. is ⊗-multiplicative if it satisfies the following condition:

if M1 is semistable of slope λ1 and M2 is semistable of slope λ2, then M1 ⊗M2 is

semistable of slope λ1 + λ2.

Examples 2.3.2. (1) The Dieudonné–Manin filtration ⊗-multiplicative. The

Harder–Narasimhan filtration is ⊗-multiplicative (a purely algebraic proof, based

on geometric invariant theory, of the semistability of the tensor product of two

semistable vector bundles appeared in [85]. Other proofs, relating semistability to

numerical effectivity and ampleness, appeared in [71] and [74], cf. also [64, 6.4.14]

and [8]).

Examples 2.2.12 are also ⊗-multiplicative.

(2) Let Λ-FilF (resp. Λ-BifilF ) be the category of finite-dimensional F -vector

spaces endowed with a (resp. two) separated, exhaustive, left continuous decreasing

filtration (resp. filtrations) indexed by Λ. This is a quasi-tannakian category over F .

There is a tautological slope filtration on Λ-FilF , which is obviously ⊗-
multiplicative (this generalizes Example 2.2.7(1)).
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On the other hand, the formula

(F≥.
1 V, F≥.

2 V ) �→ 1

dimV

∑
λ(dim grλ1V + dim grλ2V )

defines a slope function on Λ-BifilF .

It is known that the associated slope filtration is ⊗-multiplicative if Λ = Q,

cf. [40, p. 650].ii One thus gets a ⊗-functor

Λ-BifilF → Λ-FilF , (F≥.
1 V, F≥.

2 V ) �→ F≥.V.

Theorem 2.3.3. (1) There is equivalence between

(a) F≥. is ⊗-multiplicative,

(b) for any λ and any pair (M1,M2), there is a canonical functorial isomorphism

F≥λ(M1 ⊗M2) ∼=
∑

λ1+λ2=λ

F≥λ1M1 ⊗ F≥λ2M2, (2.6)

(c) for any pair (M1,M2), the breaks of M1 ⊗M2 are the sums of a break of M1

and a break of M2.

(2) Any ⊗-multiplicative slope filtration F≥. also satisfies:

(a) gr is a ⊗-functor.
(b) F≥. determinantal. In particular from Proposition 2.2.9, there is a canonical

functorial isomorphism

F≥λ(M∨) ∼= (F>−λM)⊥. (2.7)

(c) If moreover 1 is stable, the category C(0) of semistable objects of slope 0 is

tannakian. The tensor product of stable objects of slope 0 is a direct sum of

stable objects.

Here,
∑

λ1+λ2=λ
F≥λ1M1⊗F≥λ2M2 denotes the image of the natural morphism⊕

λ1+λ2=λ
F≥λ1M1 ⊗ F≥λ2M2 → M1 ⊗M2 (note that each F≥λ1M1 ⊗ F≥λ2M2

can be considered as a strict subobject of M1⊗M2 since ⊗ is bi-exact, cf. item (1)

of Lemma 2.1.5).

The terminology “⊗-multiplicative” comes from item (1b): the filtration on a

tensor product is the product filtration.

Proof. (2b) It suffices to show that degM = deg detM . Since this property is “sta-

ble by extension”, it suffices to prove it for M semistable. In that case, M⊗ rkM is

semistable of slope µ(M). rkM = degM . Hence detM , which is a direct summand

of M⊗ rkM is also semistable of slope degM .

iiWhich gives a purely algebraic proof, inspired by arguments of Laffaille. See also [104].
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(2b)⇒ (2a) Let us first show that for any M1,M2, the image of the strict monic

f : F≥λ1M1 ⊗ F≥λ2M2 →M1 ⊗M2

is contained in F≥λ(M1⊗M2). This is done by descending induction on λ = λ1+λ2:

we assume that the image of the morphism

(F>λ1M1 ⊗ F≥λ2M2)⊕ (F≥λ1M1 ⊗ F>λ2M2)→M1 ⊗M2

is contained in F>λ(M1 ⊗M2). It follows that the composed morphism

f̄ : F≥λ1M1 ⊗ F≥λ2M2 →M1 ⊗M2 →M1 ⊗M2/F
≥λ(M1 ⊗M2)

factors through the object grλ1 M1⊗grλ2 M2. Since the latter is semistable of slope

λ by assumption, and since F≥λ(M1 ⊗ M2/F
≥λ(M1 ⊗ M2)) = 0 (cf. Proposi-

tion 1.4.6(3)), one has f̄ = 0. Therefore, for every λ1, λ2, one has

F≥λ1M1 ⊗ F≥λ2M2 ⊂ F≥λ1+λ2(M1 ⊗M2), (2.8)

and similarly for ≥ replaced by >. Whence a canonical morphism

g̃rM1,M2
: grM1 ⊗ grM2 → gr(M1 ⊗M2). (2.9)

This makes (gr, g̃r, gr1 = 11) into a pseudo-⊗-functor from C to C (i.e. it satisfies all
the axioms of a ⊗-functor, except that (2.9) may not be an isomorphism a priori,

cf. Appendix), and (2.4)

gr(M∨)
∼=→ (gr M)∨

(which holds by item (2)) is the canonical morphism ĝrM corresponding to

evgrM ◦ g̃rM∨,M : grM ⊗ (grM)∨ → gr(M ⊗M∨)→ 1.

To check these assertions directly may be tedious, but they become clear if one

considers the Rees deformation from grM to M (cf. Sec. 1.4.6 and Remark 2.1.6).

According to the corollary in the Appendix, the fact that ĝrM is an isomorphism

for any M implies that g̃rM1,M2
is an isomorphism for any (M1,M2), i.e. gr is a

⊗-functor.
(1a) + (2a) ⇒ (1b). One has a morphism of (horizontal) short exact sequences

(which is functorial in M1,M2)

⊕F>λ1M1 ⊗ F≥λ2M2 → ⊕F≥λ1M1 ⊗ F≥λ2M2 → ⊕ grλ1 M1 ⊗ grλ2 M2

↓ ↓ ↓
F>λ(M1 ⊗M2) → F≥λ(M1 ⊗M2) → grλ(M1 ⊗M2)

in which the third vertical morphism is an isomorphism. By (ascending or descend-

ing) induction, one gets (2.6).

(1b)⇒ (1c)⇒ (1a) are immediate.

(2c) By Proposition 2.2.11, we know that C(0) is Abelian. On the other hand, it is

stable under ⊗ and ()∨. Therefore it is tannakian and the restriction of ω to C(0)
is a fiber functor.
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Since charF = 0, the socle C(0)ssi is a (semisimple) tannakian subcategory of

C(0). Therefore, if M1 and M2 are stable of slope 0, i.e. simple objects of C(0),
then M1 ⊗M2 is a semisimple object of C(0), i.e. a direct sum of stable objects of

slope 0.

Remark 2.3.4. When Λ = Q, one can shorten the proof of (1a)⇒ (1b) by avoiding

the devissage via gr, on replacing gr by the Rees deformation functor

R : C ∼= ProjA → {flat families of projective A-modules over A1}

and applying the last corollary of the appendix to this pseudo-monoidal functor.

Proposition 2.3.5. Assume that C is Abelian. For any exact ⊗-multiplicative slope

filtration on C, ω ◦ gr is a fiber functor. If C admits a ⊗-generator and Λ = Q, then
ω ◦ gr ∼= ω (as fiber functors).

Proof. For an exact slope filtration, gr is exact, whence the first assertion. For the

second, see [93, 2.2.5, 2.4] (in loc. cit. only filtrations indexed by Z are considered;

in the case where C is algebraic and Λ = Q, the Abelian group generated by all

breaks is of the form 1
NZ, so that one may reduce to the case of filtrations indexed

by Z).

2.3.2. Is any determinantal slope filtration ⊗-multiplicative?

Any ⊗-multiplicative slope filtration is determinantal (item (2) of Theorem 2.3.3).

The converse is an interesting open problem (for Λ = Q, say).

In fact, there is many an instance in the literature, where the proof of ⊗-
multiplicativity of a concrete determinantal slope filtration is either difficult or

ad hoc. It would therefore be desirable to know whether this is a general fact.

We propose a partial result in this direction, assuming that F is algebraically

closed, and that Λ = Q.

Let C′ be the full subcategory of C consisting of direct sums of semistable objects.

Let us introduce a tensor product on C′ by setting

M⊗̂N = gr(M ⊗N).

Proposition 2.3.6. The determinantal slope filtration F≥. is ⊗-multiplicative if

and only if ⊗̂ is associative in the sense that for any three objects, (M1⊗̂M2)⊗̂M3
∼=

M1⊗̂(M2⊗̂M3).

Proof. If F≥. is ⊗-multiplicative, thenM⊗̂N =M⊗N on C′ and the associativity

follows.
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For the converse, let M1,M2 be semistable objects of slopes λ1 and λ2 respec-

tively. We have to show that M1 ⊗M2 is semistable of slope λ1 + λ2; equivalently,

that M1⊗̂M2 = grλ1+λ2 M1⊗̂M2. Let D be the smallest strictly full subcategory of

C̄ containing M1 and M2, and stable under ⊗̂, duality, sums and direct summands.

This is a semisimple Abelian subcategory of C̄, and every object of D is a direct

sum of semistable objects.

Replacing D by an equivalent small category Dsk with SkD as set of objects, we

may assume, using Schur’s lemma, that the associativity property of ⊗̂ gives rise to

a (functorial) associativity constraint on Dsk. Then Dsk is a semisimple tannakian

category generated by the classes ofM1 andM2 (with respect to the tensor product

⊗̂ and duality ∨).
Let G be the associated reductive tannakian group over F . Then the subgroup

Pic(D) = Pic(Dsk) of Pic(C) = Pic(C̄) is the character group X(G) of G.

Let us consider the Q-vector space X(G)Q ⊂ X(G0)Q = X(Z(G0))Q (where

the superscript 0 stands for the connected component of identity, and Z stands for

the center). Note that the finite group π0(G) acts on Z(G0) on one hand, and on

X(G0) on the other hand, and that

X(G)Q = X(G0)
π0(G)
Q = X(Z(G0))

π0(G)
Q = X(Z(G))Q.

In particular, there is a central cocharacter y : Gm → G and an element r ∈ Q×

such that for any L ∈ Pic(D), identified with a character χL of G, one has y ◦χL =

r · µ(L) ∈ Hom(Gm,Gm)Q = Q. Up to scaling the slopes by the factor r, the

decomposition of objects of Dsk (viewed as representations of G) according to the

action of y amounts to the decomposition into semistable direct factors according

to the slopes. In particular, y acts diagonally onM1 andM2 with respective weights

rλ1, rλ2. Therefore it acts diagonally onM1⊗̂M2 with weight r(λ1+λ2), i.e.M1⊗M2

is semistable of slope λ1 + λ2.

Remark 2.3.7. In particular, if gr is identity on objects (a case which occurs for

the Harder–Narasimhan filtration of vector bundles on smooth projective curves of

genus ≤ 1), the slope filtration is ⊗-multiplicative.

2.4. ⊗-bounded slope filtrations

2.4.1. Definition and characterization

Definition 2.4.1. F≥. is ⊗-bounded if it satisfies the following conditions:

(1) µ(1) = 0,

(2) If M1 and M2 are semistable of slopes ≤ λ, the breaks of M1 ⊗M2 are ≤ λ,
(3) if M is semistable of slope λ, so is its dual M∨.

Examples 2.4.2. The Turrittin–Levelt and Hasse–Arf filtrations are ⊗-bounded.
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Theorem 2.4.3. (1) There is equivalence between

(a) F≥. is ⊗-bounded,
(b) F≥. satisfies

• µ(1) = 0,

• for any nonzero M1,M2, the breaks of M1 ⊗M2 are bounded from above

by the maximum of the breaks of M1 and M2,

• for any rank one object L, µ(L) = µ(L∨),

(c) for any λ, the full subcategory C(< λ) of C consisting of objects N with F≥λM =

0 is stable under ⊗ and ∨, and contains 1 if and only if λ > 0,

(d) for any λ, the full subcategory C(≤ λ) of C consisting of objects N with F>λM =

0 is stable under ⊗ and ∨, and contains 1 if and only if λ ≥ 0,

(e) • F≥01 = 1, F>01 = 0, and for any λ,

• F>λM1 = F>λM2 = 0⇒ F>λ(M1 ⊗M2) = 0,

• F>λM = 0⇒ F>λM∨ = 0.

(2) Any ⊗-bounded slope filtration F≥. also satisfies :

(a) F≥. splits canonically, i.e. there is a canonical isomorphism of functors gr ∼= id.

In particular, F≥. is strongly exact (Lemma 1.5.13),

(b) for any nonzero M, the breaks of M are the breaks of M∨ and µ(M) = µ(M∨),
(c) all breaks are non-negative,

(d) the stable objects are the simple objects,

(e)any subobject (resp. quotient) in C of an object of C(< λ) is in C(< λ); same

for C(≤ λ),
(f) if C is tannakian, so are C(< λ) for λ > 0 and C(≤ λ) for λ ≥ 0.

Remark 2.4.4. In the case where C is Abelian, it follows from Corollary 1.5.6 and

items (1e) and (2a) that ⊗-bounded slope filtrations are exactly the slope filtrations

discussed in [5]; indeed, the latter were defined to be exact filtrations that satisfy

(1e). The Hasse–Arf slope filtrations of loc. cit. are exactly the integral ⊗-bounded
slope filtrations of the present paper.

We need a lemma.

Lemma 2.4.5. Assume that if M is semistable of slope λ, so is M∨. Then

(1) for any nonzero object N, µ(N) = µ(N∨),
(2) the breaks of any nonzero N are the breaks of N∨,
(3) F≥. is strongly exact,

(4) F≥. splits canonically.

Proof. (1) is equivalent to degN = degN∨ and follows, by induction on the rank,

from addivity of deg applied to the short exact sequence 0 → M → N → P → 0,

where M is the universal destabilizing subobject, and to its dual.
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(2) The equivalence of categories C
∨
→ Cop sends the slope function µ to itself (by

the previous item). It is then clear that the image by ∨ of F≥. is the (unique) slope
filtration F̂≥. on Cop attached to µ, and is given by

F̂≥λM = (F≥λM∨)∨.

In particular, ĝrλM = (grλM∨)∨, and it follows that NP (M) = NP (M∨).

(3) Let us show that for any subobject M of a semistable object N , µ(M) = µ(N)

(cf. Theorem 1.5.9). Indeed, µ(M) ≤ µ(N) (by semistability), and since M∨ is a

quotient of N∨, which is semistable of slope µ(N), µ(M∨) ≥ µ(N). Thus µ(M) =

µ(M∨) = µ(N), which shows that F≥. is strongly exact.

(4) It suffices to construct, for any λ, a canonical right inverse ιλ to the natural

transformation F≥λ → grλ: indeed, ιλ’s composed with the natural transformations

F≥λ → id will sum up to an isomorphism gr→ id.

We first construct ιλ on objects. By descending induction, one may assume that

λ is the highest break of M , hence also of M∨ by the previous item. Since the

filtration is exact (by the previous item) and (grλM∨)∨ is semistable of slope λ (by

assumption), the strict epi

M =M∨∨ → (grλM∨)∨

gives rise to a strict epi

grλM → (grλM∨)∨.

In particular, rk grλ (M∨) ≤ rk grλ M , and in fact rk grλ (M∨) = rk grλ M by

exchanging M and M∨. It follows that grλM → (grλM∨)∨ is actually an isomor-

phism. Composing M → (grλM∨)∨ with the inverse of this isomorphism gives ιλ.

The functoriality of ιλ with respect to morphisms M
f→ N is also established

by descending induction on λ, the case when λ is larger or equal to the breaks of

M and N being clear.

Proof of Theorem 2.4.3. (1a)⇒ (1b) is immediate.

(1b)⇒ (1e) Note that

µ(1) = 0⇔ F≥01 = 1, F>01 = 0.

Note also that the condition

• the breaks of M1 ⊗M2 are bounded from above by the maximum of the breaks

of M1 and M2

is equivalent to

• ∀λ, F>λM1 = F>λM2 = 0⇒ F>λ(M1 ⊗M2) = 0,

and the condition

• the breaks of M∨ are bounded from above by the maximum of the breaks of M
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is equivalent to

• ∀λ, F>λM = 0⇒ F>λM∨ = 0.

It thus suffices to see that the latter condition follows from the special case of rank

one objects and from the former condition. This follows from the fact that M∨ is

a direct summand of M⊗(rkM−1) ⊗ (detM)∨ (cf. (2.1)).

(1e)⇒ (1d) is immediate.

(1d)⇔ (1c) since

C(< λ) =
⋃

λ′<λ

C(≤ λ′), C(≤ λ) =
⋂

λ′>λ

C(< λ′).

(1d)⇒ (1a) The condition that C(≤ λ) contains 1 if and only if λ ≥ 0 means that

F≥01 = 1, F>01 = 0 (by left continuity of F≥.).
Let us choose for λ the maximum of the breaks of M1 and M2. Then M1,M2 ∈

C(≤ λ), hence M1 ⊗ M2 ∈ C(≤ λ), which means that the breaks of M1 ⊗ M2

are ≤ λ.
Similarly, the highest break ρ(M∨) of M∨ is bounded by, hence equal to by

symmetry, the highest break ρ(M) of M . Assume that M is semistable of slope

λ (i.e. ρ(M) = µ(M) = λ), and let L be the universal destabilizing object of

M∨. Then µ(L∨) = ρ(M∨) = ρ(M) = λ. On the other hand, L∨ is a quotient

of the semistable object M , hence is zero or semistable of slope λ. It follows that

Ker(M → L∨) = (M∨/L)∨ is zero or semistable of slope λ. Since ρ(M∨/L) <
µ(M∨) by definition of L, we have L =M∨, i.e. M∨ is semistable of slope λ.

(2a) and (2b) follow from the lemma.

(2c) LetM be semistable of slope λ. Then the breaks ofM⊗M∨ are bounded from

above by λ. On the other hand, 1 is a direct summand ofM⊗M∨ (the coevaluation

divided by rkM is a section of the evaluation morphism M ⊗M∨ → 1). Therefore

λ ≥ 0.

(2d) follows from item (1e) and Corollary 1.5.10.

(2e) follows from the fact that F≥. is strongly exact and split, and (1c) + (1d).

(2f) follows from (2e) and (1c) + (1d).

Proposition 2.4.6. The highest break function attached to a ⊗-bounded slope fil-

tration satisfies

• ρ(1) = 0

• ρ(M1 ⊗M2) ≤ ρ(M1 ⊕M2) = max(ρ(M1), ρ(M2))

• for any rank one object L, ρ(L) = ρ(L∨).

Conversely, if C is Abelian semisimple, any function ρ : Sk C\{0} → Λ which

satisfies these conditions is the highest break function of a unique slope filtration on

C, which is ⊗-bounded.
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Proof. The conditions on ρ are clear from item (1b) of the theorem. Conversely,

if C is Abelian semisimple, it is clear that the split slope filtration defined by

grλM = ⊕ρ(Mi)=λMi, where M = ⊕Mi is the isotypical decomposition, is the

unique slope filtration on C with highest break function ρ, and that it is ⊗-bounded.

Proposition 2.4.7. Assume that C is Abelian, and let Cssi be its socle (the full

subcategory of semisimple objects). Let F≥.
ssi be a ⊗-bounded slope filtration on Cssi.

Then its unique extension F≥. to C (cf. Corollary 1.4.12) is ⊗-bounded if and only

if M = grM for any M ∈ C.
In that case, one has ρ(M) = ρ(Mssi) for any object M of C and its semisim-

plication Mssi in Sk Cssi.

Proof. Indeed, this condition is necessary since any ⊗-bounded filtration is split.

To prove sufficiency, it suffices (using the fact that (M1⊗M2)ssi = (M1)ssi⊗(M2)ssi)

to prove that ρ(M) = ρ(Mssi) if M = grM . Actually M = ⊕ grλM implies that

the breaks of M are the breaks of Mssi = ⊕(grλM)ssi, since µ((grλM)ssi) =

µ(grλM) = λ.

Proposition 2.4.8. The cone of ⊗-bounded slope filtrations is stable under the

operation (µ1, µ2) �→ µ = max(µ1, µ2) of slope functions.

Proof. Since ⊗-bounded slope filtrations are split, hence strongly exact, any object

M has a canonical decomposition

M = ⊕ grλ1λ2
12 M, grλ1λ2

12 M := grλ1
1 grλ2

2 M = grλ2
2 grλ1

1 M.

Each summand grλ1λ2
12 M is µ-semistable of slope max(λ1, λ2). The statement then

follows from characterization (1b) of ⊗-bounded slope filtrations.

2.4.2. The tannakian case

In this subsection, C is an essentially small tannakian category over F , with a fiber

functor ω : C → V ecF ′ . Let

G = Aut⊗ω

be the corresponding (tannakian) affine group scheme over F ′. Any slope filtration

induces a separated, exhaustive, left continuous decreasing filtration of ω by F -

linear subfunctors.

Proposition 2.4.9. Assume F = F ′. A ⊗-bounded slope filtration on C is equiv-

alent to the data of a separated left continuous decreasing filtration (G(λ))λ∈Λ>0 of

G by closed normal subgroups satisfying the following condition:

for any M and any λ > 0, the trivial subrepresentation ω(M)G
(λ)

is a direct sum-

mand of ω(M) (as representations of G(λ)).
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The correspondence is determined by the formula

ω(F≥λM) = Ker(ω(M)→ ω(M)G(λ)).

The quotient G/G(λ) is the tannakian group of the tannakian subcategory C(< λ)

of C.

Proof. cf. [4, 1.2.3] (in loc. cit. only the case Λ ⊂ R is considered, but this restric-

tion is unnecessary).

See loc. cit. for a detailed study of integral ⊗-bounded slope filtrations.

Remark 2.4.10. The operation (µ1, µ2) �→ µ = max(µ1, µ2) of Proposition 2.4.8

corresponds, at the level of tannakian groups, to (G
(λ)
1 , G

(λ)
2 ) �→ G(λ) = G

(λ)
1 ·G(λ)

2

(the closed normal subgroup of G generated by G
(λ)
1 and G

(λ)
2 ).

2.4.3. We end this section with a special case of [4, 5.3.1], in a setting reminiscent

of Remark 2.2.15.

We consider the poset of positive integers n with respect to divisibility (which

we also identify with the poset of open subgroups of Ẑ).
We consider the following data:

• for any n, a tannakian category Cn over an algebraically closed field F (of char-

acteristic zero) and a fiber functor

ωn : Cn → V ecF .

Let Gn be the tannakian group of Cn;
• a group-scheme epimorphism

Gn → nẐ

such that for any multiple n′ of n, Gn′ is the inverse image of n′Ẑ ⊂ nẐ in Gn.

To Gn′ ↪→ Gn corresponds a faithful exact ⊗-functor

ι∗n,n′ : Cn → Cn′

such thatjj

ωn′ ◦ ι∗n,n′ = ωn;

• an integral ⊗-bounded slope filtration on Cn, with the compatibility condition

F≥n′λ ◦ ι∗n,n′ = ι∗n,n′ ◦ F≥nλ;

• a ⊗-equivalence Cn → Cn′ compatible with the slope filtrations.

jjThe condition that Gn′ is the inverse image of n′Ẑ ⊂ nẐ in Gn amounts to saying that
ι∗
n,n′RepFn′Ẑ = RepFnẐ and any object of Cn′ is a subquotient of an object in ι∗

n,n′Cn.
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Proposition 2.4.11. [4] Let us assume moreover that for any n,

(1) characters of finite order of Gn come from characters of nẐ, and give rise to

invertible objects of slope 0,

(2) simple objects of Cn of slope 0 are invertible.

Then Gn is an extension of nẐ by a connected prosolvable group.

Corollary 2.4.12. For any object M of C1, there is a positive integer n such

that each graded direct summand grλ ι∗1,nM of ι∗1,nM is an iterated extension of

invertible objects of slope λ.

Moreover, if for any pair of non-isomorphic invertible objects L,L′ of slope λ,
L′⊗L∨ is of slope λ, then grλ ι∗1,nM is the tensor product of an invertible object of

slope λ by an iterated extension of 1 by itself.

Proof. Since the image of G1 in the representation ω(grλ ι∗1,nM) is connected

solvable, this representation is triangulable by Kolchin’s theorem. This justifies the

first assertion.

For the second assertion, notice that the assumption implies that there is no

non-trivial extension between non-isomorphic invertible objects L,L′ of slope λ

(tensoring by L∨ and using the fact that the filtration is split).

Example 2.4.13. Let Cn be the C-tannakian category of differential modules over

C((x1/n)), together with its Turrittin–Levelt filtration relative to the variable x1/n

(which is integral and ⊗-bounded). A fiber functor ωn (with values in V ecC) may

be constructed using Katz’s canonical extensions [57]. An obvious ⊗-equivalence
Cn → Cn′ compatible with the slope filtrations is given by substituting x1/n to x1/n

′
.

The ⊗-functor ι∗n,n′ corresponds to the pull-back SpecC((x1/n
′
))→ SpecC((x1/n)).

All the above conditions are satisfied (cf. [4, 5.3.3]). The statement of the corol-

lary, in this special case, is nothing but the Turrittin–Levelt theorem.

3. A Catalogue of Determinantal Slope Filtrations

According to Theorem 2.2.8, given a quasi-tannakian category C, one can associate

to any homomorphism

δ : Pic C → Λ

which satisfies δ([L]) ≥ 0 whenever there is a nonzero morphism 1 → L, a unique

(descending) slope filtration F≥.
µ on C with slope function

µ(M) =
δ(detM)

rkM
.

In this section, we review some examples of (C, δ). Our point is that there is no

need to provide an existence proof of the slope filtration in each case: all cases are

covered at once by Theorem 2.2.8. Similarly, the fact that the subcategory C(λ) of
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semistable objects of slope λ is Abelian if δ([L]) > 0 whenever there is a nonzero

non-isomorphism 1→ L follows from the general result, Proposition 2.2.11.

We also discuss the structure of the semistable objects, and the relations between

a few of these examples.

3.1. Vector bundles and filtrations of Harder–Narasimhan type

3.1.1. Vector bundles on curves

Let V ecX be the quasi-Abelian category of vector bundles over a smooth geomet-

rically connected projective curve X (defined over some field F ). The function

δ([L]) = degL ∈ Z

on Pic(V ecX) = PicX gives rise to the classical Harder–Narasimhan filtration on

CohtfX , indexed by Λ = Q. It is integral and non-exact.

If carF = 0, V ecX is quasi-tannakian, and the Harder–Narasimhan filtration is

⊗-multiplicative [78, 85, 71, 74] (the shortest proof is in [8]).

3.1.2. Vector bundles on higher dimensional polarized varieties

Let CohtfX be the quasi-Abelian category of torsion-free coherent sheaves on a nor-

mal geometrically connected projective variety X of dimension d ≥ 1 defined over

a field F . Let O(1) be an ample line bundle on X .

The function

degO(1)M := (c1(M) · c1(O(1))d−1) ∈ Z

is a degree function on CohtfX . By Theorem 1.4.7, it gives rise to a (unique) slope

filtration on CohtfX , indexed by Λ = Q, the Harder–Narasimhan filtration (for an

analytic viewpoint on this filtration in terms of Hermite–Einstein metrics, when

F = C, see [23]).

This filtration induces a slope filtration on the full subcategory CohreflX of reflex-

ive coherent sheaves, which is also quasi-Abelian. In particular, on a smooth surface,

one has CohreflX = V ecX and the Harder–Narasimhan filtration of a vector bundle

is a filtration by sub-bundles.

However, CohtfX (resp. CohreflX ) is not quasi-tannakian over F with respect to its

natural ⊗ if d > 1 (resp. d > 2), since it contains nonlocally free sheaves (which do

not have duals). To remedy this, one may consider, as in [98], the localized category

CohtfX obtained fromCohtfX by inverting morphisms which are isomorphisms outside

a closed subset of X of codimension ≥ 2; this is a quasi-tannakian category over F ,

if carF = 0.

One may also work with the localized category CohreflX obtained from CohreflX

by inverting morphisms which are isomorphisms outside a closed subset of X of

codimension > 2, which is also a quasi-tannakian category over F , if carF = 0.
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The function δ([L]) = degO(1) L on Pic(CohtfX ) = Pic(CohreflX ) = PicX satis-

fies the positivity condition, hence gives rise (by Theorem 2.2.8) to a determinantal

slope filtration on CohtfX (resp. CohreflX ) indexed by Λ = Q, which is nothing but

the filtration induced by the Harder–Narasimhan filtration on CohtfX .

One way to prove its ⊗-multiplicativity is to reduce to the one-dimensional case

by taking linear sections of X , cf. [73].

3.1.3. Vector bundles on compact analytic varieties

Let CohtfX be the quasi-Abelian category of torsion-free coherent sheaves on a com-

pact complex manifold X of dimension d ≥ 1.

In this context, the (missing) polarization is replaced by a Gauduchon met-

ric g on X , i.e. a hermitian metric whose associated Kähler form ωg satisfies

∂∂̄ωd−1
g = 0.kk

The function

deggM :=

∫

X

c1(L, h) · ωd−1
g ∈ R,

where L denotes the double dual of
∧rkM

M and h is an auxiliary hermitian metric

on this line bundle (the integral does not depend on its choice), is a degree function

on CohtfX (cf. [24]). By Theorem 1.4.7, it gives rise to a slope filtration on CohtfX
indexed by Λ = R. This filtration was introduced by Bruasse [24], building on results

of Kobayashi [63]ll (whereas the corresponding notion of stability was introduced

earlier by Toma [103]).

The Bruasse filtration induces a slope filtration on the full subcategory CohreflX

of reflexive coherent sheaves, which is also quasi-Abelian. In particular, on a com-

pact complex surface, one has CohreflX = V ecX and the Bruasse slope filtration of

a vector bundle is a filtration by sub-bundles.

As in the algebraic case, one can pass to the (quasi-tannakian) localizationCohtfX
in order to get a determinantal slope filtration, attached (via Theorem 2.2.8) to the

function δ([L]) = degg L on Pic(CohtfX ) = PicX . Its ⊗-multiplicativity is an open

problem.

3.1.4. Higgs bundles

Let (X,O(1)) be a polarized smooth geometrically connected projective variety over

a field F of characteristic 0. According to Hitchin [53] and Simpson [99], a Higgs

kkGauduchon proves that any hermitian metric is conformally equivalent to a unique (up to
homothety) Gauduchon metric.
llFollowing a widespread belief, according to which the first step in constructing a filtration of
Harder–Narasimhan should consist in proving that the set of degrees of subsheaves of M has a
maximum, Bruasse establishes this fact in Cohtf

X using deep compacity arguments. However, as
we have seen in Theorem 1.4.7, there is no need to prove this statement a priori : it is a formal
consequence of the properties of a degree function.
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sheaf is a coherent sheaf M together with a morphism θ :M →M ⊗Ω1
X such that

θ ∧ θ = 0. Torsion-free Higgs sheaves form a quasi-Abelian category HiggstfX . The

degree of the underlying coherent sheaf (with respect to the polarization) induces a

degree function, hence a slope filtration, on HiggstfX (and on the full quasi-Abelian

subcategory HiggsreflX of reflexive objects). This filtration was studied in detail

in [39] when X is a curve.

Passing to the localization Higgstf
X

(resp. Higgsrefl
X

) with respect to morphisms

which are isomorphisms outside a closed subset ofX of codimension≥ 2 (resp.> 2),

one gets a determinantal slope filtration, which is ⊗-multiplicative (cf. [99, Cor.

3.8]).

The Hitchin–Simpson correspondence (cf. [99]) is a one-to-one correspondence

between stable Higgs bundles with vanishing Chern classes and irreducible repre-

sentations of π1(X(C)). Combined with the Riemann–Hilbert correspondence, this

can be reformulated, if X is a curve, as a ⊗-equivalence

(HiggsX(0))ssi ∼= (DModX)ssi (3.1)

between direct sums of stable Higgs bundles of slope 0 and semisimple vector bun-

dles with connection, which generalizes the Narasimhan–Seshadri correspondence:

ordinary vector bundles (θ = 0) corresponding to unitary connections.

The fact that HiggsX(0)ssi is a semisimple Abelian category follows formally

from Proposition 2.2.11.

3.2. Arithmetic vector bundles and filtrations of

Grayson–Stuhler type

3.2.1. Hermitian lattices

Let V ecOK be the quasi-Abelian category of projective modules of finite rank over

the ring of integers of a number field K. A hermitian lattice M̄ is an object M of

V ecOK together with a hermitian norm | |v on M ⊗OK ,v C with respect to each

archimedean place v of K; for K = Q, this is the same as a Euclidean lattice, as

considered in Sec. 1.1.5, Example 1.2.2.

Morphisms of hermitian lattices are OK-linear maps of norm ≤ 1 with respect

to each | |v. Hermitian lattices form a proto-Abelian category HermOK (cf. Exam-

ple 1.2.4).

The function

d̂egM̄ = log �

(
M

/
rkM∑

1

OKsi
)
− dv

2

∑

v

log det(〈si, sj〉v),

where si (i = 1, . . . , rkM) are elements ofM which form a basis ofMK , and dv is 1

or 2 according to whether v is real or complex (the above expression is independent

of this choice), is a degree function on HermOK . By Theorem 1.4.7, it gives rise to

slope filtration on HermOK , indexed by Λ = Q, the Grayson–Stuhler filtration.
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Although HermOK is non-additive, it is a rigid monoidal category, and it is

possible to define the determinant of any object. With proper normalization, d̂egM̄

depends only on det M̄ . In this sense, the Grayson–Stuhler slope filtration looks

like a determinantal filtration.

Whether it has the ⊗-multiplicativity property is an open problem, already for

K = Q (it was conjectured by J.-B. Bost [19]; cf. [35, 26, 20] and [8] for partial

results).

3.2.2. Arithmetic vector bundles in Arakelov geometry

A. Moriwaki has generalized this filtration to the case of hermitian torsion-free

sheaves M̄ on a polarized normal arithmetic projective variety X of any dimension

d. In the case of an arithmetic surface, endowed with a nef and big hermitian line

bundle H̄, this is the filtration on the proto-Abelian category of hermitian torsion-

free sheaves M̄ on X , attached to the degree functionmm given by

d̂eg M̄ := d̂eg(ĉ1(M̄) · ĉ1(H̄)d−1) ∈ R.

3.2.3. Variants

In order to strengthen the analogy between the Harder–Narasimhan filtration and

the Grayson–Stuhler filtration, Hoffman, Jahnel and Stuhler have extended the

Harder–Narasimhan filtration to quasi-Abelian category of adelic vector bundles

on smooth algebraic curves [54].nn Again, existence and unicity follow directly from

Theorem 2.2.8.

3.3. φ-modules and filtrations of Dieudonné–Manin type

3.3.1. φ-modules

Let R be field or a Bézout ring, and let φ be an injective endomorphism of R such

that the invariant ring F = Rφ is a field of characteristic zero.

A φ-module is a free R-module of finite rank M together with an isomorphism

Φ : M ⊗R,φ R→M.

The category φ-ModR of φ-modules, with its natural ⊗, is quasi-tannakian over F ,

and even tannakian if R is a field.

One has Pic(φ-ModR) = R×/{b/φ(b), b ∈ R×}. If L is represented by c ∈ R×,
the existence of a nonzero morphism 1 → L translates into the existence of a ∈ R
(possibly non-invertible) such that c = a/φ(a).

mmThe main effort in Moriwaki’s paper is devoted to proving that the set of degrees of subsheaves
of M̄ has a maximum. Again, as we have seen in Theorem 1.4.7, it should not be necessary to
prove this statement a priori: it is a formal consequence of the properties of a degree function.

On the other hand, Chen [25] gives another axiomatic viewpoint on these filtrations; however,
the existence of the universal destabilizing subobject and a version of our Lemma 1.3.8 are taken
by him as axioms.
nnAlso considered by Gaudron [44], in characteristic p.
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Thus, by Theorem 2.2.8, any homomorphism

δ : R×/{b/φ(b), b ∈ R×} → Z

which satisfies

δ([a/φ(a)]) ≥ 0 for any a ∈ R such that a/φ(a) ∈ R×

gives rise to a unique integral (descending) slope filtration with slope function
δ(detM)
rkM .

For instance, if R is endowed with a valuation v with values in Z and φ is an

isometry with respect to v, then both choices

δ([b]) =

{
+ v(b) ∀ b ∈ R×

− v(b) ∀ b ∈ R×

satisfy the assumption. It turns out that the interesting examples occur with the

− sign.

Slightly differently, assume that R× ∪ {0} is a subring of R, and that v is a

valuation on this subring with values in Z. Assume that there is a sequence of

valued rings (Rn, vn) such that R = lim−→Rn v = lim vn|R×
n
, and vn(φ(a)) ≥ vn(a) for

any a ∈ Rn. Then
δ([b]) = − v(b) ∀ b ∈ R×

satisfies the assumption (it may occur that δ = +v does not, cf. Sec. 3.3.5 below).

3.3.2. Description of the Newton polygon when R = K is a complete

valued field

Let M be a cyclic φ-module over a complete valued field (K, v) (of characteristic

0). Since the twisted polynomial ring K〈φ〉 is left principal, M is of the form

K〈φ〉/K〈φ〉P , with P monic.

Let us define the Newton polygon NP (P ) of P =
∑
aiφ

i to be the convex

envelope of the lines x = i, y ≤ −v(an−i) (the origin is the left-endpoint). Then it

is known that P admits a unique factorization

P = Pλr · · ·Pλ1 ,

where λ1 > · · · > λr, Pi is monic andNP (Pλi) has just one slope λi (cf. [62, 14.2.5]).

From this, one derives that NP (P ) = NP (M) (for δ = −v), the factorization

of P corresponding to the slope filtration of M (loc. cit. 14.4.15). The filtration

is ⊗-multiplicative (loc. cit. 14.4.9). Moreover, it is split if φ is invertible (loc. cit.

14.4.13).

3.3.3. Frobenius modules

Let R = K be a complete valued field of characteristic 0, with residue field k of

characteristic p > 0. Let φ be a lifting of some fixed positive power of the Frobenius

endomorphism of k, so that φ is an isometric endomorphism of K.
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In this context, φ-modules are also called F-isocrystals (over the point), after

Grothendieck. The determinantal slope function attached to the slope function

µ(M) := − v(Φdet M )
rkM is the (descending versionoo of) the classical Dieudonné–Manin

filtration.

This slope filtration is ⊗-multiplicative. It is exact. Moreover, it is split if φ is

invertible, i.e. if k is perfect.

3.3.4. q-difference modules

Let K = R be either the field C({x}) of germs of meromorphic functions at the

origin, or its x-adic completion C((x)), endowed the the x-adic valuation v. Let

q be a nonzero complex number, not a root of unity, and let φ be the isometric

continuous C-automorphism of K given by

φ(x) = qx

(here F = C since q is not a root of unity). In this context, φ-modules are called

q-difference modules.pp

The slope function µ(M) := − v(Φdet M )
rkM gives rise to an integral determinantal

slope filtration on φ-ModC({x}) and to another one on φ-ModC((x)).
The filtration on φ-ModC((x)) is split and ⊗-multiplicative.

For |q| �= 1, the filtration on φ-ModC({x}) has been considered by Sauloy, who

proved (using Adams’s lemma [3]) that it is induced by the filtration on φ-ModC((x)),
cf. [94].qq The q-difference modules of slope 0 are well understood, cf. [95].

Recently, the more delicate case |q| = 1 has been tackled by Di Vizio [37].

Again, under some diophantine conditions (on q and on the so-called exponents),

the filtration agrees with the formal one.

ooSee Remarks 1.4.4 and 1.4.19.
ppThese objects occur in the context of q-calculus, which has a long history (Euler, Gauss, Jacobi,
Heine, Ramanujan, . . .), and is based on the replacement of ordinary integers n by their q-analogs

[n]q = 1 + q + q2 + · · ·+ qn−1.

The usual derivation d/dx is then replaced by the q-derivation

dq : f(x) �→ f(x) − f(qx)

(1− q)x

which sends xn to [n]qxn−1. Differential equations are thus replaced by q-difference equations,
which are nothing but functional equations

y(qnx) + an−1y(q
n−1x) + · · ·+ a0y(x) = 0.

The “confluence” of q-difference equations to differential equations occurs when q tends to 1. The
analytic theory of q-difference equations is well-developed when |q| 	= 1, cf. e.g. [38] for a survey;
when |q| = 1, one encounters phenomena of small divisors which make the study more delicate.
qqIn their recent work (cf. [88]), Ramis and Sauloy changed the convention on the sign of slopes,
working with an increasing filtration instead of a decreasing one (this is a mere convention and
has nothing to do with the above choice of sign δ = ±v).
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Remark 3.3.1. The Adams–Sauloy filtration is exact but not split in general. For

instance, let (M,Φ) be the q-difference module given by the matrix
(
1/x 1/x

0 1

)

in the canonical basis of C({x})2. It has breaks 1 and 0, and is indecomposable,

cf. [95, 2.2.1].

On the other hand, for the filtration given by δ = +v (instead of the Adams–

Sauloy filtration given by δ = −v), the same q-difference module is semistable of

slope 1/2. The tannakian category generated by M is actually equivalent to the

one of Example 2.2.12.

For |q| > 1, q-difference modules over C((x)) are closely to vector bundles on

the elliptic curve X = C×/qZ. Let gr φ-ModC({x}) ⊂ φ-ModC({x}) be the tannakian
full subcategory consisting of objects such that M = grM . One has a canonical

fiber functor

gr φ-ModC({x}) → V ecX

which is essentially bijective, i.e. induces an isomorphism on skeleta. This functor is

compatible with the Adams–Sauloy filtration on the left-hand side and the Harder–

Narasimhan filtration on the right-hand side, cf. [83, 95].

3.3.5. φ-modules on the Robba ring

Let now R = R be the Robba ring over a p-adic field K, i.e. the ring of K-

holomorphic functions on some open annulus with outer boundary 1 (such functions

are represented by Laurent series with coefficients inK and appropriate convergence

conditions). This is a Bézout ring (Lazard).

Let Rbd be the subring of bounded elements. This is actually a field, which is

henselian with respect to the natural (p-adic) valuation (which extends in no way

to R itself), which we normalize to take values in Z. Moreover R× ∪ {0} = Rbd.
Let φ be an injective endomorphism K given by

φ(x) = xp
m

or (1 + x)p
m − 1,

and acting via some power of Frobenius on the coefficients (so that F = Kφ). It

preserves Rbd.
The slope function µ(M) := − v(Φdet M )

rkM gives rise to an integral determinan-

tal slope filtrationrr on the quasi-tannakian category φ-ModR. This filtration was

introduced and studied by Kedlaya.ss

rrOne has v(φ(b)) = v(b) for any b ∈ R×, but it may happen that for a ∈ R\R×, φ(a)/a ∈ R×

and v(φ(a)/a) > 0 (example: a = log(1 + x)). Hence, in the setting of Sec. 3.3.1, one has to take
δ = −v, not +v.
ssActually, he works with the corresponding ascending slope filtration, cf. Remark 1.4.4.
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He proved that any φ-module M of slope 0 over R comes from a (unique)

φ-module M bd over Rbd such that M bd ⊗Rbd R̂bd is of slope 0 with respect to

the Dieudonné–Manin filtration on φ-ModdRbd (a so-called unit-root F-isocrystal),

cf. [59].

From this, and the fact that the Dieudonné–Manin filtration is ⊗-multiplicative,

it follows that the Kedlaya filtration is ⊗-multiplicative as well. Unlike the

Dieudonné–Manin filtration, however, it is not exact (as Colmez’s theory of tri-

anguline representations shows).

Given a φ-module over an Rbd, one can consider the Newton polygon ofM⊗Rbd

R̂bd with respect to the Dieudonné–Manin filtration, and the Newton polygon of

M ⊗Rbd R with respect to the Kedlaya filtration. With our conventions on Newton

polygons (1.4.4), the former lies above the latter, with the same endpoints [59].

3.3.6. Local F-isocrystals, and (φ,Γ)-modules

Local F-isocrystals are differential modules with Frobenius structure over the Robba

ring. More precisely, they are freeR-modules of finite rank which are simultaneously

K〈x, d/dx〉-modules and φ-modules, in a compatible way: Φ commutes with the

action of d/dx.

They form a tannakian category F-IsocR over F = Kφ. The Kedlaya filtration

on φ-ModR induces a ⊗-multiplicative slope filtration on this category, which is

exact.

Using this filtration and the characterization of slope 0 objects, Kedlaya proved

the p-adic local monodromy theorem (Crew’s conjecture) by reduction to the case

of unit-root isocrystals on Rbd, which was treated by Tsuzuki, cf. [59].

The notion of (φ,Γ)-module over R is a variant of that of local F-isocrystal,

which Fontaine introduced in the theory of p-adic representations of p-adic fields.

For simplicity, we take K = F = Qp. Here φ(x) = (1 + x)p − 1. Γ is the cyclotomic

quotient Gal(Qp(ζp∞)/Qp) of GQp (isomorphic to Z×
p via the cyclotomic character

χ); it acts on R via γ(x) = (1+x)χ(γ)− 1. The infinitesimal generator of LieΓ can

be identified with the derivation (1 + x) log(1 + x)d/dx.tt

A (φ,Γ)-module over R (resp. Rbd) is a free R-module (resp. Rbd-module) of

finite rank which is simultaneously a (semilinear continuous) Γ-modules and a φ-

module, in a compatible way: Φ commutes with the action of Γ. (φ,Γ)-modules

form a quasi-tannakian category (φ,Γ)-ModR (resp. (φ,Γ)-ModRbd) over Qp, and
the Kedlaya filtration on φ-ModR induces a ⊗-multiplicative slope filtration on

(φ,Γ)-ModR.

According to Fontaine, Colmez and Cherbonnier [43, 27], there are ⊗-
equivalences of tannakian categories:

RepcontQp
GQp

∼= (φ,Γ)-ModR(0) ∼= (φ,Γ)-ModRbd(0), (3.2)

ttThe factor log(1+x), which vanishes on the set ζp∞ −1, gives rise to difficulties with “apparent
singularities”.
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where (0) refers to the subcategory of objects of Kedlaya slope 0 (the fact that

(φ,Γ)-ModRbd(0) is Abelian can also be derived from Proposition 2.2.11).

3.4. Filtered modules and filtrations of Faltings–Fontaine type

3.4.1. Filtered modules

Let K/F be a finite extension of fields of characteristic 0, and let n be a posi-

tive integer. Let n-FilK/F be the category of finite-dimensional F -vector spaces V

together with n (separated, exhaustive, decreasing) Z-filtrations F .ν on V ⊗F K.

This is a quasi-tannakian category over F . The homomorphism

δ : Pic(n-FilK/F ) ∼= Zn → Z,

given by the sum of the coordinates (the notches of the filtrations), gives rise to an

integral determinantal slope filtration, which was studied by Faltings and Rapoport

[41,40,89] (it occurs in the theory of p-adic period mappings). It is a non-exact (this

is easily seen by considering a stable object of rank > 1).

In [41], Faltings and Wüstholz relate it to the Harder–Narasimhan filtration,

as follows. Let X be a cyclic covering of P1, totally ramified above n[K : F ]

branch points, at least. To (V, (F .ν)), they associte a vector bundle M(V, (F .ν)) on

X of rank dim V and degree [K : F ]δ(det(V, (F .ν))). The construction commutes

with ⊗. Moreover,M(V, (F .ν)) is semistable if (V, (F .ν )) is, and conversely provided

the degree of the covering X/P1 is large enough. The ⊗-multiplicativity of the

Faltings–Rapoport filtration thus follows from the ⊗-multiplicativity of the Harder–

Narasimhan filtration (for other approaches, cf. [40, 104,105]).

3.4.2. Filtered φ-modules

In the context of 3.3.1, let Fil-φ-ModR be the category of Z-filtered φ-modules

(V,Φ, F .) over R (no relation between Φ and F . is imposed). This is a quasi-

tannakian category over F = Rφ.

It has two natural determinantal slope filtrations: the “tautological” one induced

by F .; and the one given by δ = −v. One can also consider their middle point, i.e.

the determinantal slope filtration defined by

Pic(Fil-φ-ModR) ∼= Z×R×/{b/φ(b), b ∈ R×}
given by (n ∈ Z, c ∈ R×) �→ n− v(c) (n is the notch of the filtration).

This “middle filtration” is relevant in the context of Sec. 3.3.6, where it was

considered by Fontaine and others. According to Fontaine and Colmez [31] (cf.

also [15, V]), there is a ⊗-equivalence of tannakian categories:

RepcrysQp
GQp

∼= Fil-φ-ModQp(0), (3.3)

where (0) refers to the subcategory of objects of Fontaine slope 0 (the fact that Fil-

φ-ModQp(0) is Abelian can also be derived from Proposition 2.2.11), and where the

superscript crys refers to crystalline representations.
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To close the circle, Berger has constructed a fully faithful ⊗-functor of quasi-

tannakian categories

Fil-φ-ModQp ↪→ (φ,Γ)-ModR (3.4)

and proven that it preserves the slope filtrations [15] (this is one of the ways to prove

that the Fontaine filtration is ⊗-multiplicative). Via (3.2) and (3.3), the embedding

of subcategories consisting of objects of slope 0 (in the sense of Fontaine and Ked-

laya, respectively) corresponds to the embedding RepcrysQp
GQp ↪→ RepcontQp

GQp .

4. A Catalogue of ⊗-Bounded Slope Filtrations

To produce ⊗-bounded slope filtrations on a tannakian category C (over a field F

of characteristic 0) is not as easy as to produce determinantal slope filtrations. One

way is by constructing a sequence of normal subgroups of the tannakian group as

in Proposition 2.4.9. Another way, when C is semisimple, is by defining the highest

break function and checking the simple conditions of Proposition 2.4.6.

We recall that the breaks of a ⊗-bounded slope filtration are always non-

negative.

4.1. Differential modules and filtrations of Turrittin–Levelt type

4.1.1. Formal differential modules in one variable

Let F be an algebraically closed field of characteristic zero. Let the derivation

∂ = x d
dx acts on K = F ((x)) and respects the x-adic valuation v on K\F .

Let DModK be the category of differential modules M = (V,∇(∂)) over K.

This is a tannakian category over F .

The highest break function associated to the Turrittin–Levelt filtration is given

by the Poincaré–Katz rank:

ρ(M) = max(0,−vsp(∇(∂)) (4.1)

involving the spectral valuation (cf. e.g. [7, 2.1])

vsp(∇(∂)) = lim
1

n
v(∇(∂)n).

The conditions of Proposition 2.4.6 are easily checked using this definition, so that

Proposition 2.4.6 shows that associated (Turrittin–Levelt) filtration is ⊗-bounded,
as far as one considers semisimple differential modules.

To check that it is ⊗-bounded on DModK , one would have to show that

M = grM for any M (cf. Proposition 2.4.7), but this splitting property of for-

mal differential modules is nontrivial.

It is established by using the fact that any differential module over K is cyclic,

i.e. of the form K〈∂〉/K〈∂〉P , and showing that P admits a unique factorization as

in the case of φ-modules (cf. Sec. 3.3.2), Newton polygons being defined in a similar

way, except that one considers only non-negative slopes.
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The degree function attached to the Turrittin–Levelt filtration is called the

irregularity, denoted by ir. According to Gérard–Levelt [45], it can be computed as

follows. Let us consider the following non-decreasing sequence of F [[x]]-lattices of

V , starting from an arbitrary one V0: Vn+1 = Vn +∇(∂)(Vn). Then

irM = lim
1

n
dimF (Vn/V0). (4.2)

It is not clear from this formula that this is an integer. Actually, the integrality of

the Turrittin–Levelt filtration follows from the expression of ir in the cyclic case,

cf. (1.1).

For F = C, the irregularity is also degree function on the full subcategory

DModC({x}) of analytic differential modules, but the associated slope filtration is

not the restriction of the Turrittin–Levelt filtration, and does not seem to have any

interest (in contrast to the q-analog, with the Adams–Sauloy filtration). On the

other hand, for a cyclic analytic differential module M = C({x})〈∂〉/C({x})〈∂〉 ·P ,
Malgrange has interpreted irM as the index of P acting on C[[x]]/C{x}.

4.1.2. Formal differential modules in several variables

Formal (integrable) differential modules in two or more variables are more mys-

terious, and decisive progress on unveiling their structure is very recent (cf.

[92, 7, 75, 61]).

Let us just say a few words about the tannakian category DModR for R =

C[[x, y]][ 1x ], which is a non-full subcategory of DModF ((x)) (F = ∪C((y1/n)) being
the algebraic closure of C((y))).

Let 〈M〉 (resp. 〈MF ((x))〉) be the tannakian subcategory of DModR (resp.

DModF ((x))) generated by M (resp. MF ((x))). The Turrittin–Levelt filtration of

〈MF ((x))〉 does not induce a filtration on 〈M〉 in general (a criterion is given in [7,

3.4.1]). In fact, the irregularity (in the sense of 〈MF ((x))〉) induces a degree function

on 〈M〉, hence a slope filtration, which is not bounded in general however (some

formal blow-ups are needed to fix this).

An example is given by the differential module M with basis m1,m2 in which

∇(xd/dx) =
(
y/x 0

−1 0

)
, ∇(yd/dy) =

(−y/x 0

1 0

)
.

The vector m1 generates a differential submodule of slope 1 (which is the universal

destabilizing subobject), but the extension which gives M does not split (whereas

MF ((x)) = grMF ((x)) splits).

4.1.3. Differential modules over the Robba ring

Let again R be the Robba ring over the p-adic field K, endowed with a Frobenius

φ as in Sec. 3.3.5.
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The category DModR of differential modules over R is tannakian over K. Let

DMod
(φ)
R be the tannakian (full) subcategory of differential modules admitting a

Frobenius structure, i.e. lying in the essential image of F -IsocR.

The highest break function associated to the Christol–Mebkhout filtration is

given by the following recipe: ρ(M) is the smallest λ ∈ R≥0 such that for any r

sufficiently close to 1, M admits a basis of solutions in the open generic disk of

radius r1+λ.

The conditions of Proposition 2.4.6 are easily checked using this definition, which

shows that associated (Christol–Mebkhout) filtration is ⊗-bounded, as far as one

considers semisimple differential modules.

To check that it is ⊗-bounded on DMod
(φ)
R , one would have to show that M =

grM for any M (cf. Proposition 2.4.7), but this splitting property is nontrivial.

The degree function attached to the Christol–Mebkhout filtration is called the

p-adic irregularity, denoted by irp. For a cyclic module M = R〈∂〉/R〈∂〉 ·P , Chris-
tol and Mebkhout have interpreted irpM as a generalized index of P acting on

functions in the open unit disk. This interpretation shows that their filtration is

integral [29].

Recent work by Baldassarri and by Kedlaya suggests that there should be a

common framework for the Turrittin–Levelt and the Christol–Mebkhout filtrations,

involving Berkovich geometry.

4.1.4. q-difference modules over the Robba ring

This has a q-analog. Namely, let q ∈ Kφ be such that |1− q| < p−
1

p−1 .

The category q-ModR of q-difference modules over R is tannakian over K. Let

q-Mod
(φ)
R be the tannakian (full) subcategory of differential modules admitting a

Frobenius structure, cf. [9, 12.4].

There is a canonical “functor of confluence” q-Mod
(φ)
R → DMod

(φ)
R which is an

equivalence of tannakian categories.

This functor is identity on the underlying R-modules. The differential structure

arises as the limit of a canonical sequence

Mm = (M,∇(dqpm )) ∈ qpm -Mod
(φ)
R

related by isomorphisms Φ∗Mm+1
∼=Mm.

One can use this equivalence in order to transport the Christol–Mebkhout fil-

tration to q-Mod
(φ)
R . In order to show that it has the same description in terms of

the radius of convergence of solutions in generic disks,uu we may assume that M∞
(hence M0) is purely of slope λ. Note that the convergence of ∇(dqpm ) to ∇(d/dx)
implies that M,∇(dqpm ) and ∇(d/dx) are all defined over some open annulus

A(1 − ε, 1).

uuThis had been conjectured in [5, 4.3]; a sketch of the following construction was presented at
the French–Nordic conference in Rejkyavik, January 2006.
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One proceeds in two steps:

(1) Let (M,∇(dq)) be a q-difference module overA(1−ε, 1). Then for r close enough

to 1, the generic radius of convergence of (M,∇(dq)) and Φ∗(M,∇(dq)) at tr
and tpr respectively coincide.

(2) Let qi be a sequence converging to 1, and (M,∇(dqi )) be a sequence of

qi-difference modules over A(1 − ε, 1). Then the generic radius of conver-

gence of (M,∇(dqi )) at tr converges to the generic radius of convergence of

(M,∇(d/dx)) at tr.

One concludes that for any i, and for any r close enough to 1, the generic radius

of convergence of (M,∇(dqi )) at tr is r1+λ.

We will not go into further detail about this construction, since Pulita has

recently given a more straightforward argument, in greater generality [82, 8.5.4] (he

relaxed the condition |1− q| < p−
1

p−1 , which allows to study other “confluences”

q → ζ ∈ µp∞).

4.2. Galois representations and filtrations of Hasse–Arf type

4.2.1. Local Galois representations; case of perfect residue field

Let (K, v) be a complete discretely valued field with perfect residue characteristic

k. The Hasse–Arf filtration on representations of GK is constructed via a decreas-

ing, left continuous, sequence of open normal subgroups (G
(λ)
K )λ∈Q≥0

of GK . The

filtration of a representation M is then defined by

F≥λM = Ker(M →MG(λ))

(where MG(λ) stands for the coinvariants).

Here, “representation” means “continuous representation with finite image over

some field F of characteristic 0”; or, with appropriate interpretation, “�-adic rep-

resentation, with � �= car k” [58] (more recently, the case of p-adic representations,

with p = car k, has also been considered [30, 70]).

The degree function attached to the Hasse–Arf filtration is called the swan

conductor, denoted by sw. It takes values in Z, by the Hasse–Arf theorem (there is

also a cohomological interpretation of sw as an index, due to Katz).

The image G(λ) of the group G
(λ)
K in a given finite quotient Gal(L/K) of GK

is described as follows. For any i ∈ N, let G(i) be the subgroup of elements g ∈
Gal(L/K) such that vL(g(a) − a) ≥ i + 1 for any a ∈ OL. Then the breaks of

the locally constant non-increasing sequence (G(λ))λ are given by λi =
∫ i
0 [G0 :

G−[−t]]−1dt, and G(λi) = G(i).

Let us consider the case K = k((x)), where k is a perfect field of characteristic

p > 0. Let F be the fraction field of the ring of Witt vectors of k, and let R be the

Robba ring over F . Then there are canonical ⊗-functors

RepfinF GK → DMod
(φ)

Rbd → DMod
(φ)
R , (4.3)
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which, by the p-adic monodromy theorem, induce an equivalence of semisimple

tannakian categories

RepfinF GK ∼= (DMod
(φ)
R )ssi. (4.4)

According to Tsuzuki [106], this is compatible with the Hasse–Arf and Christol–

Mebkhout filtrations respectively. In particular, sw = irp, and the integrality of irp
can be deduced from the Hasse–Arf theorem.

4.2.2. Local Galois representations; case of imperfect residue field

Complete discretely valued fields K with imperfect residue field k are more myste-

rious, and decisive progress on unveiling their higher ramification theory, as defined

by Abbes and Saito [1, 2], is very recent (cf. [28, 108, 109]). The idea, launched by

Matsuda [72] and pursued by Kedlaya and Xiao, is to consider (integrable) differen-

tial modules over the Robba ring, with extra derivations acting nontrivially on F .

4.2.3. Local systems over a germ of punctured p-adic disk

Let R be an ind-finite ring such that R× contains both p and a subgroup isomorphic

to µp∞ (for instance R = F̄�).

Ramero [86,87] introduced the R-linear Abelian category R-Locbr∆× of local sys-

tem of R-modules with “bounded ramificationvv” on the germ ∆× of punctured

p-adic disk, and he endowed R-Locbr∆× with a split slope filtration indexed by Q,

cf. [87, 3.2.17]. He also gave a cohomological interpretation of the corresponding

degree function.

When R is a field, R-Locbr∆× is a tannakian category over R, and the Ramero

filtration has all properties of a ⊗-bounded filtration (except that charR �= 0).

5. Variation of Newton Polygons in Families

In some situations, one has to consider not just one quasi-tannakian category with

a slope filtration, but a whole family parametrized by a fixed space S. Given a

global object M/S, one can then ask about the variation of the Newton polygon of

its fibers Ms, s ∈ S.
We order the set of plane polygons by inclusion (since our Newton polygons are

defined by concave functions, N ′ ≤ N if and only if N ′ lies below N).

We review three such situations, which illustrate different behaviours.

5.1. Families of vector bundles

5.1.1. Let M be a flat family of vector bundles over a smooth projective curve X

(over a field F ), parametrized by a F -scheme S of finite type.

vvThis cohomological condition, which Ramero compares to an L1-condition in harmonic analysis,
restricts the wildness of the essential singularity at the puncture.
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For every point s of S,M induces an objectMs of V ecXκ(s)
. LetNP (Ms) denote

its Newton polygon (with respect to the Harder–Narasimhan filtration).

Theorem 5.1.1. (Shatz [98]) The function s ∈ S �→ NP (Ms) is upper semicon-

tinuous.ww

(Moreover, if S is connected, the endpoints of NP (Ms) are constant.)

This result allows to introduce a constructible stratification of S by Newton

polygons, which was studied by Shatz, Atiyah, Bott, . . .

5.1.2. Shatz’s proof relies on the possibility of specializing flags on the generic

fibers of M , and can be adapted to the case of families of filtered modules with

respect to the Faltings-Rapoport filtration and other similar cases.

5.2. F -Isocrystals

5.2.1. The right notion of family of Frobenius-modules is Grothendieck’s notion

of F-isocrystal over a noetherian scheme S of characteristic p.

For every geometric point s̄ of S, such an F-isocrystal M induces an object Ms̄

of F-IsocK(κ(s̄)), where κ(s̄) denotes the fraction field of the ring of Witt vectors of

κ(s̄). The Newton polygon ofMs̄, (with respect to the Dieudonné–Manin filtration)

depends only on the point s ∈ S under s̄; we denote it by NP (Ms).

Theorem 5.2.1. (Grothendieck [49]) The function s ∈ S �→ NP (Ms) is lower

semicontinuous.xx

(Moreover, if S is connected, the endpoints of NP (Ms) are constant.)

This result allows one to introduce a constructible stratification of S by Newton

polygons, which was studied by De Jong and Oort [32].

5.2.2. Katz’s proof [56] of Grothendieck’s theorem relies on the possibility of inter-

preting slopes in terms of spectral valuations, and can be adapted to the case of a

family of q-difference modules (with no confluence of singularities) with respect to

the Adams–Sauloy filtration.

A semicontinuity theorem similar to Grothendieck’s is proven in [66] for Frobe-

nius modules over the Robba ring with coefficients in a reduced p-adic affinoid

algebra (instead of a p-adic field).

wwWith respect to the Zariski topology on S.
xxGrothendieck uses the (usual) convention on Dieudonné–Manin slopes (which leads in general
to an ascending slope filtration and are the opposite of ours, cf. Sec. 3.3.3). With that convention,
the polygons (bordered by convex functions) are upper semicontinuous. The sharp contrast with
Shatz’s theorem is not a matter of conventions.
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5.3. Families of differential modules

5.3.1. Let f : X → S be a smooth holomorphic family of connected curves

parametrized by a complex manifold S, and let Z ⊂ X be a hypersurface of X

which is finite etale over S.

LetM , be a vector bundle with meromorphic connection relative to S, and poles

along Z only.

Then for any s ∈ S, Ms is a differential module on the curve Xs, with mero-

morphic singularities at the finite set of points z such that f(z) = s. Let NPz(Ms)

denote the Newton polygon (with respect to the Turrittin–Levelt filtration).

Theorem 5.3.1. [7, Th. A.1] The function z ∈ Z �→ NPz(Mf(z)) is lower semi-

continuous.

(Even if S is connected, the right endpoint of NP (Ms) need not be constant:

the irregularity may drop by specialization.)

5.3.2. If Z is no longer assumed to be etale over S (allowing the possibility of

confluence of singularities), the result does not hold: the irregularity may jump

by specialization. However, if the relative connection comes from an integrable

connection on X\Z, then the function

s ∈ S �→
∑

z, f(z)=s

irz(Ms)

is lower semicontinuous [7] (as was conjectured by Malgrange).

Appendix A. Pseudo-⊗-Functors and Rigidity

Appendix A.1. Let C, C′ be symmetric monoidal categories.

A pseudo-⊗-functor (ϕ, ϕ̃, ϕ1) from C to C′ consists of

— a functor φ : C → C′,
— a morphism of functors φ̃ : ⊗ ◦ (φ, φ)⇒ φ ◦ ⊗ from C × C to C′,
— an isomorphism φ1 : 1→ φ(1) in C′,

subject to the usual compatibilities with the monoidal structure.

Thus a pseudo-⊗-functoryy is a ⊗-functor (i.e. a symmetric monoidal functor)

if and only if φ̃ is an isomorphism.

The aim of this appendix is to reconsider two diagrams of ⊗-functors which

appear in [93, I.4.3.3.3, 5.2.3.1], and whose commutativity is asserted there without

proof. We shall give an argument which extends to the case of pseudo-⊗-functors.
From there, we shall deduce a criterion for a pseudo-⊗-functor to be a ⊗-functor.

Remark A.1. The compatibility with units, together with the condition that φ1
is an isomorphism, imply that φ̃1,Y and φ̃X,1 are always isomorphisms.

yyIt is called a “foncteur monöıdal unitaire” in [13].
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The composition of two pseudo-⊗-functors is a pseudo-⊗-functor, with the rule

ψ̃ϕX,Y = ψ(ϕ̃X,Y ) ◦ φ̃ϕ(X),ϕ(Y ), ψϕ1 = ψ(φ1) ◦ ψ1.

Remark A.2. C × C has a natural structure of symmetric monoidal category.

Moreover, (⊗, ⊗̃,⊗1) is a ⊗-functor from C × C to C if one sets

— ⊗̃(X1,X2),(Y1,Y2) = 1X1 ⊗ cX2,Y1 ⊗ 1Y2 , where c denotes the commutativity con-

straint in C (taking proper account of the associativity constraint).

— ⊗1 = the canonical isomorphism 1
∼=→ 1⊗ 1 in C.

A.2. A morphism

u : (ϕ, ϕ̃, ϕ1)⇒ (ψ, ψ̃, ψ1)

between pseudo-⊗-functors from C to C′ is a natural transformation u : ϕ ⇒ ψ

which is compatible with ϕ̃ and ψ̃, and with the constraints.

Remark A.3. Actually, the compatibility with the unit constraints is automatic,

and one has u1 = ψ1 ◦ ϕ−1
1 .

Remark A.4. Given a pseudo-⊗-functor φ : C → C′, the functors ϕ = ⊗ ◦ (φ, φ)
and ψ = φ◦⊗ have a natural structure of pseudo-⊗-functors from C ×C to C′, with
φ̃(X1,X2),(Y1,Y2) (resp. ψ̃(X1,X2),(Y1,Y2)) given by (φ̃X1,Y1 ⊗ φ̃X2,Y2) ◦ (1X1 ⊗ cX2,Y1 ⊗
1Y2) (resp. φ(1X1 ⊗ cX2,Y1 ⊗ 1Y2) ◦ φ̃X1⊗Y2,X2⊗Y2) (taking proper account of the

associativity constraint).

Moreover, φ̃ : ϕ ⇒ ψ is then a morphism of pseudo-⊗-functors. The com-

patibility with ϕ̃ and ψ̃ and the constraints amount to some identities which are

consequences of the fact that φ itself is a pseudo-⊗-functor. For instance, the com-

patibility with ϕ̃ and ψ̃ amounts to

φ̃X1⊗Y1,X2⊗Y2 ◦ (φ̃X1,Y1 ⊗ φ̃X2,Y2) ◦ (1X1 ⊗ cX2,Y1 ⊗ 1Y2)

= φ(1X1 ⊗ cX2,Y1 ⊗ 1Y2) ◦ φ̃X1⊗Y1,X2⊗Y2 ◦ (φ̃X1,X2 ⊗ φ̃Y1,Y2).

A.3. Let us now assume that C and C′ are rigid, and let us denote by

D : Cop → C, D′ : C′op → C′,

or sometimes simply ()∨, the duality equivalences.

If one identifies a morphism f : X → Y in C with a morphism Y → X in Cop,
Df is the transpose tf of f , and is characterized by the commutative square

Y ∨ ⊗X
tf⊗1−−−−→ X∨ ⊗X

1⊗f
�

�evX

Y ∨ ⊗ Y −−−−→
evY

1.
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The canonical isomorphisms

D̃X,Y : X∨ ⊗ Y ∨ ∼=→ (X ⊗ Y )∨, D1 : 1
∼=→ 1∨

make D into a ⊗-equivalence (cf. [93, I, 5.1.3]). Similarly for D′.

A.4. Let (φ, φ̃, φ1) be a pseudo-⊗-functor from C to C′. It induces a functor

φ′ : Cop → C′op,
and there is a canonical natural transformation

φ̂ : φ ◦D ⇒ D′ ◦ φ′, φ̂X : φ(X∨)→ (φ(X))∨

which is characterized by the commutativity of the square

φ(X∨)⊗ φ(X)
φ̂X⊗1−−−−→ φ(X)∨ ⊗ φ(X)

φ̃X∨,X

�
�evφ(X)

φ(X∨ ⊗X) −−−−→
φ(evX )

φ(1).

In particular φ̂1 • 1 = φ(ev1) ◦ φ̃1∨,1, hence φ̂1 is an isomorphism.

Remark A.5. When φ is a ⊗-functor, i.e. when φ̃ is an isomorphism, then there

is a natural ⊗-structure on φ′ (given by the transpose of φ̃−1) for which φ̂ becomes

an isomorphism of ⊗-functors [93, I,5.2].

Remark A.6. For the composition of pseudo-⊗-functors, one has the formula

ψ̂ϕX = ψ̂ϕ(X) ◦ ϕ̂X
which follows from the formula in Remark A.1 applied to the pair (X∨, X).

On the other hand, for ⊗ considered as a ⊗-functor C×C → C, one has ⊗̂X1,X2 =

D̃X1,X2 .

A.5. Let u : (ϕ, ϕ̃, ϕ1)⇒ (ψ, ψ̃, ψ1) be a morphism of pseudo-⊗-functors from C to

C′.

Lemma A.7. One has ϕ̂ = tu◦ ψ̂◦ (u∗D), i.e. for any X, the composed morphism

ϕ(X∨)
uX∨→ ψ(X∨)

ψ̂X→ (ψ(X))∨
tuX→ (φ(X))∨

is ϕ̂X .

Remark A.8. In [93, I.5.2.2.1], it is proven that if ϕ and ψ are ⊗-functors, then
ϕ̂ and ψ̂ are isomorphisms. In [93, I.5.2.3.1], it is asserted (without proof) that

ϕ̂−1
X∨ ◦ tuX∨ ◦ ψ̂X∨ is inverse to uX . The above formula shows that it is left-inverse.

To show that it is also right-inverse, one can check that

(ϕ̂−1 ◦ tu ◦ ψ̂) ∗D : (ψ, ψ̃, ψ1)⇒ (ϕ, ϕ̃, ϕ1)

is a morphism of ⊗-functors and apply the lemma to it.
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Proof. We have to show that

evϕ(X) ◦ (tuX ⊗ 1ϕ(X)) ◦ (ψ̂X ⊗ 1ϕ(X)) ◦ (uX∨ ⊗ 1ϕ(X)) = evϕ(X) ◦ (ϕ̂X ⊗ 1ϕ(X)).

Since evϕ(X) ◦ (tuX ⊗ 1ϕ(X)) = evψ(X) ◦ (1ψ(X)∨ ⊗ uX), this amounts to

evψ(X) ◦ (ψ̂X ⊗ 1ϕ(X)) ◦ (uX∨ ⊗ uX) = evϕ(X) ◦ (ϕ̂X ⊗ 1ϕ(X)).

Since u is a morphism of pseudo-⊗-functors, one has a commutative diagram

ϕ(X∨)⊗ ϕ(X)
ϕ̃X∨,X−−−−→ ϕ(X∨ ⊗X)

ϕ(evX )−−−−−→ ϕ(1)

uX∨⊗uX

�
�uX∨⊗X

�u1

ψ(X∨)⊗ ψ(X)
ψ̃X∨,X−−−−→ ψ(X∨ ⊗X)

ψ(evX )−−−−−→ ψ(1).

On the other hand, the composed morphism in the top row is ϕ−1
1 ◦evϕ(X)◦(ϕ̂X⊗1),

while the composed morphism in the bottom row is ψ−1
1 ◦ evψ(X) ◦ (ψ̂X ⊗ 1). This

establishes the required formula (taking Remark A.4 into account).

Let (φ, φ̃, φ1) be a pseudo-⊗-functor from C to C′.

Lemma A.9. For any X,Y, one has a commutative diagram

φ(X∨)⊗ φ(Y ∨)
φ̃X∨,Y ∨−−−−−→ φ(X∨ ⊗ Y ∨)

φ̂X⊗φ̂Y

�
�φ(D̃X,Y )

φ(X)∨ ⊗ φ(Y )∨ φ((X ⊗ Y )∨)

D̃φ(X),φ(Y )

�
�φ̂X⊗Y

(φ(X)⊗ φ(Y ))∨ ←−−−−
tφ̃X,Y

φ(X ⊗ Y )∨.

Remark A.10. The commutativity of this diagram is asserted without proof in [93,

I.4.3.3.3] (in the case of a ⊗-functor).

Proof. Taking into account remark A.4, and with the same notation, we can apply

the previous lemma to u = φ̃ : ϕ⇒ ψ (with C replaced by C × C). This gives
ϕ̂X,Y = tφ̃X,Y ◦ ψ̂X,Y ◦ φ̃X∨,Y ∨ .

It remains to identify ϕ̂X,Y with D̃φ(X),φ(Y ) ◦ (φ̂X ⊗ φ̂Y ) and ψ̂X,Y with φ̂X,Y ◦
φ(D̃X,Y ). This follows from Remark A.6.

Corollary A.11. Assume that C′ is additive and pseudo-Abelian (i.e. idempotent

morphisms have a kernel and a cokernel ), and that there is no nonzero object of

rank 0.

Then φ̃ is an isomorphism (i.e. φ is a ⊗-functor) if and only if φ̂ is an isomor-

phism.
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Proof. We already know that φ̂ is an isomorphism if φ is a ⊗-functor ([93,

I.5.2.2.1]). Let us prove the converse. We first remark that objects occurring in

the above diagram have the same rank. If φ̂ is an isomorphism, the vertical mor-

phisms are isomorphisms, so that f = φ̃X∨,Y ∨ has a left inverse g. The kernel and

the cokernel of the idempotent fg have rank 0, hence are 0. Therefore f is an

isomorphism.

Example A.12. Let C be either the category of polarized Hodge structures, or

the category of numerical motives. In both cases, this is a semisimple tannakian

category with rational coefficients.zz Let us consider the Grothendieck coniveau

filtration: for λ ∈ Z, F≥λM is the greatest subobject of M such that the twist

(F≥λM)(λ) is effective. This gives a split slope filtration on C.
One has F≥λ1M1 ⊗ F≥λ2M2 ⊂ F≥λ1+λ2M2, so that gr has a natural structure

of pseudo-⊗-endofunctor (gr = id, g̃r, gr1 = 1). It is not a ⊗-functor.
This can be seen on the example M1 = M2 = H1 of an elliptic curve with-

out complex multiplication: g̃rM,M (resp. ĝrM⊗M ) is an isomorphism on the S2

component, and zero on the ∧2 component. In fact, the coniveau filtration is not

determinantal.
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