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GALOIS THEORIES OF q-DIFFERENCE EQUATIONS:
COMPARISON THEOREMS

LUCIA DI VIZIO AND CHARLOTTE HARDOUIN

Abstract. We establish some comparison results among the different parameterized Galois
theories for q-difference equations, completing the work [4], that addresses the problem in
the case without parameters. Our main result is the link between the abstract parameterized
Galois theories, that give information on the differential properties of abstract solutions of
q-difference equations, and the properties of meromorphic solutions of such equations. Notice
that a linear q-difference equation with meromorphic coefficients always admits a basis of
meromorphic solutions, as proven in [25].
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Introduction

A linear q-difference system is a linear functional equation of the form ~y(qx) =
A(x)~y(x), where, to fix ideas, we assume that A(x) ∈ GLν(C(x)) and that q ∈
C∗ := C r {0} is not a root of unity. This kind of functional equations appears
in the literature for many reasons, for instance: they are discretization of linear
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differential groups.
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differential equations that can be recovered letting q → 1 in ~y(qx)−~y(x)
(q−1)x ; they ap-

pear in combinatorial problems in relation with q-series; they have a geometric
interpretation as functional equations on the torus C∗/qZ, when |q| 6= 1.

A functional equation is useful as far as it allows to grasp properties of its
solutions. To achieve this purpose, there are two different schools: some may try
to actually find explicit solutions to the equation, while others concentrate on its
structural properties, that could give information on solutions that we are unable
or unwilling (but most of the time unable) to write. Galois theory of difference
equations follows the second line of thoughts.

Difference Galois theory has been introduced in [13]. Since the first systematic
work [29], which follows quite an abstract point of view, the Galois theory of q-
difference equation has been developing in many directions. Theories and theorems
can be classified according to different criteria, for instance:

(1) After [25, Theorem 3] any q-difference equations with meromorphic coef-
ficients has a basis of meromorphic solutions. Therefore one can decide
to use it to define a Galois theory, as in [28], or one can define abstract
solutions as in [29].

(2) One can define the Galois group of ~y(qx) = A(x)~y(x) as a group of auto-
morphisms of a convenient extension containing a full set of solutions or
use a more abstract Tannakian point of view.

Following these different points of view, a certain number of Galois groups have
been defined in the literature. In [4], the problem of establishing the isomorphisms
among them is addressed. See Theorem 4.1 below.

In [16], the authors develop a parameterized Galois theory that takes into account
the action of a derivation on a set of solutions of a q-difference equations. One of
the drawbacks of this theory is that it is based on an abstract set of solutions and
their derivatives, constructed in an algebra over a differentially closed extension of
C, therefore quite a huge field of definition. A natural question is to compare these
abstract solutions with the Galois theory constructed using a basis of meromorphic
solutions of the system.

To complete the picture, one can attach to any q-difference system several groups
thanks to the theory of differential Tannakian categories introduced by Kamensky
[17] and Ovchinnikov in [23]. A differential Tannakian category is a generalization
of the notion of Tannakian category introduced by Deligne [6]. As a Tannakian
category (with a fiber functor) is isomorphic to the category of representations
of a linear algebraic groups, a differential Tannakian category (with a differential
fiber functor) is isomorphic to the category of representations of a linear differential
algebraic group (see Appendix B). Any full set of solutions determines a neutral
differential fiber functor on the category generated by the associated q-difference
module, and hence a group. Moreover, the differential Tannakian setting allows
to introduce the so called intrinsic Galois groups, associated to non-neutral fiber
functors.

The main point of this paper is to establish the isomorphisms between all these
groups in the literature, which should allow for a more fluid application of q-
difference Galois theory, being able to exploit the different advantages of each
point of view. In [24], the author compared some parameterized Galois groups
defined over some abstract base fields and obtained the analogue of Theorem 4.3 in
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her setting. In this paper, we are interested in clarifying the relation between the
meromorphic solutions and the abstract Galois theory, so that we can not rely on
[24].

The paper is organized as follows. First we define the different kind of solutions
and the algebras generated by them. This allows for a definition of the Galois group
as a group of automorphisms. Then we recall the (differential) Tannakian formalism
and the different groups that such theory allow to associate to a q-difference system.
We conclude comparing all the different groups defined in the paper.

1. q-difference systems and their solutions

Let K be a field of characteristic zero and q 6= 0, 1 be a fixed element of K. The
field K(x) is naturally a q-difference field, i.e., it is equipped with the q-difference
operator

σq : K(x) −→ K(x),
f(x) 7−→ f(qx).

More generally, we will call q-difference field one of the following pairs:
(1) a field extension F/K(x), with a field automorphism extending the action

of σq, which we will also call q-difference operator and denote by σq.
(2) any sub-field stable by σq and σq−1 of the fields considered at the previous

item, with the restriction of σq.
We denote by C (or sometimes Fσq ) the field of σq-constants of F , i.e., the subfield
of the elements of F fixed by σq. The previous definition implies that C with the
identity automorphism is a q-difference field, that we will call trivial.

Example 1.1. — Typical examples of q-difference extensions of K(x) are:
(1) the field of formal Laurent series K((x)), equipped with the automorphism

σq(
∑
n anx

n) =
∑
n anq

nxn;
(2) the field K(x1/r), for r ∈ Z>1, equipped with σq(x1/r) = q̃x1/r, for a chosen

r-th root q̃ of q;
(3) for K = C, the field of meromorphic functions over C∗ = Cr {0}.

A linear q-difference system (of order ν) is a functional equation of the form

σq(~y) = A~y, (1.1)

where A is an invertible square matrix of order ν > 1 with coefficients in a q-
difference field (F , σq) as above, i.e., A ∈ GLν(F), and ~y is a vector of unknowns.
The solutions vectors are to be found in a q-difference extension of (F , σq). It is
well known that they generate a vector space over C of order at most ν.

In the text below, we will consider the action of a derivation ∂ on the solution
set of (1.1). To do so, we will assume that there exists a derivation ∂ of the field
F , commuting to the action of σq, that is σq ◦ ∂ = ∂ ◦ σq. We will call (F , σq, ∂)
a q-difference differential field or a (σq, ∂)-field, for short. Any q-difference fields of
Example 1.1 is a (σq, ∂)-field endowed with the derivation ∂ = x d

dx . Notice that,
any q-difference field (F , σq) can be turned in a q-difference differential field with
the trivial derivation.
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Remark 1.2. — If ~y is a solution vector of (1.1), then the commutativity of σq
and ∂ and the Leibnitz rule imply that:

σq

(
∂(~y)
~y

)
=
(
A ∂(A)
0 A

)(
∂(~y)
~y

)
,

hence
(
∂(~y)
~y

)
is a solution vector of a q-difference system of order 2ν. This quite

trivial remark is at the origin of more abstract constructions considered below.

We recall the basic convention of difference and differential algebra, that we will
frequently use in what follows:

Algebraic attributes always refer to the underlying ring, ideal or
algebra and the operator prefix highlights the compatibility of the
algebraic attribute with the operator prefix.

For example:
• A (σq, ∂)-F-algebra R is an F-algebra equipped with a derivation ∂ and σq
that extend to R the action of ∂ and σq on the (σq, ∂)-field F .

• A σq-ideal (resp. (σq, ∂)-ideal) of a σq-ring (resp (σq, ∂)-ring) R is an ideal
of R that is set-wise invariant by σq (resp. by σq and ∂).

Since we will use more sophisticated notions of differential algebra, we have added
a section on this topic in the appendix. Classical references for further readings are
for instance [20], [5], [22].

From now on we suppose that (F , σq, ∂) is a q-difference differential field of
characteristic zero and that we are given a q-difference system of the form (1.1).

1.1. Parameterized Picard-Vessiot rings. In this section we recall some results
on the existence of abstract solutions for linear q-difference systems endowed with
the action of a derivation. For a quick survey of the needed notions of differential
algebra, we refer to Appendix A.

Definition 1.3. — A (σq, ∂)-F-algebra R is a parameterized Picard-Vessiot
ring for (1.1) if

(1) R is a simple (σq, ∂)-F-algebra, i.e., there are no non-trivial ideal being
set-wise fixed by σq and ∂;

(2) there exists a Z ∈ GLν(R) such that σq(Z) = AZ;
(3) R = F{Z,detZ−1}∂ , i.e., R is generated as a F-algebra by the entries of

Z, the inverse of the determinant of Z and all their derivatives with respect
to ∂ (see Definition A.1).

Such a ring always exists: We consider the ring of differential polynomials S =
F{Y,detY −1}∂ , where Y is a matrix of differential indeterminates over F of order
ν. A q-difference operator compatible with the differential structure of the ∂-F-
algebra S can be defined setting:

σq(Y ) = AY,
σq(∂Y ) = ∂(σqY ) = A∂(Y ) + ∂(A)Y,
and so on, using the commutativity of σq and ∂ and the Leibnitz rule.

Any quotient of the ring S by a maximal (σq, ∂)-ideal, i.e., a maximal ideal in the
set of (σq, ∂)-ideals, is a (σq, ∂)-Picard-Vessiot ring.
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Lemma 1.4 ([16, Lemma 6.8]). — Any simple (σq, ∂)-F-algebraR that is finitely
generated as ∂-F-algebra, has the following structure: There exist a positive integer
t and e0, . . . , et−1 idempotents of R, generating the ideals Ri := eiR, such that:

(1) R = R0 ⊕ · · · ⊕Rt−1;
(2) σq permutes transitively the set {R0, . . . , Rt−1} and σq

t leaves each Ri
invariant;

(3) each Ri is a domain and a simple (σqt, ∂)-F-algebra.

A (σq, ∂)-F-algebra satisfying the three properties of the lemma above is called
a (σq, ∂)-F-pseudo-domain, by analogy with the definition of σq-F-pseudo-domain.
See [32, §1.1]. We immediately obtain:

Corollary 1.5. — A parameterized Picard-Vessiot ring is a (σq, ∂)-F-pseudo
domain.

Since σq and ∂ commute, the field C is naturally a ∂-field. If it is ∂-closed (see
Definition A.2) we have:

Proposition 1.6 ([16, Proposition 2.4]). — If C is a ∂-closed field, then the
σq-constants of any parameterized Picard-Vessiot ring coincide with C. Moreover,
any two parameterized Picard-Vessiot rings are isomorphic as (σq, ∂)-F-algebras.

In analogy with [4, Definition 2.1] we set:

Definition 1.7. — A (σq, ∂)-F-algebra R is a weak parameterized Picard-
Vessiot ring for (1.1) if

(1) R = F{Z,detZ−1}∂ , where Z ∈ GLν(R) and σq(Z) = AZ;
(2) C := Fσq = Rσq .

Proposition 1.6 says that, if we have a differentially closed field of σq-constants,
a parameterized Picard-Vessiot ring is always a weak parameterized Picard-Vessiot
ring. However M. Wibmer has proved that assuming that C is is algebraically closed
is enough to ensure the existence:

Proposition 1.8 ([33, Corollary 9] and [10, Proposition 1.16 and Corollary
1.19])). — If C is algebraically closed, there exists a weak parameterized Picard-
Vessiot ring R, which is moreover σq-simple, i.e., has no non-trivial σq-ideals.

Remark 1.9. — Notice that the proposition above proves more than needed.
Indeed the weak parameterized Picard-Vessiot ring constructed in Proposition 1.8
is σq-simple, hence it is a fortiori a simple (σq, ∂)-F-algebra. This means that it
is also a parameterized Picard-Vessiot ring in the sense of Definition 1.3. While it
is relatively easy to construct a (σq, ∂)-simple parameterized Picard-Vessiot ring,
Wibmer’s idea for the construction of a σq-simple parameterized Picard-Vessiot
ring is quite subtle.

If C is algebraically closed, uniqueness is assured only after extension to a differ-
ential closure of C. See Proposition 1.6 above and [33, page 164].

We can now define the parameterized difference Galois group:

Definition 1.10. — Let R be a weak parameterized Picard-Vessiot ring for a
q-difference system (1.1) defined over F . We define the parameterized difference
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Galois group of R/F as the covariant functor:

G∂R : ∂-C-algebras → Groups
S 7→ Aut(σq,∂)

F⊗S (R⊗C S),

where: the derivation ∂ of R ⊗C S is defined by ∂R ⊗ id + id ⊗ ∂S ; the operator
σq extends from R to R ⊗C S by linearity, acting trivially over S; the notation
Aut(σq,∂)

F⊗S (R⊗C S) stands for the group of (σq, ∂)-F ⊗C S-automorphisms of R⊗C S.

We refer to Appendix B for the geometric definition used in the following propo-
sition:

Proposition 1.11. — The parameterized difference Galois group G∂R is repre-
sentable by a ∂-C-subgroup scheme of GLν(C).

Proof. — We omit this proof which is a straightforward parameterized analogue
of [4, Proposition 2.2]. �

Remark 1.12. — Let us suppose that (F , σq, ∂) is a q-difference field with a
trivial derivation ∂ and let us consider the field of differential polynomials S =
F{Y,detY −1}∂ with the q-difference structure induced by (1.1). By construction,
the derivation on S is non-trivial, indeed ∂Y is non-zero. The ∂-ideal generated by
∂Y is a (σq, ∂)-ideal, in fact we have:

σq(∂Y ) = ∂(A)Y +A(∂Y ) = A(∂Y ) and hence σq(∂kY ) = A(∂kY ) for all k ∈ N.

Moreover the quotient S/(∂Y ) is just the ring of polynomials F [Y,detY −1], en-
dowed with the q-difference structure given by σq(Y ) = AY and the trivial deriva-
tion. Any of its maximal σq-ideals is the quotient of a maximal (σq, ∂)-ideal of S
by (∂Y ). The reader familiar with the Galois theory of difference equations will
have already noticed that the parameterized Picard-Vessiot ring that we have con-
structed in this way is actually a usual Picard-Vessiot ring for (1.1) over F (see
[29]). In this sense, we say that, when ∂ is the trivial derivation, a (weak) param-
eterized Picard-Vessiot ring allows to recover a usual (weak) Picard-Vessiot ring.
Then the definition above boils down to the definition of the usual difference Galois
group, which is representable by a linear algebraic group.

This is true in a more general sense. For a general derivation ∂ and for a given
(weak) parameterized Picard-Vessiot ring R = F{Z,detZ−1}∂ for (1.1) over F ,
we can consider the subalgebra R0 = F [Z,detZ−1] of R. This is the usual (weak)
Picard-Vessiot ring for (1.1) over F (see [16, Proposition 2.8]). We recall that the
difference Galois group GR of R0/F is defined as follows

GR : C-algebras → Groups
S 7→ Autσq

F⊗S(R0 ⊗C S), (1.2)

where the operator σq extends from R0 to R0⊗C S by linearity, acting trivially over
S. The difference Galois group GR is representable by a group scheme defined over
C (see [4, Prop. 2.2]).

Notice that GR is an abuse of notation and we should write GR0 instead. We
prefer not to use a complicate notation, since there will be no confusion in the text
below.
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1.2. Weak parameterized Picard-Vessiot rings associated with meromor-
phic solutions. We assume that our base q-difference field (F , σq) is a subfield of
the fieldM(C∗) of meromorphic functions over C∗ and that |q| 6= 0, 1.

Remark 1.13. — This is a restrictive assumption, but not as much as one could
imagine. In particular, q is not a root of unity. Later on we will focus on a q-
difference field (K(x), σq) of rational functions, where K is a finitely generated
extension of Q. Of course we can always embed K into C. If q is transcendental
over Q, then we can always choose an embedding such that q will have an image in
C of norm different than 1. Of course, if q is algebraic this is possible “most of the
times” but not always. See also Remark 1.16.

We consider the elliptic curve E := C∗/qZ and its field CE of elliptic functions,
that is the meromorphic functions over C∗ that are invariant by σq. We recall the
following result:

Theorem 1.14 ([25, Theorem 3]). — Any linear q-difference system σq(~y) =
A~y, with A ∈ GLν(M(C∗)), has a a basis of solutions with coefficients inM(C∗),
linearly independent over CE .

The theorem above requires some comments. By a full basis of linearly indepen-
dent solutions we mean ν solution vectors ~y1, . . . , ~yν ∈M(C∗), linearly independent
over CE . One usually say that σq(~y) = A~y admits a fundamental matrix of solutions
Y ∈ GLν(M(C∗)), whose columns are ~y1, . . . , ~yν ∈ M(C∗), which summarize the
conclusion of the theorem. To the best of our knowledge, there is no constructive
proof of the existence of a basis of meromorphic solutions of a general q-difference
system with meromorphic coefficients. We are able to do it in full generality under
the assumption that A ∈ GLν(C(x)) (see [12]).

Example 1.15. — Let us assume that |q| > 1. The Jacobi theta function Θq(x) =∑
n∈Z q

−n(n−1)/2xn is an element ofM(C∗). It is solution of the q-difference equa-
tion y(qx) = qx y(x). Following [26], one can use the following meromorphic func-
tions

• Θq(cx)/Θq(x), with c ∈ C∗, solution of y(qx) = cy(x),
• xΘ′q(x)/Θq(x), solution of y(qx) = y(x) + 1,

to write a meromorphic fundamental solution matrix to any q-difference system
that is regular singular system at 0 or at ∞ (see [26, §0.1]).

Remark 1.16. — If K is a finitely generated extension of Q and q is not a root
of unity, one can always embed K in C or in Cp in a way that |q| 6= 1. Let us focus
on the case of an embedding in Cp. Since the Jacobi Theta function converges over
C∗p, one can transpose the results of J. Sauloy and T. Dreyfus to the p-adic setting
and construct a fundamental matrix of solutions of p-adic meromorphic function
over C∗p for a linear q-difference system defined over K(x). In other words, one can
always assume that a system with coefficients in K(x) has a fundamental matrix of
solutions with meromorphic coefficients in some sense, archimedean or p-adic. This
result is commonly accepted but yet there are no references for it. It would allow
us to apply the results below to a broader range of cases.

Theorem 1.14 by Praagman ensures the existence of nice solutions, but it has
a cost. The field of meromorphic functions over C∗ fixed by σq coincides with the
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field of meromorphic functions over the torus C∗/qZ, therefore we have enlarged
considerably the field of constants with respect to the “expected” algebraically
closed field of constants C.

Since σq and ∂ := d
dx commute, the derivation ∂ stabilizes CE insideM(C∗), so

that CE is naturally endowed with a structure of ∂-field. It is a trivial σq-field. Let
CE be an algebraic closure of CE and C̃E a differential closure of CE with respect
to ∂ (cf. [3, §9.1]). We still denote by ∂ the derivation of C̃E . One endows C̃E and
CE with a structure of trivial σq-field. We want to show that these trivial σq-fields
are compatible with the σq-field C(x) in the sense that there exists a joint σq-field
extension of C(x) and C̃E (see Corollary 1.19 below).

Lemma 1.17. — Let C be a field extension of C endowed with a trivial action
of σq. The fields C and C(x) are linearly disjoint in C(x) over C.

Remark 1.18. — The inclusion C ↪→ C extends to an inclusion of field of rational
functions C(x) ↪→ C(x), therefore the statement above makes sense.

Proof. — This is a well known property of difference fields and the proof uses
very standard ideas. We give it here for completeness. Let f0, . . . , fr ∈ C be linearly
independent over C and let us suppose that they become linearly dependent over
C(x). We suppose that r > 0 is minimal for this property. Then there exist
a1, . . . , ar ∈ C(x)r{0}, not all belonging to C, such that f0 +a1f1 + · · ·+arfr = 0.
Applying σq and subtracting the obtained equation, we deduce that (σq(a1) −
a1)f1 + · · ·+ (σq(ar)− ar)fr = 0. The minimality of r implies that the ai’s are in
C, against the assumption. This proves the claim. �

Let C be a trivial σq-field extension of C. Thanks to the previous lemma, we
know the compositum C(x) of C and C(x) over C coincides with the field of fractions
of C ⊗C C(x). We have:

Corollary 1.19. — Let C be a (σq, ∂)-field extension of C and a trivial σq-
field. The field C(x) is a (σq, ∂)-field with the action of σq defined by the properties
that σq |C is the identity of C and σq(x) = qx.

Proof. — The Leibnitz rule allows to extend ∂ to the C ⊗C C(x) and one can
easily extend ∂ to its quotient ([30, Exercices 1.5]). The action of σq on C ⊗C C(x)
defined by id ⊗ σq is injective and extends to C(x). The commutativity of σq and
∂ is straightforward. �

Corollary 1.19, taking C = CE , allows to consider the (σq, ∂)-field extensions
CE(x) of C(x). We can finally construct a weak parameterized Picard-Vessiot ring
associated with Praagman’s meromorphic solutions:

Proposition 1.20. — Let σq(~y) = A~y, with A ∈ GLν(C(x)), be a q-difference
system and let U ∈ GLν(M(C∗)) be a fundamental solution matrix. The ring
RE := CE(x){U,detU−1}∂ is a weak parameterized Picard-Vessiot ring over CE(x)
for σq(~y) = A~y and is an integral domain.

Proof. — It is enough to notice that RE ⊂ M(C∗) and that CE ⊂ R
σq

E ⊂
M(C∗)σq = CE . �
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1.3. Properties of the weak Picard-Vessiot rings R, RE and R̃. Let σq(~y) =
A~y, with A ∈ GLν(C(x)), be a q-difference system. We have constructed three
weak parameterized Picard-Vessiot rings for σq(~y) = A~y:

(1) the weak parameterized Picard-Vessiot ring R over C(x), which is σq-simple
and satisfies Rσq = C, constructed applying Proposition 1.8 to σq(~y) = A~y,
seen as a system defined over F = C(x);

(2) the weak parameterized Picard-Vessiot ring RE over CE(x), constructed in
Proposition 1.20;

(3) the (weak) parameterized Picard-Vessiot ring R̃ over C̃E(x), constructed
applying Proposition 1.6 to σq(~y) = A~y, seen as a system defined over
F = C̃E(x).

We remind that R can be written in the form
R = C(x){Y, detY −1}∂/q, (1.3)

where Y is an invertible matrix satisfying the system σq(~y) := A~y and q is not only
a maximal (σq, ∂)-ideal but also a maximal σq-ideal (since R is σq-simple, after
Proposition 1.8).

Definition 1.10 applied to the three settings above allows to define the group
schemes G∂R, G∂RE

and G∂
R̃
, respectively. As functors they are represented by a

∂-C-subgroup scheme of GLν(C) (resp. a ∂-CE-subgroup scheme of GLν(CE), a ∂-
C̃E-subgroup scheme of GLν(C̃E)). See Proposition 1.11. We will prove that they
become isomorphic after a convenient field extension. To do so, we need to prove
some properties of the three Picard-Vessiot rings above and to give a Tannakian
description of each one of the three groups G∂R, G∂RE

and G∂
R̃
. It will be the object

of §2 and §3.
The following statement is differential analogue of [4, Proposition 2.4].

Proposition 1.21. — Let σq(~y) = A~y be a q-difference system defined over
C(x). Let F be a (σq, ∂)-field extension of C(x) of the form C(x), where C a
(σq, ∂)-field extension of C, which is a trivial σq-field (for instance F = CE(x) or
C̃E(x)). In the notation of Eq. (1.3), S := F{Y,detY −1}∂/qF is a parameterized
Picard-Vessiot ring for σq(~y) = A~y over F and Sσq = C.

Proof. — First we remark that qF ( F{Y,detY −1}∂ and hence that S is non-
zero. Indeed, if 1 =

∑
i∈I λiPi with Pi ∈ q and λi ∈ F , it is enough to expand the

λi’s in a C(x)-basis of F to conclude that 1 ∈ q.
We consider the natural map of σq-rings

φ : R⊗C C → S.

We want to prove that φ is injective. Since φ(1 ⊗ 1) = 1 and S 6= 0, I := Kerφ is
a proper σq-ideal of R⊗C C. Proposition 1.8 implies that R is σq-simple. Moreover
Rσq = C. Therefore the σq-ideal I in R⊗C C is generated by I∩R (see [29, Lemma
1.11]). We deduce that I is {0}. This means that φ is injective. Notice that the
same argument shows that any σq-ideal J of R⊗C C is generated by its intersection
with R. Since R is σq-simple, we deduce that R⊗C C is σq-simple.

Now let R′ = φ(R ⊗ C). Since φ is a σq-morphism, the ring R′ is σq-simple.
Lemma 1.17 implies that the field F is the fraction field of C ⊗C C(x). Then, it is
easily seen that for any P ∈ F{Y,detY −1}∂ there exist a ∈ (C ⊗C C(x))∗ such that
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aP ∈ C ⊗C C(x){Y, detY −1}∂ . Then, for all x ∈ S, there exists a ∈ (C ⊗C C(x))∗
such that ax ∈ R′. This proves that any σq-ideal J in S is generated by J ∩ R′,
hence S is σq-simple and thus (σq, ∂)-simple. We conclude that S is a parameterized
Picard-Vessiot ring for σq(~y) = A~y.

Finally, for any c ∈ Sσq , the set h = {a ∈ R′|ac ∈ R′} is a non-zero σq-
ideal of R′. Since R′ is σq-simple, we get that 1 ∈ h. Therefore c ∈ R′ and
Sσq = (R′)σq = φ(R ⊗C C)σq . If one considers a C-basis of C, which is formed by
σq-constants, one can easily prove that the σq-constants of R ⊗C C coincide with
Rσq ⊗C C = C since Rσq = C. �

As corollary of the previous proposition, we find:

Corollary 1.22. — Let σq(~y) = A~y be a q-difference system defined over C(x)
and let R,RE and R̃ be the weak parameterized Picard-Vessiot rings attached to
σq(~y) = A~y. As above, we write R = C(x){Y,detY −1}∂/q. We consider the two
rings:

S := CE(x){Y,detY −1}∂/qCE(x). and S̃ := C̃E(x){Y, detY −1}∂/qC̃E(x)

Then the two natural maps

S̃ −→ R̃ and S ⊗ C̃E −→ RE ⊗ C̃E

are both a isomorphisms of (σq, ∂)-C̃E(x)-algebras.

Proof. — By Proposition 1.21, applied to F = CE(x) and F = C̃E(x), we find
that S (resp. S̃) is a parameterized Picard-Vessiot ring for σq(~y) = A~y over CE(x)
(resp. C̃E(x)) such that Sσq = CE (resp. S̃σq = C̃E). Since C̃E is differentially
closed, Proposition 1.6 assures that two parameterized Picard-Vessiot rings for the
same q-difference system over C̃E(x) are isomorphic as C̃E(x)-(σq, ∂)-algebras. The
first isomorphism follows from this fact.

The second isomorphism comes from a parameterized version of [4, Proposi-
tion 2.7]. Its proof follows line by line the proof in the algebraic case, but we
give it here for sake of completeness. Let us denote by FE the fraction field of
RE and let X = (Xi,j) be a ν × ν-matrix of differential indeterminates over FE .
Let S := CE(x){X,detX−1}∂ ⊂ FE{X,detX−1}∂ . Define a (σq, ∂)-structure on
FE{X,detX−1}∂ by setting σq(X) := AX, σq(∂X) := A∂X + ∂AX, and so on.
This induces a (σq, ∂)-structure on S. Since S is a parameterized Picard-Vessiot
ring for σq(Y ) = AY view over CE(x), we can write S = S/p, where p is a max-
imal (σq, ∂)-ideal of S. Now, let U ∈ GLν(RE) be fundamental solution matrix
of σq(Y ) = AY . Define Y = (Yi,j) ∈ GLν(FE{X,detX−1}∂) via Y := U−1X
and remark that σq(Y ) = Y and FE{X,detX−1}∂ = FE{Y, detY −1}∂ . Define
S1 := CE{Y,detY −1}∂ . The ideal p ⊂ S ⊂ FE{X,detX−1}∂ generates a (σq, ∂)-
ideal (p) in FE{X,detX−1}∂ , which intersected with S1 gives a ∂-ideal a. Since
C̃E is differentially closed and S1/a is differentially finitely generated over CE , we
find a differential homomorphism S1 → S1/a → C̃E . We can extend this homo-
morphism into a (σq, ∂)-morphism FE{X,detX−1}∂ = FE ⊗ S1 → FE ⊗CE

C̃E .
Restricted to S, we find a (σq, ∂)-morphism S → FE ⊗ C̃E , whose kernel contains
p. By maximality of p, we have equality and we get an embedding ι : S = S/p →
FE ⊗ C̃E . Now, if we denote by V ∈ GLν(S) a fundamental solution matrix of
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σq(Y ) = AY and we recall that (FE ⊗ C̃E)σq = C̃E , we find that ι(V ) = UD with
D ∈ GLν(C̃E). Since S (resp. RE) is differentially generated over CE(x) (resp.
C̃E(x)) by V (resp U) and the inverse of its determinant, this allows us to conclude
that ι(S ⊗ C̃E) = RE ⊗ C̃E . �

2. The category of q-difference modules

We are interested in giving an interpretation of Picard-Vessiot extensions from
a categorical point of view, therefore we introduce here the category of q-difference
modules. Since we are interested in studying the action of the derivation ∂, we
will quickly review the basic definitions and properties of differential Tannakian
categories, introduced by Kamensky [17] and Ovchinnikov in [23].

2.1. q-difference modules. Let (F , σq, ∂) be a (σq, ∂)-field of characteristic zero
and let C = Fσq .

Definition 2.1. — A q-difference module MF = (MF ,Σq) (of rank ν) over
F is a finite dimensional F-vector space MF (of dimension ν) equipped with an
invertible σq-semi-linear operator Σq : MF → MF , i.e., a bijective additive map
from MF to itself such that

Σq(fm) = σq(f)Σq(m), for any f ∈ F and m ∈MF .
We will call Σq a q-difference operator overMF or the q-difference operator ofMF .

A q-difference submodule NF ofMF is a F-vector subspace NF of MF that is
set-wise invariant with respect to Σq. Then, NF = (NF ,Σq|NF ) is a q-difference
module.

A morphism of q-difference modules (over F) is a morphism of the underlying
F-vector spaces, commuting with the q-difference operators defined on the domain
and on the image of the morphism. We denote by DiffMod(F , σq) the category of
q-difference modules over F .

LetMF = (MF ,Σq) be a q-difference module over F of rank ν. We fix a basis
e of MF over F . Let A ∈ GLν(F) be such that:

Σqe = eA.

If f is another basis of MF , such that f = eF , with F ∈ GLν(F), then Σqf = fB,
with B = F−1Aσq(F ). Conversely, given an invertible matrix A ∈ GLν(F), one
constructs a q-difference module MF as follows: MF = Fν and Σqe = eA with e
the canonical basis of Fν .

The elementsm ∈MF such that Σq(m) = m are called horizontal. If a horizontal
element m corresponds to a vector ~y ∈ Fν with respect to the basis e, we have:
e~y = Σq(e~y) = eAσq(~y). Therefore ~y verifies the linear q-difference system σq(~y) =
A−1~y, that we call the linear difference system associated to MF with respect to
the basis e.

The linear algebra constructions (i.e., direct sums, duals, the tensor products)
of the underlying vector spaces of two q-difference modules over F can be endowed
with a structure of q-difference modules (see for instance [29, Chapter 12], [8, Part
I] or [11]). The category DiffMod(F , σq) is a tensor category and we denote by
1 = (F , σq) the unit object for the tensor product. It is also is a rigid category, i.e.,
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it has internal Homs and each object is canonically isomorphic to its bidual. It is
therefore a Tannakian category in the sense of [7] (see [27]). If C is algebraically
closed, the general theory of Tannakian categories ensures that it is equivalent to
the category of representation of a certain C-group scheme G.

2.2. The differential Tannakian structure of DiffMod(F , σq). In this section
we define the prolongation functor in the general framework of projective modules.
The definition may seem very abstract at the first glance but we will show in
Example 2.4 that it is an incarnation of Remark 1.2.

We consider a ∂-field k and a ∂-k-algebra S. We denote by S[∂]61 the 2-
dimensional free S-module of differential operators of order less or equal to 1. In
agreement with the Leibniz rule, the right S-module structure of S[∂] is given by
∂.a = a.∂ + ∂(a).

Definition 2.2. — We define on the category ProjS of finitely generated pro-
jective modules over S an endofunctor F∂ , called prolongation functor, as follows:

• For M an object of ProjS , we define F∂(M) := S[∂]61 ⊗S M , where the
tensor product is consider with respect to the right S-module structure
of S[∂]61. The S-module structure of F∂(M) is defined by: λ(∂ ⊗ v) =
∂ ⊗ λv − ∂(λ)⊗ v, for all λ ∈ S and v ∈M , and extended by linearity.

• If f ∈ HomProjS (M,N), we define F∂(f) : F∂(M)→ F∂(N) as: F∂(f)(∂i⊗
m) = ∂i ⊗ f(m), for i = 0, 1, where we have used the convention that ∂0 is
the identity map.

Remark 2.3. — We will informally call linear differential algebra constructions
the family of all the linear algebra constructions plus F∂ . Notice that, if ∂ is the
trivial derivation, then F∂(M) coincides with the direct sum M ⊕M .

The underlying vector spaces of the objects of DiffMod(F , σq) form a subcategory
of ProjF . Since F is a field, ProjF is the category of vector spaces over F , that we
will also denote VectF . Given an object MF = (MF ,Σq) of DiffMod(F , σq), we
are able to extend the action of Σq to F∂(MF ) via

Σq(∂i(m)) := ∂i(Σq(m)), for i = 0, 1 and m ∈MF .
We set F∂(MF ) = (F∂(MF ),Σq). This shows that F∂ extends to an endofunctor
of DiffMod(F , σq). Together with this additional structure, (DiffMod(F , σq), F∂)
is a differential Tannakian category over C as defined in [15, §4.4], i.e., a C-linear,
tensor, rigid category together with a prolongation functor, satisfying some natural
commutative diagrams, that we are not recalling here.

Example 2.4. — Let MF = (MF ,Σq) be a q-difference module over F . We fix
a basis e = (e1, . . . , eν) of MF such that Σqe = eA, for some A ∈ GLν(F). A basis
of F∂(MF ) is given by (e, ∂ ⊗ e). The definition of Σq on F∂(MF ) is reminiscent of
Remark 1.2:

Σq(e, ∂ ⊗ e) = (e, ∂ ⊗ e)
(
A ∂(A)
0 A

)
.

Following [15, Definition 4.9], we recall the notion of differential fiber functor.

Definition 2.5. — Let S be a ∂-C-algebra. We say that a functor
ω : DiffMod(F , σq)→ ProjS
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is a differential fiber functor over S if it is exact, faithful, C-linear, tensor compatible
and if it commutes to F∂ , i.e., if F∂ ◦ω = ω ◦F∂ as a natural isomorphism. We say
that ω is a neutral differential fiber functor if S = C.

Remark 2.6. — For further reference we point out that:
• A differential fiber functor is also a fiber functor for the classical Tannakian
theory [7, p. 148].

• The forgetful functor ηF : DiffMod(F , σq) → VectF , which assigns to any
q-difference module its underlying F-vector space, is a differential fiber
functor over F .

Since one of our main purposes is to compare distinct fiber functors, we introduce
the functor of differential tensor morphisms between two differential fiber functors.

Definition 2.7 (Def. 1.12 in [7]). — Let ω1, ω2 : DiffMod(F , σq) → ProjS be
two differential fiber functors. For any S-algebra R, we define Hom⊗(ω1, ω2)(R) as
the set of all sequences of the form {λXF |XF object of DiffMod(F , σq)}, such that:

• λXF is an R-linear homomorphism from ω1(XF )⊗R to ω2(XF )⊗R,
• λ1 is the identity on 1⊗R,
• λYF ◦ (ω1(α)⊗ idR) = (ω2(α)⊗ idR) ◦ λXF for every α ∈ Hom(XF ,YF ),
• λXF ⊗ λYF = λXF⊗YF .

For a ∂-S-algebraR we define Hom⊗,∂(ω1, ω2)(R) as the subset of Hom⊗(ω1, ω2)(R)
of all sequences such that F∂(λXF ) = λF∂ (XF ), where the F∂ on the left hand side
is the prolongation functor on ProjR whereas the F∂ on the right hand side is the
prolongation functor in DiffMod(F , σq) (see [23, §4.3]).

The functor Hom⊗,∂(ω1, ω2), composed with the forgetful functor from ∂-S-
algebras to S-algebras is a subfunctor of Hom⊗(ω1, ω2). By [6, Prop.6.6] the functor
Hom⊗(ω1, ω2) is representable by a S-scheme.

Since morphisms of tensor functors are isomorphisms (see [7, Proposition 1.13]),
differential morphisms of differential tensor functors are also differential isomor-
phisms. Thus, we will now write Isom⊗,∂(ω1, ω2) (resp. Isom⊗(ω1, ω2)) instead of
Hom⊗,∂(ω1, ω2) (resp. Hom⊗(ω1, ω2)) and, when ω1 = ω2 = ω, we write Aut⊗,∂(ω)
(resp. Aut⊗(ω)). In that special case, it occurs that the functor Aut⊗,∂(ω) (resp.
Aut⊗(ω)) is a group functor, where the composition is given by the composition of
morphisms.

We rephrase [15, Proposition 4.25] in our setting:

Proposition 2.8. — Let S be a ∂-C-algebra and let ω : DiffMod(F , σq) →
ProjS be a differential fiber functor. Let A be the S-Hopf algebra that represents
the functor Aut⊗(ω) (see [6, Proposition 6.19]). Then, A has a canonical structure
of ∂-S-Hopf algebra and represents the functor Aut⊗,∂(ω).

Proposition 2.8 shows that the functor Aut⊗,∂(ω) is a ∂-group scheme in the
sense of Appendix B. If S is a ∂-closed field extension of C then one can identify
Aut⊗,∂(ω)(S) with a subgroup of GLν(S) defined as the zero set of polynomial
differential equations with coefficients in S.
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3. Galois groups

For a (σq, ∂)-field (F, σq, ∂), fix a q-difference moduleMF in DiffMod(F , σq) and
consider three categories generated by MF . First of all, we consider the strictly
full subcategory 〈MF 〉⊕ of DiffMod(F , σq), that contains the subquotients of all
finite direct sums of copies of MF , i.e., is the abelian subcategory generated by
MF . Then we need the Tannakian category 〈MF 〉⊗ (resp. differential Tannakian
category 〈MF 〉⊗,∂), that is the strictly full Tannakian (resp. differential Tannakian)
category generated byMF . It admits a very simple description: We consider the
linear (resp. linear differential) algebra constructions of MF , i.e., the list of q-
difference modules⊕

i,j

M⊗iF ⊗M
∗
F
⊗j

(
resp.

⊕
i,j,l,r,s

M⊗iF ⊗M
∗
F
⊗j ⊗ F l∂(M⊗rF ⊗M

∗
F
⊗s)
)
,

whereM∗F denotes the dual ofMF and i, j are non-negative integers (resp. i, j, l, r, s
are non-negative integers and F l∂ the l-th iterate of the prolongation functor). If we
order the sub-objects of the linear (resp. linear differential) algebra constructions
of MF with respect to the relation “be a direct summand”, then 〈MF 〉⊗ (resp.
〈MF 〉⊗,∂) is the filtering union of the abelian categories 〈NF 〉⊕, where NF runs
through the sub-objects of a linear (resp. linear differential) algebra construction
of MF . This inductive description allows to see the Tannakian as well as the
differential Tannakian equivalence as an inductive limit of Morita equivalences (see
[7, Lemma 2.13]). Thus, forMF a q-difference module and ω : 〈MF 〉⊗,∂ → ProjC a
differential fiber functor, we denote by Aut⊗(MF , ω|〈MF〉⊗ ) and by Aut⊗,∂(MF , ω)
the groups of tensor and differential tensor automorphisms of ω, respectively.

Notation 3.1. — In the current notation, the group Aut⊗(MF , ω) would be the
group of tensor automorphisms of ω as a fiber functor defined on the category
〈MF 〉⊗,∂ , forgetting the differential structure. Since we will never use such a group,
we will make an abuse of notation writing Aut⊗(MF , ω) for Aut⊗(MF , ω|〈MF〉⊗ ).
The same abuse of notation will be applied to other groups defined later in the text
below, unless the context requires more precision.

3.1. The forgetful functor and the intrinsic Galois groups. Following [1],
we pay particular attention to the forgetful fiber functor

ηF : DiffMod(F , σq)→ VectF ,
that sends a q-difference moduleMF onto its underlying vector space MF .

Definition 3.2. — The intrinsic (resp. parameterized intrinsic) Galois group
Gal(MF ) (resp. Gal∂(MF )) is the group

Aut⊗(MF , ηF|〈MF〉⊗ )
(
resp. Aut⊗,∂(MF , ηF|〈MF〉⊗,∂

)
)
.

The defining equations of the intrinsic Galois groups can be read off from the
form of the q-difference systems attached toMF and its linear differential algebra
constructions. Moreover, it enjoys an arithmetic description when K = k(q) with
k a finitely generated extension of Q. This arithmetic characterization depends on
whether q is algebraic or transcendental over Q. See [9, Chapter 5 and §7.3] for
an overview of the results on this topic. As an example, we present here only the
result under the assumption that q is transcendental over Q:
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Theorem 3.3 ([9, Theorem 4 in the Introduction and Theorem 7.13]). — Let
MK(x) be a q-difference module over K(x). The parameterized intrinsic Galois
group Gal∂(MK(x)) is the smallest differential algebraic subgroup of GL(MK(x)),
whose specialization at ζn contains the specialization of the operator Σnq at ζn, for
almost all positive integer n and for a choice of a primitive n-th root of unity ζn.

For Y (qx) = A(x)Y (x), the above theorem says roughly that the set of differ-
ential algebraic equations in K{Z,detZ−1}∂ defining the parameterized intrinsic
Galois group is generated by the ones that vanish on the curvatures of the system,
that is on

A(qn−1x) · · ·A(qx)A(x)|q=ζn
,

for almost all positive integer n and for a choice ζn of a primitive n-th root of unity.

3.2. Fiber functors associated with weak parameterized Picard-Vessiot
extensions. In this section we show that a weak parameterized Picard-Vessiot
ring naturally determines a neutral differential fiber functor. As in the theory of
Tannakian categories, we expect the contrary to be also true, but the result is not
included in the literature on differential Tannakian category. In the next section
we will apply this construction to any of the rings listed in §1.3.

Proposition 3.4. — Let MF be a q-difference module over F and let R be
a weak parameterized Picard-Vessiot ring for a q-difference system σq(Y ) = AY
associated toMF in some fixed basis. Then,

ωR : 〈MF 〉⊗,∂ → VectC ,
NF 7→ Ker(Σq − id,NF ⊗F R)

is a neutral differential fiber functor.

Proof. — Let σq(~y) = A~y be the q-difference system associated to MF in a
fixed basis. We have R = F{Z,detZ−1}∂ , where Z ∈ GLν(R) and σq(Z) =
AZ. Hence the q-difference system attached to F∂(MF ) is given by σq(Y ) =(
A ∂(A)
0 A

)
Y and a fundamental matrix is

(
Z ∂(Z)
0 Z

)
. Let i be a positive integer.

Repeating the argument above, we can see that the q-difference module obtained
fromMF iterating i times the prolongation functor is trivialized by R, i.e., admits
a fundamental solution matrix with coefficients in R, and that more generally R
trivializes any linear differential algebra construction XF ofMF . This comes from
the fact that a q-difference system (resp. fundamental solution matrix) attached to
XF is obtained from A (resp. Z) by the same linear differential algebra construction.
Then, it is clear that any sub-objectNF of XF admits a fundamental solution matrix
with coefficients in R. Thereby, for any object NF in 〈MF 〉⊗,∂ , we find a functorial
isomorphism between NF ⊗F R and ωR(NF )⊗C R. We deduce from this fact that
ωR is a faithful, exact, C-linear tensor functor. It is neutral because Rσq = C. The
fact that ωR intertwines with F∂ corresponds exactly to the fact that a fundamental
solution matrix attached to F∂(MF ) is given by the prolongation of a fundamental
solution matrix attached toMF , as explained above. �

The following proposition, which is the parameterized analogue of [29, Theo-
rem 1.32.2)], shows that the group G∂R of functorial (σq, ∂)-F-automorphism of
R = F{Z,detZ−1}∂ (see Definition 1.10) corresponds to the group of differential
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tensor automorphisms of the neutral differential fiber functor ωR, constructed in
Proposition 3.4.

Proposition 3.5. — LetMF be a q-difference module over F and R be a weak
parameterized Picard-Vessiot ring for a q-difference system attached toMF . Then,
the linear differential algebraic groups Aut⊗,∂(MF , ωR) andG∂R are isomorphic over
C.

Proof. — We adapt the proof of [29, Theorem 1.32] to our parameterized setting.
Let S be a ∂-C-algebra. For any q-difference module in NF in 〈MF 〉⊗,∂ , the
morphism τS ∈ G∂R(S) acts on NF⊗FR⊗CS as id⊗τS . Since this action commutes
with Σq, it induces an action τNF of τS on ω(NF )⊗S. This defines a sequence of the
form {τNF |NF object of 〈MF 〉⊗,∂}. Let f : NF → VF be a morphism in 〈MF 〉⊗,∂ .
Then, f extends to a R⊗S-linear map f⊗id : NF⊗FR⊗CS → VF⊗FR⊗CS, which
commutes with Σq and the action of G∂R(S). Thus, τVF ◦ (ωR(f)⊗ id) = (ωR(f)⊗
id) ◦ τNF . Since τS commutes with the derivation ∂, we have F∂(τNF ) = τF∂ (NF ).
Moreover, τ1 is clearly the identity. This induces a functorial group homomorphism
α(S) : G∂R(S)→ Aut⊗,∂(MF , ωR)(S).

Let us prove that α(S) is injective. If α(S)(τS) is the identity, then in particular,
τMF is the identity on ωR(MF ). Let (mi)i be a F-basis of MF and let X :=
(xj,i)06i,j6ν be an matrix in GLν(R), such that (µi :=

∑
j xj,imj)i is a C-basis of

ωR(MF ). The matrix X ∈ GLν(R) is a fundamental solution matrix of the system
associated toMF in the basis (mi)i, whose coefficients generate R as ∂-F-algebra.
Notice that τS(X) = X, since τMF acts as the identity on ωR(MF ). Therefore, τS
is the identity on R⊗ S, which proves that α(S) is injective.

Conversely, consider an element
τ = {τNF |NF object of 〈MF 〉⊗,∂} of Aut⊗,∂(MF , ωR)(S).

We want to construct an element τS ∈ G∂R(S) such that α(S)(τS) = τ . Let us
write R as F{X, 1

detX }∂ . The action of τMF in the S-basis µ1 ⊗ 1, . . . , µν ⊗ 1 is
given by an invertible matrix [τ ]S ∈ GLν(S). We consider the morphism τS of
F-algebra of R ⊗ S defined as follows: τS(X) = X.[τ ]S , τS(X(h)) = ∂h(X[τ ]S) for
any non-negative integer h. The morphism τS is well defined if for any differential
polynomial P such that P (X) = 0 we have τS(P (X)) = 0. A differential algebraic
relation for the fundamental solution matrix X can be seen as a F-linear form that
annihilates on a linear differential algebra construction NF of MF . Since the set
of F-linear forms that vanish on NF is a q-difference submodule of N ∗F , it must
be stabilized by τ . It follows that τS(P (X)) = 0 for any differential polynomial P
such that P (X) = 0. One can check that the compatibility of the sequence τ with
the tensor product and the prolongation functor implies that α(S)(τS) = τ .

To conclude, we have proved that for any ∂-C-algebra, the α(S)’s are isomor-
phisms. This proves that Aut⊗,∂(MF , ωR) and G∂R are isomorphic over C. �

As in Remark 1.13, we consider a finitely generated extension K/Q, an element
q ∈ K r {0} and a field embedding K ↪→ C, such that |q| 6= 1 for the usual norm
of C. LetMK(x) be a q-difference module over K(x).

Notation 3.6. — For any q-difference field extension F/K(x) we will denote by
MF the q-difference module over F obtained from MK(x) by scalar extension.
More precisely, MF = MK(x) ⊗K(x) F and Σq is defined onMF by Σq ⊗ σq.
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Let σq(~y) = A~y be the q-difference system associated toMK(x) with respect to
a fixed basis. We will consider as in §1.3 the weak Picard-Vessiot rings R, RE and
R̃, extending conveniently the constants to C, CE and C̃E respectively. In par-
allel, following Proposition 3.4, each of these weak parameterized Picard-Vessiot
rings yields to a neutral differential fiber functor for 〈MC̃E(x)〉

⊗,∂ , 〈MC(x)〉⊗,∂ , and
〈MCE(x)〉⊗,∂ , respectively. When restricted to the Tannakian category 〈MC̃E(x)〉

⊗,
〈MC(x)〉⊗, and 〈MCE(x)〉⊗, these differential fiber functors induce neutral fiber
functors in the classical sense of [6]. Proposition 3.5 immediately implies the fol-
lowing:

Corollary 3.7. — We have:
• G∂R ∼= Aut⊗,∂(MC(x), ωR) over C.
• G∂RE

∼= Aut⊗,∂(MCE(x), ωRE
) over CE .

• G∂
R̃
∼= Aut⊗,∂(MC̃E(x), ωR̃) over C̃E .

3.3. List of all fiber functors. For the reader convenience we remind the list of
all neutral differential fiber functors defined above:

ωR : 〈MC(x)〉⊗,∂ −→ VectC, N 7→ ker(Σq − Id,R⊗C(x) N ),

ωRE
: 〈MCE(x)〉⊗,∂ −→ VectCE

, N 7→ ker(Σq − Id,RE ⊗CE(x) N ),

ω
R̃

: 〈MC̃E(x)〉
⊗,∂ −→ VectC̃E

, N 7→ ker(Σq − Id, R̃⊗C̃E(x) N ),

whose associated groups are G∂R, G∂RE
and G∂

R̃
. Moreover we have the four forgetful

functors:
ηK(x) : 〈MK(x)〉⊗,∂ −→ VectK(x),

ηC(x) : 〈MC(x)〉⊗,∂ −→ VectC(x),

ηCE(x) : 〈MCE(x)〉⊗,∂ −→ VectCE(x),

ηC̃E(x) : 〈MC̃E(x)〉
⊗,∂ −→ VectC̃E

,

that define the intrinsic Galois groups Gal∂(MK(x)), Gal∂(MC(x)), Gal∂(MCE(x))
and Gal∂(M

C̃E(x)), respectively. We will call by the same name the restrictions
of the functors above to the usual Tannakian categories 〈MK(x)〉⊗, 〈MC(x)〉⊗,
〈MCE(x)〉⊗, and 〈MC̃E(x)〉

⊗. Using Notation 3.1 for the groups, i.e., dropping the
superscript ∂, we obtain the following Tannakian groups: Gal(MK(x)), Gal(MC(x)),
Gal(MCE(x)), Gal(M

C̃E(x)), respectively. One can consider the difference Galois
groups GR, GRE

, G
R̃
, defined in Remark 1.12. Notice that the analogue of Corol-

lary 3.7 for GR, GRE
, G

R̃
is well known (see [6, §9.4]).

4. Comparison theorems

One of the main results of [4, §3] is (see also [24], for a model theoretic approach):

Theorem 4.1. — The group schemes GR, GRE
and G

R̃
become isomorphic

over C̃E .
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Remark 4.2. — In [27], Sauloy constructs a C-linear fiber functor for q-difference
modules over C(x), using a basis of meromorphic solutions. Since C is algebraically
closed, it follows from the classical general theory of Tannakian categories, that
such a fiber functor gives rise to a group that is isomorphic to the Picard-Vessiot
group of [29] over F = C(x). We won’t consider Sauloy’s point of view in this
paper.

One of the most important properties of functional Galois groups is that their
dimension as algebraic variety is equal to the transcendence degree of the associated
Picard-Vessiot rings. In particular, the sets of the entries of any fundamental
solution matrix of (1.1) in R, RE or R̃ have the same transcendence degree over
the associated base field, i.e., C(x), CE(x) or C̃E(x), respectively.

We have the following differential analogue of the Theorem above:

Theorem 4.3. — In the previous notation, G∂R ⊗C C̃E ' G∂RE
⊗CE

C̃E ' G∂
R̃
.

Remark 4.4. — The proof below is a parameterized analog of [4, Corollary 2.5].

Proof. — Let S := CE(x){Y,detY −1}∂/qCE(x) be the PPV ring over CE(x)
defined as in Corollary 1.22 and let φ : R⊗C CE → S be the embedding considered
in the proof of Proposition 1.21. The group G∂R is a functor from ∂-C-algebras A
to groups defined by G∂R(A) = Aut(σq,∂)

C(x)⊗A(R ⊗C A). We define analogously G∂S as
a functor from ∂-CE-algebras to groups. By Proposition 2.8, these functors are
representable. (See Appendix B.) Let TR be the finitely generated ∂-C-algebra
representing G∂R and let TS be the finitely generated ∂-CE-algebra representing
G∂S . We define a new functor F from ∂-CE-algebras B to groups as F (B) =
Aut(σq,∂)

CE(x)⊗B((R ⊗C CE) ⊗CE
B). One can easily check that F is representable by

TR ⊗C CE . Using the embedding φ, one sees that

F (B) = Aut(σq,∂)
CE(x)⊗B(S ⊗CE

B) = GR(B), (4.1)

for any ∂-C-algebra B. Yoneda Lemma (see Appendix B) yields to TR⊗CCE ' TS ,
which is G∂R ⊗C CE ' G∂S . A similar argument shows that the isomorphism of
(σq, ∂)-C̃E-algebras between S ⊗CE

C̃E and RE ⊗CE
C̃E yields to the isomorphism

G∂S ⊗C C̃E ' G∂RE
⊗CE

C̃E . This proves that G∂R ⊗C C̃E ' G∂RE
⊗CE

C̃E .
Replacing S with S̃ (see Corollary 1.22), one shows in the same way that G∂R⊗C

C̃E ' G∂
R̃
⊗CE

C̃E . �

Remark 4.5. — By [16, Prop. 6.21], the Zariski closure of G∂R, G∂RE
and G∂

R̃
co-

incide with GR, GRE
and G

R̃
, respectively. Therefore we can retrieve the Theorem

4.1 as a corollary of Theorem 4.3.

We are now concerned with the intrinsic Galois groups, both parameterized and
not. Let MK(x) be a q-difference module defined over K(x), with K a finitely
generated extension of Q. For a q-difference module MF over F , the comparison
between the intrinsic Galois group and the group of tensor automorphism of a neu-
tral fiber functor ω for 〈MF 〉⊗ is a direct consequence of the fact that Hom⊗(ω, ηF ),
which is a bitorsor on Aut⊗(MF , ω) and Gal(MF ), is also an F-scheme and has
therefore a point in some algebraically closed extension F̃ of F . This point gives
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rise to an isomorphism over F̃ between Aut⊗(MF , ω) and Gal(MF ). A similar
result holds in the differential parameter context. More, precisely, [15, Proposition
4.25]) shows that, when ω is a neutral differential fiber functor for 〈MF 〉⊗,∂ , the
functor Hom⊗,∂(ω, ηF ) is a ∂-F-scheme. As above, this yields an isomorphism be-
tween Aut⊗,∂(MF , ω) and Gal∂(MF ) over a differentially closed field extension of
F . In our q-difference setting, this leads to the following statement:

Proposition 4.6. — Let us denote by C̃(x) (resp. C̃E(x)) a differential closure
of C(x) (resp. CE(x)). We have the following isomorphisms of group schemes:

(1) Aut⊗(MC(x), ωR)⊗C C̃(x) ' Gal(MC(x))⊗C(x) C̃(x);
(2) Aut⊗(MCE(x), ωRE

)⊗CE
C̃E(x) ' Gal(MCE(x))⊗CE(x) C̃E(x);

and the following isomorphisms of ∂-group schemes:

(1bis) Aut⊗,∂(MC(x), ωR)⊗C C̃(x) ' Gal∂(MC(x))⊗C(x) C̃(x);
(2bis) Aut⊗,∂(MCE(x), ωRE

)⊗CE
C̃E(x) ' Gal∂(MCE(x))⊗CE(x) C̃E(x).

Since the dimension of a ∂-group scheme as well as the differential transcendence
degree (see Definition A.3) of a field extension is stable up to field extension, one
obtains the following corollary:

Corollary 4.7. — Let MK(x) be a q-difference module defined over K(x).
Let U ∈ GL(M(C∗)) be a fundamental solution matrix attached to MK(x), as in
Proposition 1.14.

Then, the differential transcendence degree of the differential field FE generated
over CE(x) by the entries of U is equal to the differential dimension of Gal∂(MC(x))
over C(x).

Proof. — By [15, Proposition 4.28], the functor Isom⊗,∂(ωRE
⊗CE(x), ηCE(x)) is

a reduced ∂-CE(x)-scheme, represented by RE . It is also a Aut⊗,∂(MCE(x), ωRE
)-

torsor. It has thus a C̃E(x)-point, which gives, by triviality of the torsor, a (σq, ∂)-
isomorphism between C̃E(x)⊗CE(x)RE and C̃E(x)⊗CE

CE{Aut⊗,∂(MCE(x), ωRE
)}.

Using the discussion on the differential dimension in Appendix B, we get that the
differential dimension of Aut⊗,∂(MCE(x), ωRE

) equals the differential transcendence
degree of FE over CE(x). By Proposition 4.6 combined with Proposition 4.3, we
find that Aut⊗,∂(MCE(x), ωRE

) is isomorphic to Gal∂(MC(x)) over C̃E(x). We
conclude by using one more time the fact that the differential dimension of a reduced
∂-scheme is invariant by base field extension. �

In [19, Lemma 1.3.2], it is shown that the group of tensor automorphisms of a
K-linear neutral fiber functor is invariant up to algebraic field extension of K. For
forgetful functors, this is not true. This is essentially due to the fact that, unlike to
the case of neutral fiber functors, a vector space stable under the action of the group
of tensor automorphisms of the forgetful functor is not necessarily an object of the
Tannakian category. However, one can show that, for any field extension L/K, the
parameterized intrinsic Galois group of ML(x) is equal, up to scalar extension, to
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the parameterized intrinsic Galois group ofMK′(x), for a suitable finitely generated
extension K ′/K, with K ′ ⊂ L.1

Lemma 4.8. — Let L be a field extension of K with σq|L = id. There exists a
finitely generated intermediate field L/K ′/K such that

Gal(ML(x)) ∼= Gal(MK′(x))⊗K′(x) L(x)
and

Gal∂(ML(x)) ∼= Gal∂(MK′(x))⊗K′ L(x).
These equalities hold when we replace K ′ by any subfield extension of L containing
K ′.

Proof. — By definition, Gal∂(ML(x)) is the stabilizer inside GL(ML(x)) of all
L(x)-vector spaces of the form WL(x) for W object of 〈ML(x)〉⊗,∂ .

Similarly, for any field extension L/K ′/K, we have an equality
Gal∂(MK′(x)) = Stab(WK′(x),W object of 〈MK′(x)〉⊗,∂),

that has to be understood as a functorial equality for differential scheme defined
above L(x). Then,

Gal∂(ML(x)) ⊂ Gal∂(MK′(x))⊗ L(x).
By noetherianity, the (parameterized) intrinsic Galois group ofML(x) is defined by
a finite family of (differential) polynomial equations, thus we can choose K ′, which
contains the coefficients of the defining equations. �

The corollary below summarizes results of this chapter.

Corollary 4.9. — LetMK(x) be a q-difference module defined overK(x). Let
U ∈ GLν(M(C∗)) be a fundamental matrix of meromorphic solutions of MK(x).
Then,

(1) the dimension of Gal(MC(x)) is equal to the transcendence degree of the
field generated by the entries of U over CE(x), i.e., the C(x)-group scheme
Gal(MC(x)) measures the algebraic relations between the meromorphic so-
lutions ofMCE(x).

(2) the differential dimension of Gal∂(MC(x)) is equal to the differential tran-
scendence degree of the differential field generated by the entries of U over
C̃E(x), i.e., the ∂-C(x)-group scheme Gal∂(MC(x)) encodes the differential
algebraic relations between the meromorphic solutions ofMK(x).

(3) there exists a finitely generated extension K ′/K such that the differential
transcendence degree of the differential field generated by the entries of U
over C̃E(x) is equal to the differential dimension of Gal∂(MK′(x)), i.e., it
is given by an arithmetic characterization (see Theorem 3.3).

Proof. — The first two statements are proved in Corollary 4.7. The third one is
Lemma 4.8. �

We quickly recall some basic facts of differential algebra as well as some very
basic notions of differential algebraic geometry, mainly in the affine case. We refer
to [20] and [21] for a detailed exposition.

1In [2], for differential modules, the authors optimize the field on which such an isomorphism
is true, using an effective characterization of Kolchin’s reduced forms.
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Appendix A. Differential algebra

We largely use standard notation of differential algebra as can be found in [20]. A
differential ring (or ∂-ring for short) is a ring R together with a derivation ∂ : R→
R, i.e., an additive map ∂ : R→ R satisfying the Leibniz rule ∂(ab) = ∂(a)b+a∂(b),
for all (a, b) ∈ R2. The ring of ∂-constants of R is R∂ = {r ∈ R| ∂(r) = 0}. All
rings considered in this work are commutative with identity and all differential rings
contain the ring of integer numbers. In particular, all fields are of characteristic
zero.

Given two ∂-rings (R, ∂) and (R′, ∂′), a morphism ψ : R → R′ of ∂-rings is a
morphism of rings such that ψ∂ = ∂′ψ.

A ∂-ideal I of a ∂-ring R is an ideal of R that is invariant under the action of
∂. A ∂-ring R is said to be ∂-simple if it does not contain any non-zero proper
∂-ideals.

A ∂-field k is a field that is also a ∂-ring. A ∂-k-algebra R is a k-algebra and a
∂-ring such that the morphism k → R is a morphism of ∂-rings. Given two ∂-k-
algebras (R, ∂) and (R′, ∂′), a morphism ψ : R→ R′ of ∂-k-algebras is a morphism
of k-algebras such that ψ∂ = ∂′ψ. If, moreover, R is a ∂-field and a ∂-k-algebra,
we say that R|k is a ∂-field extension.

Let k be a ∂-field and R a ∂-k-algebra. If B is a subset of R, then k{B}∂ denotes
the smallest ∂-k-subalgebra of R that contains B. If R = k{B}∂ for some finite
subset B of R, we say that R is finitely ∂-generated over k. If K|k is an extension of
∂-fields and B ⊂ K, then k 〈B〉∂ denotes the smallest ∂-field extension of k inside
K that contains B.

Definition A.1. — The ∂-k-algebra k{x}∂ = k{x1, . . . , xn}∂ of ∂-polynomials
over k in the ∂-variables x1, . . . , xn is the polynomial ring over k in the countable
set of algebraically independent variables x1, . . . , xn, ∂(x1), . . . , ∂(xn), . . . , with an
action of ∂ as suggested by the names of the variables.

Of course, for any ∂-field extension L|k and any f := (f1, . . . , fn) ∈ Ln, one has
a ∂-k-morphism from k{x}∂ to L, which assigns xi to fi, for all i = 1, . . . , n. We
say that f is a solution of the differential algebraic equation P (x) = 0, for some
P ∈ k{x}∂ , if P lies in the kernel of the specialization morphism above.

Definition A.2. — A ∂-field k is called differentially closed or ∂-closed, for
short, if any system of differential algebraic equations with coefficients in k, having
a solution in some differential field extension of k, has a solution in k. A differential
closure of a ∂-field k is a ∂-field extension of k that is ∂-closed and that embeds,
as ∂-field extension of k, in any differentially closed extension of k.

Definition A.3. — Let L|K be a ∂-field extension. Elements a1, . . . , an ∈ L
are called differentially (or ∂-algebraically) independent over K if the elements
a1, . . . , an, ∂(a1), . . . , ∂(an), . . . are algebraically independent over K. Otherwise,
they are called differentially dependent over K.

A ∂-transcendence basis of L over K is a subset of L, which is maximal with
respect to the property of being a differentially independent set over K.

Any two ∂-transcendence basis of L|K have the same cardinality and so we can
define the ∂-transcendence degree of L|K (or differential transcendence degree of
L|K, when the choice of ∂ is clear, or also ∂-trdeg(L|K), for short) as the cardinality
of any ∂-transcendence basis of L over K.
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Appendix B. Differential geometry

In this paper, we work with the formalism of affine differential group schemes,
as can be found in [21]. In this section, we fix a ∂-field k of characteristic zero, not
necessarily ∂-closed. We define a ∂-k-scheme as follows:

Definition B.1. — An affine ∂-scheme over k (or an affine ∂-k-scheme, for
short) is a (covariant) functor from the category of ∂-k-algebras to the category of
sets which is representable.

The definition above means that a functor X from the category of ∂-k-algebras
to the category of sets is a ∂-k-scheme if and only if there exists a ∂-k-algebra
k{X} and an isomorphism of functors X ' Alg∂k(k{X},−), where Alg∂k stands for
morphism of ∂-k-algebras. By the Yoneda lemma, the ∂-k-algebra k{X} is uniquely
determined up to unique ∂-k-isomorphisms. We call it the ring of ∂-coordinates
of X. A ∂-k-scheme X is called ∂-algebraic (over k) if k{X} is finitely ∂-generated
over k. We say that a ∂-k-scheme X is reduced if k{X} has no non-zero nilpotent
elements.

LetX be a ∂-k-scheme. By a closed ∂-k-subscheme Y ⊂ X we mean a subfunctor
Y of X which is represented by k{X}/I(Y ) for some ∂-ideal I(Y ) of k{X}. The
ideal I(Y ) of k{X} is uniquely determined by Y and vice versa. We call it the
vanishing ideal of Y in X.

A morphism of ∂-k-schemes is a morphism of functors. If φ : X → Y is a
morphism of ∂-k-schemes, we denote the dual morphism of ∂-k-algebras by

φ∗ : k{Y } → k{X}.

If a functor (resp. ∂-functor)X factors through the category of group, we say that
X is a k-group scheme (resp. ∂-k-group scheme). We denote by GLν(k) the ∂-k-
group scheme attached to the general linear group of size ν over k. It is represented
by the ∂-k-algebra k

{
X,detX−1}

∂
where X is a ν×ν matrix of ∂-indeterminates.

More generally, for any k-vector space V of finite dimension, we denote by GL(V )
the ∂-k-group scheme of invertible k-linear automorphisms of V . Notice that we
are calling GLν(k) both the k-group scheme and the ∂-k-group scheme attached to
the general linear group, anyway the context will always make clear to which one
of the two structures we are referring to, without introducing complicate notation.

By a ∂-subgroup H of G, we mean a ∂-k-scheme H such that H(S) is a subgroup
of G(S) for every ∂-k-algebra S. We call H normal if H(S) is a normal subgroup
of G(S) for every ∂-k-algebra S. As in the classical setting, Yoneda lemma implies
that, for a ∂-k-group scheme G, the algebra k{G} is a ∂-k-Hopf algebra, i.e., a
∂-k-algebra equipped with the structure of a Hopf algebra over k such that the
Hopf algebra structure maps are morphisms of ∂-rings. It also follows immediately
that the category of ∂-k-group schemes is anti-equivalent to the category of ∂-
k-Hopf algebras. Then, since Hopf algebras over fields of characteristic zero are
reduced by [31, Cartier’s Theorem in §11.4], we get that any ∂-k-group scheme
is automatically reduced. Reduced ∂-schemes correspond to differential varieties
in the sense of Kolchin (see for instance [20]), for whom it suffices to focus on the
solution set of a system of differential equations with value in a sufficiently big field,
i.e., a ∂-closed field.
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The ∂-schemes considered in this paper are all reduced. Thus, we only define
the differential dimension of a reduced ∂-scheme. So let V be a reduced ∂-k-
scheme. We can write k{V } = k{x1, . . . , xn}∂/q for some positive integer n and
some radical ∂-ideal q ⊂ k{x1, . . . , xn}∂ . Since q is radical, by [18, Theorem 7.5]
there exists finitely many prime ∂-ideals pi such that q = ∩pi. Now, we can define
the differential dimension of V over k, denoted by ∂-dim(V |k) as the maximum of
the ∂-trdeg(Li|k) where Li denotes the fraction field of k{x1, . . . , xn}∂/pi. In [20,
III.§6.Proposition 3], Kolchin proved that if k ⊂ k′ is an extension of ∂-field and if
V is a reduced ∂-k-scheme, then ∂-dim(V |k) = ∂-dim(Vk′ |k′), where Vk′ is the base
extension of V to k′.

Let V be a k-scheme, i.e., a (covariant) functor from the category of k-algebras
to the category of sets which is representable by a k-algebra k[V ]. We call k[V ] the
ring of coordinates of V . In [14], the author shows that the forgetful functor

η : ∂-k-algebras → k-algebras,

that associates to any ∂-k-algebra its underlying k-algebra, has a left adjoint de-
noted by D. This implies that the functor V from the category of ∂-k-algebras to
the category of Sets, defined by the composition of V with the forgetful functor
η is a ∂-k-scheme, whose ring of ∂-coordinates is precisely D(k[V ]). We call V,
the ∂-k-scheme attached to V . The simple idea behind this construction is that
polynomial equations are ∂-polynomials. More precisely if V ⊂ An

k , the affine space
of dimension n over k, and if I(V ) ⊂ k[x1, . . . , xn] is the vanishing ideal of V as
subscheme of An

k then the vanishing ideal of V as ∂-k-subscheme of An
k is nothing

else than the ∂-ideal generated by I(V ) in k{x1, . . . , xn}∂ . Finally, Kolchin irre-
ducibility theorem states that if k[V ] is a finitely generated integral k-algebra, then
D(k[V ]) is a finitely ∂-generated integral ∂-k-algebra and the dimension of V as
k-scheme coincides with the ∂-dimension of V over k ([14, §2]).

Conversely, given a ∂-k-subscheme V of some An
k , we can attach to V a k-

subscheme of An
k as follows. Let I(V) ⊂ k{x1, . . . , xn}∂ be the vanishing ideal of V

in An
k . Let VZ be the k-subscheme of An

k defined by the ideal I(V )∩ k[x1, . . . , xn].
We call VZ the Zariski closure of V inside An

k . If k is ∂-closed then VZ is the
closure of V with respect to the Zariski topology.
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