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DEFINABILITY IN THE GROUP OF INFINITESIMALS OF A
COMPACT LIE GROUP

MARTIN BAYS AND YA’ACOV PETERZIL

Abstract. We show that for G a simple compact Lie group, the infinitesimal subgroup
G00 is bi-interpretable with a real closed convexly valued field. We deduce that for G an
infinite definably compact group definable in an o-minimal expansion of a field, G00 is bi-
interpretable with the disjoint union of a (possibly trivial) Q-vector space and finitely many
(possibly zero) real closed valued fields. We also describe the isomorphisms between such
infinitesimal subgroups, and along the way prove that every definable field in a real closed
convexly valued field R is definably isomorphic to R.

1. Introduction

Let G be compact linear Lie group, by which we mean a compact closed Lie
subgroup of GLd(R) for some d ∈ N, e.g. G = SOd(R). By Fact 2.1(i) below, any
compact Lie group is isomorphic to a linear Lie group.

Let R � R be a real closed field properly extending the real field. By Fact 2.1(ii),
G is the group of R-points of an algebraic subgroup of GLd over R, and we write
G(R) 6 GLd(R) for the R-points of this algebraic group.

Let st : O → R be the standard part map, the domain O =
⋃
n∈N[−n, n] ⊆ R of

which is a valuation ring in R. Let

m = st−1(0) =
⋂

n∈N>0

[− 1
n ,

1
n ] ⊆ R

be the maximal ideal of O. A field equipped with a valuation ring, such as
(R; +,·,O), is known as a valued field. The complete first-order theory of (R; +,·,O)
is the theory RCVF of non-trivially convexly valued real closed fields [4].

Since G is compact, st : O → R induces a totally defined homomorphism stG :
G(R)� G. The kernel ker(stG) /G is the “infinitesimal subgroup” of G in R. Our
main results below describe definability in this group.

In fact, by Fact 5.3(iv) below, ker(stG) is precisely G00(R), the set of R-points of
the smallest bounded-index

∧
-definable subgroup G00 of the semialgebraic group

G. In terms of matrices,

G00(R) = G(R) ∩ (I + Matd(m)) =
⋂

n∈N>0

(G(R) ∩ (I + Matd([− 1
n ,

1
n ])) (1.1)

(where we write Matd(X) for the set of matrices with entries in a set X ⊆ R). Note
in particular that G00(R) is definable in the valued field (R; +, ·,O).

We adopt the convention that “definable” always means definable with param-
eters: a definable set in a structure A = (A; . . .) is a subset of a Cartesian power
An defined by a first-order formula in the language of A with parameters from A.
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Recall that an interpretation of a (one-sorted) structure A in a structure B is
a bijection of the universe of A with a definable set in B, or more generally with
the quotient of a definable set by a definable equivalence relation, such that the
image of any definable set in A is definable in B. A definition of A in B is an
interpretation whose codomain is a definable set rather than a definable quotient;
in fact, these are the only interpretations which will arise in the main results of
this article. There is an obvious notion of composition of interpretations. A pair
of interpretations of A in B and of B in A form a bi-interpretation if the composed
interpretations of A in A and of B in B are definable maps in A and B respectively.
If A and B are bi-interpretable, then the structure induced by B on the image of A
is precisely the structure of A, i.e. the definable sets are the same whether viewed
in A or in B. Indeed, if (f, g) is a bi-interpretation, then given a subset X ⊆ An,
if X is A-definable then f(X) is B-definable, and conversely if f(X) is B-definable
then g(f(X)) and hence X is A-definable.

We adopt the following terminology throughout the paper. A linear Lie group
is a closed Lie subgroup of GLd(R) for some d ∈ N. A Lie group is simple if it is
connected and its Lie algebra is simple; a Lie algebra is simple if it is non-abelian
and has no proper non-trivial ideal. (A simple Lie group may have non-trivial
discrete centre; however, the underlying abstract group of a centreless simple Lie
group is simple.) Our first main result describes definability in G00(R) for G simple:

Theorem 1.1. — Let G be a simple compact linear Lie group.
Let R � R be a proper real closed field extension of R.
Then the inclusion ι : G00(R) ↪−→ G(R), viewed as a definition of the group

(G00(R); ∗) in the valued field (R; +, ·,O), can be extended to a bi-interpretation:
there is a definition θ of the valued field (R; +, ·,O) in the group (G00(R); ∗) such
that the pair (ι, θ) form a bi-interpretation.

In particular, the (G00(R); ∗)-definable subsets of powers (G00(R))n are precisely
the (R; +, ·,O)-definable subsets.

Remark 1.2. — The bi-interpretation of Theorem 1.1 requires parameters. In-
deed, G00(R) has non-trivial inner automorphisms (this follows from Lemma 2.2
below), which under a hypothetical parameter-free bi-interpretation would induce
definable non-trivial automorphisms of (R; +, ·,O).

However, no such automorphism exists. We sketch a proof of this, following a
method suggested by Martin Hils. By Fact 4.1(1), if σ is an (R; +, ·,O)-definable
automorphism, then it agrees on some infinite interval I with an (R; +, ·)-definable
map f . But then for a, b, c, d ∈ I with c 6= d, σ(a−bc−d ) = σ(a)−σ(b)

σ(c)−σ(d) = f(a)−f(b)
f(c)−f(d) , so σ

is an (R; +, ·)-definable field automorphism, thus σ = id.

Remark 1.3. — For G a simple centreless compact Lie group, Nesin and Pillay
[13] showed that the group itself, (G; ∗), is bi-interpretable with a real closed field.
They interpret the field by finding a copy of (SO3; ∗) and using the geometry of
its involutions. A similar project is carried out in [17] for definably simple and
semisimple groups in o-minimal structures. In the case of G00, we also find a field
by first finding a copy of SO00

3 , but the “global” approach of considering involutions
is not available; in fact G00 is torsion-free. Instead, we work “locally”, and obtain
the field by applying the o-minimal trichotomy theorem to a definable interval on
a curve within SO00

3 . This kind of local approach was previously mentioned in an
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“added in proof” remark at the end of [17] as an alternative method for the case of
(G; ∗), but we have to take care to ensure that structure we apply trichotomy to is
definable both o-minimally and in (G00; ∗).

Remark 1.4. — One might also consider “smaller” infinitesimal neighbourhoods
corresponding to larger valuation rings O′ ) O; Theorem 1.1 holds for these too.
More generally, if (R′; +, ·,O′) � RCVF extends R as an ordered field, then the
group G(R) ∩ Matn(µ′) is bi-interpretable as in Theorem 1.1 with (R′; +, ·,O′).
Indeed, the existence of suitable parameters for the bi-interpretation is expressed
by a sentence in RCVF with parameters in R, and since RCVF is complete we can
apply Theorem 1.1 to deduce the result.

We prove Theorem 1.1 in §3.
In §4, we deduce in the spirit of Borel-Tits a characterisation of the group iso-

morphisms of groups of the form G00, decomposing them as compositions of valued
field isomorphisms and isomorphisms induced by isomorphisms of Lie groups. In
particular, this shows that simple compact G1 and G2 have isomorphic infinitesi-
mal subgroups if and only if they have isomorphic Lie algebras. The key technical
tool is Theorem 4.2, which shows that there are no unexpected fields definable in
RCVF = Th(R; +, ·,O).

In §5, we generalise Theorem 1.1 to the setting of a definably compact group
G definable in an o-minimal expansion of a field. Here, to say that G is definably
compact means that any definable continuous map [0, 1)→ G can be completed to
a continuous map [0, 1]→ G; we refer to [19] for further details on this notion.

Define the disjoint union of 1-sorted structures Mi to be the structure (Mi)i
consisting of a sort for each Mi equipped with its own structure, with no further
structure between the sorts.

Theorem 1.5. — Let (G; ∗) be an infinite definably compact group definable
in a sufficiently saturated o-minimal expansion M of a field. Then (G00(M); ∗) is
bi-interpretable with the disjoint union of a (possibly trivial) divisible torsion-free
abelian group and finitely many (possibly zero) real closed convexly valued fields.

To indicate why this is the correct statement, let us note that it can not be
strengthened to bi-interpretability with a single real closed valued field as in The-
orem 1.1: one reason is that G could be commutative, and then (G00; ∗) is just a
divisible torsion free abelian group and thus does not even define a field; another
reason is that groups are orthogonal in their direct product, so e.g. if G = H×H for
a semialgebraic compact group H then, viewing G00 as a definable set in a valued
field (R; +, ·,O) as above, the diagonal subgroup of G00(R) = H00(R) × H00(R)
is (R; +, ·,O)-definable but not (G00(R); ∗)-definable.

Note that Theorem 1.5 applies in particular to an arbitrary compact linear Lie
group, since by Fact 2.1(ii) any such group is definable in the real field, and is
definably compact.

2. Preliminaries

2.1. Notation. We consider R and R as fields and G00(R) as a group. Thus
“G00(R)-definable” means definable in the pure group (G00(R); ∗), and “R-defin-
able” means definable in the field (R; +, ·), while we write “(R;O)-definable” for
definability in the valued field (R; +, ·,O).
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We use exponential notation for group conjugation, gh := hgh−1. We write group
commutators as (a, b) := aba−1b−1, reserving [X,Y ] for the Lie bracket. For G a
group, we write (G,G)1 for the set of commutators in G, (G,G)1 := {(g, h) : g, h ∈
G}, and we write (G,G) for the commutator subgroup, the subgroup generated by
(G,G)1.

For G a group and A a subset, we write the centraliser of A in G as CG(A) =
{g ∈ G : ∀a ∈ A. (g, a) = e}, and we write Z(G) for the centre Z(G) = CG(G).
Similarly for g a Lie algebra and A a subset, we write the centraliser of A in g as
Cg(A) = {X ∈ g : ∀Y ∈ A. [X,Y ] = 0}. We write CG(g) for CG({g}) and Cg(X)
for Cg({X}).

2.2. Compact Lie groups. Proofs of the statements in the following Fact can be
found in [14] as Theorem 5.2.10 and Theorem 3.4.5 respectively.

Fact 2.1 (Chevalley). — (i) Any compact Lie group G is linear; that is,
G is isomorphic to a Lie subgroup of GLd(R) for some d.

(ii) Compact linear groups are algebraic; that is, any compact subgroup of any
GLd(R) is of the form G(R) for some algebraic subgroup G 6 GLd over R.

Lemma 2.2. — Suppose H is a connected closed Lie subgroup of a compact
linear Lie group G.

Then CG(R)(H(R)) = CG(R)(H00(R)).

Proof. — Since G and H are algebraic by Fact 2.1(ii), the conclusion can be
expressed as a first-order sentence in the complete theory RCVFR of a non-trivially
convexly valued real closed field extension (R; +, ·,O) of the trivially valued field
R, so we may assume without loss that R is ℵ1-saturated.

Suppose x ∈ CG(R)(H00(R)). It follows from ℵ1-saturation of R that x ∈
CG(R)(U(R)) for some R-definable neighbourhood of the identity U ⊆ H, since
H00(R) is the intersection of such (e.g. as in (1.1)). Now we could argue from
general results on o-minimal groups (see [20, Lemma 2.11]) and connectedness that
CG(R)(U(R)) = CG(R)(H(R)), but we can also argue directly as follows. H is
compact and connected, thus is generated in finitely many steps from U . Since R
is an elementary extension of R, it follows that H(R) is generated by U(R). Hence
x ∈ CG(R)(H(R)). �

2.3. SO(3). We recall some elementary facts about the group of spatial rotations
SO(3) = SO3(R), its universal cover Spin(3), and their common Lie algebra so(3),
as discussed in e.g. [26, Chapter 6].

Any rotation g ∈ SO(3) can be completely described as a planar rotation α ∈
SO(2) around an axis L, where L is a ray from the origin in R3. We can identify
such a ray L with the unique element of the unit sphere S2 which lies on the ray.
Writing ρ : SO(2) × S2 � SO(3) for the corresponding map, the only ambiguities
in this description are that ρ(α,L) = ρ(−α,−L), and the trivial rotation is e =
ρ(0, L) for any L. The centraliser in SO(3) of a non-trivial non-involutary rotation
g = ρ(α,L), 2α 6= 0, is the subgroup CSO(3)(g) = ρ(SO(2), L) ∼= SO(2) of rotations
around L. The conjugation action of SO(3) on itself is by rotation of the axis:
ρ(α,L)g = ρ(α, gL), where gL is the image of L under the canonical (matrix) left
action of g on R3. The map ρ is continuous and R-definable.



DEFINABILITY IN THE GROUP OF INFINITESIMALS OF A COMPACT LIE GROUP 7

This description transfers to non-standard rotations: given R � R, ρ extends to
a map ρ : SO2(R) × S2(R) � SO3(R). The infinitesimal rotations are then the
rotations about any (non-standard) axis by an infinitesimal angle; i.e. ρ restricts to
a map SO00

2 (R)× S2(R)� SO00
3 (R).

The universal group cover of SO(3) is denoted Spin(3); the corresponding con-
tinuous covering homomorphism π : Spin(3) → SO(3) is a local isomorphism with
kernel Z(Spin(3)) ∼= π1(SO(3)) ∼= Z/2Z. Since Spin(3) is compact, by Fact 2.1(i)
we may represent it as Spin(3) = Spin3(R) where Spin3 is a linear Lie group. Since
π is an R-definable local isomorphism, it induces an isomorphism of Lie algebras
and an isomorphism of infinitesimal subgroups Spin00

3 (R) ∼= SO00
3 (R), with respect

to which the action by conjugation of g ∈ Spin3(R) on Spin00
3 (R) agrees with the

action by conjugation of π(g) on SO00
3 (R).

The Lie algebra so(3) ∼= su(2) has R-basis {H,U, V } and bracket relations
[U, V ] = H, [H,U ] = V, [V,H] = U. (2.1)

The adjoint action Ad of g ∈ SO(3) on so(3) is by the left matrix action with
respect to this basis, Adg(X) = gX, and similarly for g ∈ Spin(3) the adjoint
representation is π, i.e. Adg(X) = π(g)X.

2.4. Lie theory in o-minimal structures. We recall briefly the Lie theory of a
group G definable in an o-minimal expansion of a real closed field R; see [16] for
further details, but in fact we apply it only to linear algebraic groups, for which it
agrees with the usual theory for such groups. The Lie algebra of G is the tangent
space at the identity g = L(G) = Te(G), a finite dimensional R-vector space.
For h ∈ G(R), define Adh : g → g to be the differential of conjugation by h at
the identity, Adh := de(·h), and define ad : g → EndR(g) as the differential of
Ad : G → AutR(g) at the identity, ad := de(Ad). Then the Lie bracket of g is
defined as [X,Y ] := adX(Y ).

The statements above about the adjoint action of SO3 and Spin3 on so3 transfer
to R: for X ∈ so3(R), we have that Adg(X) = gX for g ∈ SO3(R), and Adg(X) =
π(g)X for g ∈ Spin3(R).

3. Proof of Theorem 1.1

Let G and R be as in Theorem 1.1, namely G is a simple compact linear Lie
group and R is a proper real closed field extension1 of R.

In this section, we write G00 for the group G00(R).
We first give an overview of the proof. We begin in §3.1 by finding a copy of SO(3)

or Spin(3) in G which is definable in such a way that its infinitesimal subgroup is
G00-definable. A reader who is interested already in the case G = SO(3) may prefer
to skip that section on a first reading. In §3.2 we use the structure of SO00

3 to find
in it an interval on a centraliser which is definable both in the group and the field.
In §3.3 we see that the non-abelianity of G endows this interval with a rich enough
structure to trigger the existence of a field by the o-minimal trichotomy theorem.
Finally, in §3.4, we use an adjoint embedding to see the valuation on this field and
obtain bi-interpretability.

1Readers familiar with model theory might be made more comfortable by an assumption that
R is (sufficiently) saturated. They may in fact freely assume this, since the conclusion of the
theorem can be seen to not depend on the choice of R.
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3.1. Finding an SO00
3 . In this subsection, we find a copy of so(3) in the Lie

algebra of G which is the Lie algebra of a Lie subgroup S 6 G, and which moreover
is defined in such a way that the infinitesimal subgroup S00 6 G00 is G00-definable.

Let g0 := L(G) be the Lie algebra of G.

Lemma 3.1. — There exist Lie subalgebras s 6 s′ 6 g0 such that
(i) s′ = Cg0(Cg0(s′))
(ii) s = [s′, s′]
(iii) s ∼= so(3).

Proof. — In this proof, and in this proof alone, we assume familiarity with the
basic theory and terminology of the root space decomposition of a semisimple Lie
algebra. This can be found in e.g. [9, §§II.4, II.5].

We write V ∗ for the dual space of a vector space V .
Let g := g0 ⊗R C be the complexification of g0, and let · : g → g be the

corresponding complex conjugation.
Let h0 6 g0 be a Cartan subalgebra of g0, meaning that the complexification

h := h0 ⊗R C is a Cartan subalgebra of g; we can take h0 := L(T ) where T is a
maximal torus of G (where a torus of G is a Lie subgroup isomorphic to a power
of the circle group).

Now since G is simple, g is semisimple and so admits a root space decomposition
g = h⊕

⊕
α∈∆ gα where each root space gα is the 1-dimensional eigenspace of ad(h)

with eigenvalue α ∈ h∗ \ {0}, i.e. if H ∈ h and X ∈ gα then [H,X] = α(H)X. The
roots α span h∗. If α ∈ ∆ then Cα ∩∆ = {α,−α}. We have [gα, g−α] 6 h.

Since G is compact, each root α ∈ ∆ takes purely imaginary values on h0, thus
iα �h0∈ h∗0, and the subalgebra sα of g0 generated by lα := g0 ∩ (gα ⊕ g−α) is
isomorphic to so(3) (see [6, Proposition 26.4], or [9, (4.61)]).

Explicitly, if Eα ∈ gα \{0}, so Eα ∈ g−α, then lα is spanned by Uα := iEα− iEα
and Vα := Eα + Eα. Then for H ∈ h0 we have

[H,Uα] = iα(H)Vα and [H,Vα] = −iα(H)Uα, (3.1)

and [Uα, Vα] = 2i[Eα, Eα] ∈ sα∩h0. Using that g0 admits an Ad(G)-invariant inner
product, one can argue (see the proof of [9, (4.56)] for details) that α([Eα, Eα]) < 0,
and hence that after renormalising Eα, the R-basis {[Uα, Vα], Uα, Vα} for sα satisfies
the standard bracket relations (2.1) of so(3).

Let α0 ∈ ∆. Let s := sα0 and l := lα0 , and let s′ := h0 ⊕ l. It follows from the
bracket relations above that s′ is a subalgebra of g0, and the commutator subalgebra
[s′, s′] is precisely s.

It remains to show that s′ = Cg0(Cg0(s′)).
It follows from (3.1) and Cg0(h0) = h0 that Cg0(s′) = h0 ∩ Cg0(l) = ker(α0�h0).
Now for α′ ∈ ∆ and W ∈ gα′ \ {0}, we have [W, ker(α0 �h0)] = 0 if and only

if ker(α′ �h0) ⊇ ker(α0 �h0); since iα′ �h0 , iα0 �h0∈ h∗0, this holds if and only if α′ ∈
Rα0 ∩∆ = {α0,−α0}. Thus Cg0(Cg0(s′)) = g0 ∩ (h+ gα0 + g−α0) = s′, as required.

�

Before the next lemma we recall some facts and terminology from Lie theory.
An integral subgroup of G is a connected Lie group which is an abstract subgroup
of G via an inclusion map which is an immersion. An integral subgroup is a Lie
subgroup iff it is closed in G (see [2, Proposition III.6.2.2]). The map H 7→ L(H)
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of taking the Lie algebra is a bijection between integral subgroups of G and Lie
subalgebras of g0 = L(G) (see [2, Theorem III.6.2.2]).

Lemma 3.2. — There exists a closed Lie subgroup S 6 G isomorphic to either
Spin(3) or SO(3), such that the infinitesimal subgroup S00 = S(R) ∩ G00 ∼= SO00

3
is G00-definable as a subgroup of G00.

Proof. — Let s and s′ be as in Lemma 3.1. Let S and S′ be the integral subgroups
of G with Lie algebras s and s′, respectively. Since s′ = Cg0(Cg0(s′)), we have by
[2, Proposition III.9.3.3] that S′ = CG(CG(S′)). In particular, S′ is closed.

Since [s′, s′] = s and s is an ideal in s′, we have by [2, Proposition III.9.2.4] that
the commutator subgroup (S′, S′) is equal to S. Now s is isomorphic to so(3) and
Spin(3) is simply connected, thus (by [2, Theorem III.6.3.3]) S is the image of a
non-singular homomorphism Spin(3)→ G with central kernel, and so since Spin(3)
is compact and its centre is of order 2, S is a closed Lie subgroup of G isomorphic
either to Spin(3) or to SO(3) ∼= Spin(3)/Z(Spin(3)).

Now S is a closed Lie subgroup of G, and thus is a compact linear Lie group,
and its infinitesimal subgroup S00 is correspondingly the subgroup S(R) ∩ G00 of
G00. The same goes for the closed Lie subgroups S′ and S′′ := CG(S′) of G.

Claim 3.3. — (S′)00 = CG00(CG00(S′(R))).

Proof. —
(S′)00 = S′(R) ∩G00

= CG(R)(CG(R)(S′(R))) ∩G00

= CG00(CG(R)(S′(R)))
= CG00(S′′(R))
= CG00((S′′)00) (by Lemma 2.2)
= CG00(CG(R)(S′(R)) ∩G00)
= CG00(CG00(S′(R))). �

By the Descending Chain Condition for definable groups in o-minimal struc-
tures, [16, Corollary 1.16], there exists a finite set X0 ⊆ CG00(S′) ⊆ G00 such that
CG(CG00(S′)) = CG(X0). Thus,

S00 = CG(X0) ∩G00 = CG00(X0)
is G00-definable.

Meanwhile, for the commutator subgroup, we have ((S′)00, (S′)00) ⊆ (S′, S′)00 =
S00. Now (SO00

3 ,SO00
3 )1 = SO00

3 ; in fact [5] proves (G00, G00)1 = G00 for any
compact semisimple Lie group, but one can also see it directly in this case, since
(SO00

3 ,SO00
3 )1 is invariant under conjugation by SO3(R) and can be seen to contain

infinitesimal rotations of all infinitesimal angles. So since (S′)00 ⊇ S00 ∼= SO00
3 , we

have ((S′)00, (S′)00)1 = S00. Hence S00 is G00-definable.
Thus S is as required. �

3.2. Finding a group interval in S00. Let S 6 G be as given by Lemma 3.2. Now
S is isomorphic to SO3 or Spin3 via an isomorphism which has compact graph and
hence is R-definable, so let the R-definable map π : S � SO3 be this isomorphism
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or its composition with the universal covering homomorphism respectively. Then
π induces an isomorphism π : S00 ∼=−→ SO00

3 .
From now on, we work in R, and consider S, G, SO2, SO3, and Spin3 as R-

definable (linear algebraic) groups rather than as Lie groups; moreover, we write
S for S(R), and similarly with G, SO2, SO3, and Spin3.

Let g ∈ S00 \ {e}. Then CS(g) = π−1(CSO3(π(g))), and CSO3(π(g)) ∼= SO2 since
g is not torsion. Thus the circular order on SO2 induces2 anR-definable linear order
on a neighbourhood of the identity in CS(g) containing CS00(g), and the induced
linear order on CS00(g) makes it a linearly ordered abelian group. Moreover, the
order topology on CS00(g) coincides with the group topology. We may assume that
g is positive with respect to this ordering.

Lemma 3.4. — There exists an open interval J ⊆ CS00(g) containing e such
that J and the restriction to J of the order on CS00(g) are both S00-definable and
R-definable.

Proof. — First, consider the R-definable set I := gSgS ∩ CS(g), where gSgS :=
{ga1ga2 : a1, a2 ∈ S}. Since S00 is normal in S, in fact I ⊆ CS00(g).

Say a subset X of a group is symmetric if it is closed under inversion, i.e. X−1 =
X.

Claim 3.5. — I is a closed symmetric interval in CS00(g).
Proof. — Recall that a definable set in an o-minimal structure is definably con-

nected if it is not the union of disjoint open definable subsets.
X := gSgS is the image under a definable continuous map of the definably

connected closed bounded set (gS)× (gS), and hence ([24, 1.3.6,6.1.10]) X is closed
and definably connected.

Now X is invariant under conjugation by S. Thus π(X) ⊆ SO00
3 consists of the

rotations around arbitrary axes by the elements of some R-definable set Θ ⊆ SO00
2 ,

i.e. π(X) = ρ(Θ, S2(R)). Since ρ(θ, L)−1 = ρ(θ,−L), it follows that π(X) is
symmetric, and hence Θ is symmetric. Similarly, π(gS) is symmetric, and hence
e ∈ π(X) and so e ∈ Θ.

Recall that if L is the axis of rotation of π(g) (i.e. π(g) = ρ(α,L) for some α),
then π(CS(g)) = ρ(SO2, L). So then π(I) = ρ(Θ, L). Since π(X) is closed and
definably connected, Θ is of the form Θ′ ∪Θ′−1 where Θ′ is a closed interval. Thus
since Θ contains the identity, Θ is itself a closed symmetric interval. So I is a closed
symmetric interval in CS00(g). �

Say I = [h−1, h]. Write the group operation on CS00(g) additively. For g1, g2 ∈
S00, let Yg1,g2 := gS

00

1 gS
00

2 ∩ CS00(g) (an S00-definable set). Clearly, Yg1,g2 ⊂ I =
[−h, h].

Claim 3.6. — There exist3 h′′ < h and g1, g2 ∈ S00 such that the interval
(h′′, h] is contained in Yg1,g2 .

2Explicitly, say π(g) = ρ(α,L); then if π(1,2) : SO2 →R extracts the top-right matrix element,
then x1 < x2 ⇔ π(1,2)(β1) < π(1,2)(β2) where π(xi) = ρ(βi, L) defines an order on such a
neighbourhood of the identity in CS(g).

3Although this existence statement suffices for our purposes, in fact one may calculate that
we may take h = g2 and g1 = g = g2. This can be seen by combining the proof of the claim
with the following observations on Spin3 considered as the group of unit quaternions. Firstly, if
a, b ∈ Spin3(R) have the same scalar part, <(a) = <(b), then <(a ∗ b) > <(a ∗ a), with equality iff
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Proof. — Consider the map f : S2 → S defined by f(a1, a2) := ga1ga2 . By
definable choice in R, f admits a R-definable section over the set I, and hence f
admits a continuous R-definable section on an open interval θ : (h′, h) → S2 for
some h′ ∈ CS00(g). By definable compactness of S2, θ extends to a continuous
R-definable section θ : (h′, h] → S2. Say θ(h) = (a1, a2) ∈ S2. Let gi := gai for
i = 1, 2. Note that gi ∈ S00.

So by continuity of θ, for some h′′ < h we have

(h′′, h] ⊆ θ−1((S00a1)× (S00a2)) ⊆ f((S00a1)× (S00a2)) = gS
00

1 gS
00

2 . �

Thus
P := h− Yg1,g2 ⊆ h− I = [0, 2h]

is an S00-definable subset of the non-negative part of CS00(g).
So set p := h− h′′ > 0. Note that [0, p) ⊆ P ⊆ [0, 2h]. It is now easy to see that

the open interval (0, p) is equal to P ∩ (p− P ), thus is definable in S00.
So J := (−p, p) = [0, p)∪−[0, p) and its order are S00-definable, since for a, b ∈ J

we have a > b iff a− b ∈ [0, p).
Finally, J = (−p, p) and its order are also R-definable as an interval in the R-

definable order on an R-definable neighbourhood of the identity in CS(g). This
ends the proof of Lemma 3.4. �

3.3. Defining the field. Let J be as given by Lemma 3.4. We now return to work-
ing with the full simple compact group G, of which J is a subset. Let n := dim(G).
Recall that J consists of a neighborhood of the identity in the one-dimensional real
algebraic group group CS(g), thus it is a one-dimensional smooth sub-manifold of
G. For h ∈ G, the set Jh is an open neighborhood of e in the group CS(g)h. We
let Te(Jh) denote its tangent space at e with respect to the real closed field R.

Lemma 3.7. — There exists an open neighbourhood U ⊆ G00 of the identity, an
open interval e ∈ J ′ ⊆ J , and a bijection φ : J ′n → U which is both G00-definable
and R-definable, with φ(x, e, . . . , e) = x.

Proof. — Let g = Te(G) be the Lie algebra of G (as discussed in §2.4). Consider
the R-subspace V 6 g(R) generated by⋃

h∈G00

Te(Jh) =
⋃

h∈G00

Adh(Te(J)).

Then V is AdG00 -invariant. Thus Ad restricts to Ad : G00 → AutR(V ), and hence
the differential at the identity is a map ad = de Ad : g(R) → EndR(V ), i.e. it
follows that V is adg(R)-invariant. So V is a non-trivial ideal in g(R). But g is
simple, thus we have V = g(R).

So say h1, h2, . . . , hn ∈ G00 are such that Te(Jhi) span TeG. Conjugating by
h−1

1 , we may assume h1 = e.
Define φ : Jn → G00 by

φ(x1, . . . , xn) := xh1
1 xh2

2 . . . xhn
n ,

which is clearly bothG00-definable andR-definable. Then the differential d(e,...,e)φ :
TeJ

n → TeG(R) is an isomorphism. Thus by the implicit function theorem (for

a = b. Secondly, conjugation in Spin3 preserves scalar part. Finally, the order on CS00 (g) agrees
(up to inversion) with the order on the scalar part.



12 M. Bays & Y. Peterzil

the real closed field R), for some open interval e ∈ J ′ ⊆ J , the restriction φ�(J′)n

is a bijection with some open neighbourhood U of e, as required. �

Redefine J to be J ′ as provided by the lemma.
We shall consider the o-minimal structure obtained by expanding the interval

(J ;<) by the pullback of the group operation near e via the chart φ. As we will
now verify, it follows from the non-abelianity of G that the resulting structure on
J is “rich” in the sense of the o-minimal trichotomy theorem [18] (see below), and
so by that theorem it defines a field. Let us first recall the relevant notions:

Definition 3.8. — LetM = (M ;<, · · · ) be an o-minimal structure. A defin-
able family of curves is given by a definable set F ⊆ Mn × T , for some definable
T ⊆ Mk, such that for every t ∈ T , the set Ft = {a ∈ Mn : (a, t) ∈ F} is of
dimension 1.

The family is called normal if for t1 6= t2, the set Ft1 ∩Ft2 is finite. In this case,
the dimension of the family is taken to be dimT .

A linearly ordered set (I;<), together with a partial binary function + and a
constant 0, is called a group-interval if + is continuous, definable in a neighbor-
hood of (0, 0), associative and commutative when defined, order preserving in each
coordinate, has 0 as a neutral element and each element near 0 has additive inverse
in I.

We shall use Theorem 1.2 in [18]:

Fact 3.9. — Let I = (I;<,+, 0, · · · ) be an ω1-saturated o-minimal expansion
of a group-interval. Then one and only one of the following holds:

(1) There exists an ordered vector space V over an ordered division ring, such
that (I;<,+, 0) is definably isomorphic to a group-interval in V and the
isomorphism takes every I-definable set to a definable set in V.

(2) A real closed field is definable in I, with its underlying set a subinterval of
I and its ordering compatible with <.

We now return to our interval J ⊆ CS(g) ⊆ G00 and to the definable bijection
φ : Jn → U . We let ? : Jn × Jn 99K Jn be the partial function obtained as the
pullback via φ of the group operation in G. Namely, for a, b, c ∈ Jn,

a ? b = c⇔ φ(a) · φ(b) = φ(c).

Since φ and the group operation on U are definable in both G00 and R, then so
is ?. Because J is an open interval around the identity inside the one-dimensional
group CS(g) ⊆ G, the restriction to J of the group operation of G makes J into a
group-interval, and we let + denote this restriction to J . Note that the ordering
on J is definable using + and therefore definable in both G00 and in R.

Lemma 3.10. — The structure J = (J ;<,+, ?) is an o-minimal expansion of a
group-interval, not of type (1) in the sense of Fact 3.9. It is definable in both G00

and in R.

Proof. — The structure J is o-minimal since it is definable in the o-minimal
structure R and the ordered interval (J ;<) is definably isomorphic via a projection
map with an ordered interval in (R;<). We want to show that J is not of type
(1).



DEFINABILITY IN THE GROUP OF INFINITESIMALS OF A COMPACT LIE GROUP 13

To simplify notation we denote below the group CS(g) by H. Because G is a
simple group, there are infinitely many distinct conjugates of the one-dimensional
group H. More precisely, dimNG(H) < dimG and if h1, h2 ∈ G are not in the
same right-coset of NG(H) then Hh1 ∩Hh2 and hence also Jh1 ∩ Ih2 is finite. Since
dim(NG(H)) < dimG one can find infinitely many h ∈ G, arbitrarily close to e,
which belong to different right-cosets of NG(H). In fact, by Definable Choice in
o-minimal expansions of groups or group-intervals, we can find in J a definably
connected one-dimensional set C ⊆ Jn with (e, . . . , e) ∈ C, such that no two
elements of φ(C) belong to the same right-coset of NG(H).

The family {Hh∩U : h ∈ φ(C)} is a one-dimensional normal family of definably
connected curves in U , all containing e, and we want to “pull it back” to the
structure J . In order to do that we first note that by replacing J by a subinterval
J0 ⊆ J , and replacing C by a possibly smaller definably connected set, we may
assume that for every h ∈ φ(C) and every g ∈ J0, each of h, h−1g and h−1gh is
inside U . Thus, the one-dimensional normal family of definably connected curves

{φ−1(Jh0 ) : h ∈ φ(C)}
is definable in J , and all of these curves contain the point (e, . . . , e) (=φ−1(e)).

Now, if J was of type (1) in Fact 3.9, then up to a change of signature it would
be a reduct of an ordered vector space. However, it easily follows from quantifier
elimination in ordered vector spaces that in such structures there is no definable
infinite normal family of one-dimensional definably connected sets, all going through
the same point. Hence, J is not of type (1). �

By Fact 3.9, there is a J -definable real closed field K on an open interval in J
containing e. Thus K with its field structure is also G00-definable and R-definable.

3.4. Obtaining the valuation, and bi-interpetability. LetK ⊆ J be the defin-
able real closed field obtained in the previous subsection, considered as a pure field.
By [15], there is an R-definable field isomorphism θR : R → K. Let GK := GθR(K)
be the group of K-points of the K-definable (linear algebraic) group obtained by
applying θR to the parameters defining G, so θR induces an R-definable group iso-
morphism θG : G→ GK . Let G00

K := (GθR)00(K) be the corresponding infinitesimal
subgroup, thus θR restricts to an isomorphism θG�G00 : G00 → G00

K .
Denote by (R;G00) the expansion of the field R by a predicate for G00 6 G.

Lemma 3.11. — (R;G00) and (R;O) have the same definable sets.

Proof. — Since G is defined over R, it admits a chart at the identity defined over
R, that is, an R-definable homeomorphism ψ : In → U , where I ⊆ R is an open
interval around 0, and U ⊆ G is an open neighbourhood of e, and ψ((0, . . . , 0)) = e.

Then stG(ψ(x)) = ψ(st(x)), and so G00 = ψ(mn). Thus G00 is definable in
(R;O), and conversely mn, and hence m, and so also O = R \ 1

m , are definable in
(R;G00). �

Lemma 3.12. — G00
K 6 GK is G00-definable, and moreover θG �G00 : G00 → G00

K

is G00-definable.

Proof. — Let n := dim(G).
Precisely as in [16, 3.2.2], translating by an element of G00 if necessary we may

assume that the group operation is C1 for K on a neighbourhood of the identity
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according to the chart φ�Kn (where φ is the map from Lemma 3.7), and then the
adjoint representation yields an R-definable homomorphism Ad : G → GLn(K).
Since G00 defines φ and the fieldK and the conjugation maps x 7→ xg for g, x ∈ G00,
the restriction Ad �G00 : G00 ↪−→ GLn(K) is G00-definable, and is an embedding
since G has finite centre, and G00 is torsion-free.

Define η := Ad ◦θ−1
G : GK ↪−→ GLn(K). So η is R-definable. Since K is R-

definably isomorphic toR, theR-definable structure onK is just the field structure.
Thus η is also K-definable, and hence G00-definable.

So θG�G00= η−1 ◦Ad�G00 is G00-definable. �

Proof of Theorem 1.1. — By Lemma 3.12, θR provides a definition of (R;G00) in
G00 with universe K. This forms a bi-interpretation together with the tautological
interpretation of G00 in (R;G00); indeed, the composed interpretations are θR and
θG�G00 , which are R-definable and G00-definable respectively.

Combining this with Lemma 3.11 concludes the proof of Theorem 1.1. �

4. Isomorphisms of infinitesimal subgroups

Cartan [3] and van der Waerden [25] showed that any abstract group isomor-
phism between compact semisimple Lie groups is continuous. In a similar spirit,
Theorem 4.10 below shows that every abstract group isomorphism of two infinites-
imal subgroups of simple compact Lie groups is, up to field isomorphisms, given by
an algebraic map.

We preface the proof with two self-contained preliminary subsections. In outline,
the proof is as follows. We first prove in Theorem 4.2 that given R � RCVF,
any model of RCVF definable R is definably isomorphic to R. As in other cases
of the “model-theoretic Borel-Tits phenomenon”, first described for ACF in [23],
it follows that every abstract group isomorphism of the infinitesimal subgroups
is the composition of a valued field isomorphism with an RCVF-definable group
isomorphism; we give a general form of this argument in Lemma 4.8. Finally, in
Section 4.3 we deduce the final statement by seeing that any RCVF-definable group
isomorphism of the infinitesimal subgroups is induced by an algebraic isomorphism
of the Lie groups.

4.1. Definable fields in RCVF. Here, we show that there are no unexpected
definable fields in Rn for R � RCVF.

In this subsection we reserve the term ‘semialgebraic’ for R-semialgebraic sets.
Let Rv = 〈R;O〉 � RCVF. We say a point a of an Rv-definable set X over A is
generic over A if trd(a/A) is maximal for points in X(R′) for R′ an elementary
extension of R. Such an a exists if R is (ℵ0 + |A|+)-saturated. This maximal
transcendence degree is the dimension dim(X) of X, which coincides ([10, Theo-
rem 4.12]) with the largest d such that the image of X under a projection to d
co-ordinates has non-empty interior.

Fact 4.1. — (1) Let X ⊆ Rn be an Rv-definable set over A, and a ∈ X
a generic element over A. Then there exists a semialgebraic neighborhood
U ⊆ Rn of a (possibly defined over additional parameters, which may be
taken to be independent of Aa) such that U ∩X is semialgebraic.

(2) Let U ⊆ Rd be an open Rv-definable set over A, and a ∈ U generic over
A. Let F : U → R be an Rv-definable function. Then there exists a
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semialgebraic neighborhood U of a, such that F |U is semialgebraic and C1

with respect to R, meaning that all partial derivatives of F with respect to
R exist and are continuous on U .

Proof. —
(1) Permuting co-ordinates, we may assume a = (b, c) where b ∈ Rd is generic

over A and c ∈ Rn−d is in dcl(bA). Let π : Rn → Rd be the projection to
the first d co-ordinates.

By [10, Theorem 4.11], X admits a decomposition into finitely many
disjoint A-definable cells each of which is the graph of a definable function
on an open subset of some Rt.

Definable closure in Rv coincides with definable closure in R [12, The-
orem 8.1(1)]. Thus if C is the cell containing a, then C is the graph of a
semialgebraic function on a neighbourhood of b. We now claim that locally
near a, the set X is equal to C.

Suppose for a contradiction that C ′ 6= C is another cell in the decompo-
sition, and a ∈ cl(C ′), the topological closure of C ′. The cell decomposition
ofX induces a cell decomposition of π(X) ⊆ Rd, and since b is generic in Rd
over A, it must belong to the interior of π(C). It follows that π(C ′) = π(C),
and so there exists c′ 6= c such that (b, c′) ∈ C ′.

By the inductive definition of a cell and the genericity of a in X, also C ′
is the graph of a semialgebraic function on a neighbourhood of b, thus in
particular is locally closed, contradicting a ∈ cl(C ′).

(2) By (1), the graph of F is a semialgebraic set in a neighborhood of (a, f(a)),
and since a is generic in its domain, the function F is C1 in a neighborhood
of a. �

Theorem 4.2. — Let Rv = 〈R;O〉 � RCVF.
(a) If F ⊆ Rn is a definable field in Rv then it is Rv-definably isomorphic to

either R or its algebraic closure R(
√
−1).

(b) If F ⊆ Rn is a definable non-trivially valued field in Rv then it is Rv-
definably isomorphic to either Rv or its algebraic closure Rv(

√
−1).

Proof. — Passing to an elementary extension as necessary, we may assume that
R is (ℵ0 + |A|+)-saturated for any parameter set A we consider.

We first prove (a). Let d = dimF . We first show that the additive group of F
can be endowed with the structure of a definable C1 atlas (not necessarily finite).
By that we mean: a definable family of subsets of F , {Ut : t ∈ T}, and a definable
family of bijections ft : Ut → Vt, where each Vt is an open subset of Rd, such
that for every s, t ∈ T , the set ft(Ut ∩ Us) is open in Vt and the transition maps
σt,s : ft(Ut ∩ Us) → fs(Ut ∩ Us) are C1 with respect to R. Moreover, the group
operation and additive inverse are C1-maps when read through the charts.

To see this we follow the strategy of the paper of Marikova, [11]. Without loss
of generality F is definable over ∅. We fix g ∈ F generic and an open neighborhood
U 3 g as in Fact 4.1 (1). By the cell decomposition in real closed fields, we may
assume that U ∩ F is a cell, so definably homeomorphic to some open subset V of
Rd. By replacing U ∩ F with V we may assume that U is an open subset of Rd,
and g is generic in F over the parameters defining U .
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Claim 4.3. — The map (x, y, z) 7→ x − y + z is a C1-map (as a map from U3

into U) in some neighborhood of (g, g, g).

Proof. — The proof is identical to [11, Lemma 2.10], with Fact 4.1 (2) above
replacing Lemma 2.8 there. �

Thus, there exists U0 3 g, such that the map (x, y, z) 7→ x− y + z is a C1 map
from U3

0 into U . We now consider the definable cover of F :
U = {h+ U0 : h ∈ F},

(with + the F -addition) and the associated family of chart maps fh : h+U0 → U0,
fh(x) = x − h. Using Claim 4.3, it is not hard to see that U endows 〈F,+〉 with
a definable C1-atlas; indeed, if h + U0 ∩ h′ + U0 6= ∅, say h + u0 = h′ + u′0, then
h−h′ = u′0− u0, so σh,h′(u′′0) = h+ u′′0 −h′ = u′′0 − u0 + u′0. Similarly, the function
+ is a C1-map from F 2 into F (where F 2 is endowed with the product atlas), and
x 7→ −x is a C1-map as well. Indeed, in [11] Marikova proves in exactly the same
way that the same U endows the group with a topological group structure (using
[11, Lemma 2.10] in place of Claim 4.3).

By Fact 4.1 (2), every definable function from F to F is C1 in a neighborhood
of generic point of F . Thus, just as in [11, Lemma 2.13], we have:

Fact 4.4. — If α : F → F is a definable endomorphism of 〈F,+〉 then α is a
C1-map.

For every c ∈ F , we consider the map λc : F → F , defined by λc(x) = cx
(multiplication in F ). By fact 4.4 each λc is a C1-map and we consider its Jacobian
matrix at 0, with respect to R, denoted by J0(λc). This is a matrix in Md(R), and
the map c 7→ J0(λc) is Rv-definable.

As was discussed in [15, Lemma 4.3], it follows from the chain rule that the map
c 7→ J0(λc) is a ring homomorphism into Md(R) (note that we do not use here
the uniqueness of solutions of ODE as in [15], thus we a-priori only obtain a ring
homomorphism). However, since F is a field the map is injective.

To summarize, we mapped F isomorphically and definably onto an Rv-definable
field, call it F1, of matrices inside Md(R). Notice that now the field operations are
just the usual matrix operations, 1F1 is the identity matrix, so in particular, all
non-zero elements of F1 are invertible matrices in Md(R). Our next goal is to show
that F1 is semialgebraic.

By Fact 4.1 (2), there exists some non-empty relatively open subset of F1 which
is semialgebraic. By translating it to 0 (using now the semialgebraic F1-addition),
we find such a neighborhood, call it W ⊆ F1, of the 0-matrix. But now, given any
a ∈ F , by multiplying a by an invertible matrix b ∈ W sufficiently close to 0, we
obtain ba ∈ W . Thus, F1 = {a−1b : a, b ∈ W}. Because W is semialgebraic so is
F1.

Thus, we showed that F is definably isomorphic inRv to a semialgebraic field F1.
We now apply Theorem [15, Theorem 1.1] and conclude that F1 is semialgebraically
isomorphic to R or to R(

√
−1).

Finally, we address (b). This follows immediately from (a) once we observe that
O is the only definable valuation ring in Rv. So suppose O′ is another. By weak
o-minimality, O′ is a finite union of convex sets, and then since it is a subring with
unity it is easy to see that O′ is convex. Thus either O ⊆ O′ or O′ ⊆ O. Without
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loss of generality, O is the standard valuation ring ∪n∈N[−n, n], so O properly
contains no non-trivial convex valuation ring. Thus O ⊆ O′. But then if v : R→ Γ
is the valuation induced by O, then the image of the units of O′ is a definable
subgroup v((O′)∗) 6 Γ. But Γ is a pure divisible ordered abelian group, and so has
no non-trivial definable subgroup. Hence v((O′)∗) = {0}, and hence O′ = O. �

Remark 4.5. — The techniques we applied here will not readily adapt to handle
imaginaries. In the case of algebraically closed valued fields, a result of [8] is that
the only interpretable fields, up to definable isomorphism, are the valued field and
its residue field. It would be natural to expect that, correspondingly, the only
interpretable fields in RCVF up to definable isomorphism are the valued field, its
residue field, and their algebraic closures.

4.2. Interpretations and general nonsense. We address the “Borel-Tits phe-
nomenon” associated with bi-interpretations which require parameters. We spell
out an abstract form of the argument given by Poizat [23] in the case of algebraically
closed fields. The ideas in this subsection are well-known. For convenience of ex-
position, we first give a name to the following key property.

Definition 4.6. — Say a theory T is self-recollecting if any B′ |= T inter-
preted in any B |= T is B-definably isomorphic to B.

Say T is self-recollecting for definitions if this holds for interpretations which
are definitions (where recall a definition is an interpretation which doesn’t involve
non-trivial quotients).

Examples 4.7. — ACF is self-recollecting by [23], RCF is self-recollecting by [13],
and Th(Qp) is self-recollecting for definitions by [21]. It follows directly from the
characterisation of interpretable fields in [8] that the theory of non-trivially valued
algebraically closed fields ACVF is self-recollecting.

Theorem 4.2(b) proves that RCVF is self-recollecting for definitions, but we do
not settle the question of whether it is self-recollecting.

We use the notation α : A // B to denote an interpretation of A in B, which
recall we consider to be a map from A to some definable quotient in B. Note that
any isomorphism is in particular an interpretation (and even a definition). We
denote composition of interpretations by concatenation.

Lemma 4.8. — Suppose Ai is a structure interpreted in a structure Bi for i =
1, 2, and the interpretation of A1 in B1 can be completed to a bi-interpretation.
Suppose further that Th(B1) = Th(B2), and TB := Th(B1) is self-recollecting.

Suppose σ : A1 → A2 is an isomorphism of structures.
Then there exist an isomorphism σ′ : B1

∼=−→ B2 and a B2-definable isomorphism
θ : σ′(A1)→ A2 such that σ = θ(σ′�A1).

If TB is only self-recollecting for definitions but the given interpretations are
definitions, then the same result holds.

Proof. — Let (f, g) be the bi-interpretation of A1 with B1, and α : A2 // B2
the interpretation.
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A1

f

��

σ // A2

α

��

B1

g

OO

B2

For interpretations β, γ : A // B , we write β ∼ γ if γβ−1 : β(A)→ γ(A) is
a B-definable isomorphism between the two copies of A in B.4

Now ασg is an interpretation of B1 in B2, and thus by self-recollecting there is
a B2-definable isomorphism τ : (ασg)(B1)→ B2. Let σ′ := τασg : B1 → B2. Then
ασg ∼ σ′, and so ασgf ∼ σ′f .

Now gf is definable, and it follows that ασ ∼ ασgf . Thus ασ ∼ σ′f . Then
α′ := σ′fσ−1 ∼ α.

So θ := αα′−1 is a B2-definable isomorphism, and θσ′f = ασ. Since we view A1
and A2 in B2 via f and α, this is as desired.

The proof in the case of definitions is identical. �

4.3. Characterisation of isomorphisms of infinitesimal subgroups.

Lemma 4.9. — If G,H are compact connected centreless linear Lie groups, and
R � R is a proper real closed field extension of R, and θ : G00(R)

∼=−→ H00(R) is
an (R;O)-definable group isomorphism, then θ extends to an R-definable algebraic
isomorphism G(R)

∼=−→ H(R).

Proof. — We may assume R is ℵ0-saturated. Let Γ ⊆ (G × H)(R) be the R-
Zariski closure of the graph Γθ of θ. Since Γθ is an abstract subgroup, Γ is (the
set of R-points of) an algebraic subgroup over R. The image of the projection
πG : Γ→ G(R) contains G00(R), which is Zariski-dense in G since G is connected,
and thus πG(Γ) = G(R).

Let k 6 R be a finitely generated field over which θ is defined. Since Γθ is
Zariski dense in Γ, there exists (g, θ(g)) ∈ Γθ which is algebraically generic in Γ
over k (i.e. of maximal transcendence degree); indeed, the Zariski density implies
that Γθ is contained in no subvariety of Γ over k of lesser dimension, and so such
a generic exists by ℵ0-saturation of R. But definable closure in RCVF agrees with
field-theoretic algebraic closure [12, Theorem 8.1(1)], so trd(θ(g)/k(g)) = 0 and
thus π−1

G (g) is finite. Then also ker(πG) is finite, and hence central. So since G is
centreless, πG is an isomorphism.

Similarly, πH is an isomorphism. So θ extends to the algebraic isomorphism
πH ◦ π−1

G . �

Theorem 4.10. — Suppose G1 and G2 are compact simple centreless linear Lie
groups, and Ri � R is a proper real closed field extension of R for i = 1, 2, and
σ : G00

1 (R1)
∼=−→ G00

2 (R2) is an abstract group isomorphism.
Then there exist a valued field isomorphism σ′ : (R1,O1)

∼=−→ (R2,O2) and an
R2-definable isomorphism θ : G3(R2)

∼=−→ G2(R2), where G3 = σ′(G1), such that
σ = θ�G00

3
◦σ′�G00

1
.

In particular, σ extends to an abstract group isomorphism G1(R1)
∼=−→ G2(R2).

4Interpretations satisfying this condition are sometimes called homotopic.
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Proof. — By Theorem 1.1, Theorem 4.2(b), and Lemma 4.8, there exist an
isomorphism σ′ : (R1,O1)

∼=−→ (R2,O2) and an (R2,O2)-definable isomorphism
θ′ : σ′(G00

1 (R1))
∼=−→ G00

2 (R2) such that σ = θ′ ◦ σ′�G00
1
.

Then σ′(G00
1 (R1)) = G00

3 (R2). Thus by Lemma 4.9, θ′ extends to an R2-
definable algebraic isomorphism θ : G3(R2)

∼=−→ G2(R2), as required. �

Remark 4.11. — We have stated the results of this section in terms of G00, but
it is easy to see that they apply equally to other infinitesimal subgroups as in
Remark 1.4.

5. Infinitesimal subgroups of definably compact groups

In this section, we prove Theorem 1.5 by combining Theorem 1.1 with results in
the literature on definably compact groups and G00.

We work in a sufficiently saturated o-minimal expansionM of a real closed field,
say κ-saturated where κ is sufficiently large. (In fact κ = 2ℵ0 suffices for the
arguments below; moreover, it follows after the fact that Theorem 1.5 holds with
only κ = ℵ0, but we do not spell this out). For G a definable group, let G00 be the
smallest

∧
-definable (in the sense of M) subgroup of bounded index. Here, a

∧
-

definable set is a set defined by an infinite conjunction of formulas over a common
parameter set A ⊆M with |A| < κ.

Lemma 5.1. — Let G and H be definably compact definable groups.
(i) If θ : G� H is a definable surjective homomorphism, then θ(G00) = H00.
(ii) If H is a definable subgroup of G, then H00 = G00 ∩H.
(iii) G00 is the unique

∧
-definable subgroup of bounded index which is divisible

and torsion-free.
(iv) (G×H)00 = G00 ×H00

Proof. —
(i) θ−1(H00) resp. θ(G00) is a

∧
-definable bounded index subgroup of G resp.

H.
(ii) [1, Theorem 4.4].
(iii) [1, Corollary 4.7].
(iv) This follows directly from (iii). �

Say a group (G; ∗) is the definable internal direct product of its subgroups
H1, . . . ,Hn if each Hi is (G; ∗)-definable and (h1, h2, . . . , hn) 7→ h1h2 . . . hn is an
isomorphism

∏
iHi → G. The following lemma is an immediate consequence of the

definition.

Lemma 5.2. — If a group (G; ∗) is the definable internal direct product of sub-
groups H1, . . . ,Hn, then (G; ∗) is bi-interpretable with the disjoint union of the
(Hi; ∗).

The following Fact extracts from the literature the key results we will need on
the structure of definably connected definably compact groups. A definable group
is definably simple if it contains no proper non-trivial normal definable subgroup.
First recall that if G ⊆Mn is a definable group in an o-minimal structure M then,
by [20], it admits a topology with a definable basis which makes it into a topological
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group. Moreover, this is the unique topology which agrees with the ambient Mn-
topology on a definable subset of G whose complement has smaller dimension.
All topological notions below (e.g. definable compactness) are with respect to this
topology.

Fact 5.3. — Let G be a definably connected definably compact definable group.
Let G′ := (G,G) be the derived subgroup of G. Then:

(i) G′ and Z(G) are definable and definably compact.
(ii) G is the product of its subgroups G′ and Z(G)0, and Z(G)0 ∩G′ is finite.
(iii) Z(G′) is finite, andG′/Z(G′) is the direct product of finitely many definably

simple definably compact definable subgroups Hi.
(iv) If G is definably simple, then there exists a compact real linear Lie group

H and a real closed field R extending R such that (G00; ∗) is isomorphic to
(H00; ∗), where H00 := H00(R) is the infinitesimal neighbourhood of the
identity as defined in §1.

Proof. —
(i) By [7, Corollary 6.4(i)], G′ is definable. Since definable subgroups are

closed, both groups are definably compact.
(ii) This is [7, Corollary 6.4(ii)].
(iii) This is immediate from [7, Corollary 6.4(i)] and [7, Fact 1.2(3)] (based on

[16, Theorem 4.1]).
(iv) This follows from the proof of [22, Proposition 3.6]. Indeed, as discussed

there (see also [7, Fact 1.2(1)]), G is definably isomorphic to H(R) for R a
definable real closed field and H a semialgebraic linear group over a copy
of the real field within R. Since G is definably compact, H is compact
(see [19, Theorem 2.1]). Now Case II in the proof of [22, Proposition 3.6]
shows that the smallest M -

∧
-definable subgroup H00(R) of H is precisely

the infinitesimal neighbourhood st−1(e), as required. �

We now repeat the statement of Theorem 1.5, and prove it.

Theorem (1.5). — Let (G; ∗) be an infinite definably compact group definable
in a sufficiently saturated o-minimal expansion M of a field. Then (G00(M); ∗) is
bi-interpretable with the disjoint union of a (possibly trivial) divisible torsion-free
abelian group and finitely many (possibly zero) real closed convexly valued fields.

Proof. — It follows from Lemma 5.1(ii) that G00 = (G0)00 where G0 is the
smallest definable subgroup of finite index, so we may assume G = G0, and hence
(by [20, Lemma 2.12]) that G is definably connected.

Let G′ := (G,G) be the derived subgroup of G, and let (G00)′ := (G00, G00) be
the derived subgroup of G00.

By Fact 5.3(i), G′ and Z(G) are definable and definably compact, and so Lemma
5.1 applies to them.

Let H := G′/Z(G′). Let Hi be as in Fact 5.3(iii), so H =
∏
iHi.

Claim 5.4. — (i) (G′)00 ∼= H00 as groups.
(ii) H00 = (

∏
iHi)00 is the definable internal direct product of the H00

i .

Proof. —



DEFINABILITY IN THE GROUP OF INFINITESIMALS OF A COMPACT LIE GROUP 21

(i) (G′)00 is torsion-free by Lemma 5.1(iii), and Z(G′) is finite by Fact 5.3(iii),
thus Z(G′) ∩ (G′)00 = {e}. So by Lemma 5.1(i), the quotient map induces
such an isomorphism.

(ii) Given Lemma 5.1(iv), we need only show that H00
i is (H00; ∗)-definable.

By Lemma 2.2 we have CH(H00
i ) = CH(Hi), and since each Hi is cen-

treless, Hi =
⋂
j 6=i CH(Hj), whence H00

i =
⋂
j 6=i CH00(H00

j ) (using Lemma
5.1(iv) again). �

Claim 5.5. — (i) G00 = Z(G)00(G′)00.
(ii) (G′)00 = (G00)′.
(iii) Z(G)00 = Z(G00).
(iv) G00 is the definable internal direct product of Z(G)00 and (G′)00.

Proof. —
(i) Since Z(G)00 is central and each of Z(G)00 and (G′)00 is divisible and

torsion-free, also L := Z(G)00(G′)00 is divisible and torsion-free. Now
G = Z(G)G′ by Fact 5.3(ii), so any coset of L can be written as zaL =
(zZ(G)00)(a(G′)00) with z ∈ Z(G) and a ∈ G′, thus the index of L in
G is bounded by the product of the indices of Z(G)00 in Z(G) and of
(G′)00 in G′. So L is a bounded index subgroup. Thus we conclude by
Lemma 5.1(iii).

(ii) By Fact 5.3(iv) and [5], H00
i = (H00

i , H
00
i )1 for each i. So by Claim 5.4,

(G′)00 = ((G′)00, (G′)00)1. Also G00 ∩ G′ = (G′)00 by Lemma 5.1(ii), and
so (G00, G00)1 = (G′)00, and then since this is a subgroup we also have
(G00)′ = (G00, G00)1.

(iii) By (i) it suffices to see that Z((G′)00) = {e}. But indeed, as in Lemma 2.2,
Z((G′)00) 6 CG′((G′)00 = CG′(G′) = Z(G′) = {e}. Alternatively, one can
see this way that each Z(H00

i ) = {e}, and apply Claim 5.4(ii).
(iv) By Fact 5.3(ii), Z(G)0 ∩ G′ is finite. Hence also Z(G)00 ∩ (G′)00 is finite,

and thus by Lemma 5.1(iii) it is trivial. Combining this with the previous
items of this Claim, we conclude. �

Now each H00
i is bi-interpretable with a model of RCVF by Fact 5.3(iv) and

Theorem 1.1, and Z(G)00 is (by Lemma 5.1(iii)) a divisible torsion free abelian
group, so we conclude by Claim 5.5(iv), Claim 5.4, and Lemma 5.2. �

Remark 5.6. — Since M is an o-minimal expansion of a field, any M -definable
real closed field is M -definably isomorphic to M as a field. Thus the valued fields
Ri interpreted in the groups H00

i in the above proof are M -definably isomorphic
as fields. However, the disjoint union structure clearly does not define any such
isomorphisms between the Ri, and hence nor does the group (G00; ∗).
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have asked about the abstract group structure of the infinitesimal subgroup of a
compact simple Lie group. This article can be seen as a partial answer to their
questions. Finally, we would like to mention the following question of Itay Kaplan
which initiated the discussions which led to our results (even though our results
have in the end almost nothing to do with the question): is any

∧
-definable field

in an NIP theory itself NIP as a pure field?
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