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A POSTERIORI ERROR ESTIMATES FOR A FULLY DISCRETE
APPROXIMATION OF SOBOLEV EQUATIONS

SERGE NICAISE AND FATIHA BEKKOUCHE

Abstract. The paper presents an a posteriori error estimator for a (piecewise linear)
conforming finite element approximation of some (linear) Sobolev equations in Rd, d = 2
or 3, using implicit Euler’s scheme. For this discretization, we derive a residual indicator,
which uses a spatial residual indicator based on the jumps of conormal derivatives of the
approximations and a time residual indicator based on the jump (in an appropriated norm)
of the successive solutions at each time step. Lower and upper bounds are obtained with
minimal assumptions on the meshes. Numerical experiments that confirm and illustrate the
theoretical results are given.

1. Introduction

This paper deals with the a posteriori analysis of linear Sobolev equations of
type

L1ut + L2u = f in Ω× (0, T ),
where L1, L2 are second order differential operators, approximated using implicit
Euler’s scheme in time and a (piecewise linear) conforming finite element approx-
imation in space. Such problems are interesting not only because they are gener-
alizations of a standard parabolic problem but also because they arise naturally
in a large variety of applications (model of fluid flow in fissured porous media [2],
two-phase flow in porous media with dynamical capillary pressure [12, 14], heat
conduction in two-temperature systems [8, 25] and shear in second order fluids
[11, 24]).

Several approaches have been introduced to define error estimators for parabolic
problems (like the heat equation, corresponding to the case where L1 is reduced to
the identity operator), let us quote [4, 5, 6, 7, 15, 18, 21, 22, 27, 28, 29]. To be able
to extend these techniques to Sobolev equations, we need to be able to manage the
replacement of the identity operator by a second order elliptic one. To the best of
our knowledge such an approach has not been considered. Indeed we only found
two papers related to this topic. The first one [17] highlights a superconvergence
phenomena on cartesian grids whose estimates can be bounded by the norms of
known data so that some useful a posteriori error estimates can be derived, while
the second one [26] obtains some error estimates by solving local nonlinear or linear
pseudo-parabolic equations for corrections to the solution.

The schedule of the paper is the following one: Section 2 recalls the continuous
problem and its discretizations. In Section 3 we introduce some notations and give
some useful properties. Section 4 is devoted to the a posteriori analysis of the
time discretization. The efficiency and reliability of the spatial error estimator are
established in Section 5. The a posteriori analysis of the full discrete problem is
considered in Section 6, where we show the efficiency and reliability of the sum of
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the spatial and time error estimators. Finally Section 7 is devoted to numerical
tests which confirm our theoretical analysis.

Let us finish this section with some notations used in the remainder of the paper.
For a bounded domain D, the usual norm and semi-norm of Hs(D) (s > 0) are
denoted by ‖ · ‖s,D and | · |s,D, respectively. For s = 0, we will drop the index
s. Furthermore, the inner product in L2(Ω) will be denoted by (·, ·). Finally, the
notation A . B (resp. A & B) means the existence of a positive constant C1 (resp.
C2), which is independent of A and B as well as the discretization parameters h
and τp such that A 6 C1B (resp. A > C2B). The notation A ∼ B means that
A . B and A & B hold simultaneously.

2. The continuous, time semi-discrete and full discrete problems

Let Ω be an open bounded of Rd, d = 2 or 3, with a polygonal (d = 2) or
polyhedral (d = 3) boundary Γ. Let T be a positive and fixed real number.

For i = 1, 2, let Li be a second order elliptic operator in the form

Li(x,Dx)u = −
d∑

k,`=1
∂k(a(i)

k,`(x)∂`u) +
d∑
k=1

b
(i)
k (x)∂ku+ c(i)(x)u,

where a(i)
k,` = a

(i)
`,k, b

(i)
k , c(i) ∈ L∞(Ω) and introduce the bilinear forms on H1

0 (Ω)

ai(u, v) =
∫

Ω

 d∑
k,`=1

a
(i)
k,`(x)∂`u ∂kv +

d∑
k=1

b
(i)
k (x)∂ku v + c(i)(x)u v

 dx.

We suppose that a1 and a2 are symmetric, that a2 is non negative, i.e.,

a2(u, u) > 0 for all u ∈ H1
0 (Ω), (2.1)

and that a1 is coercive in H1
0 (Ω), namely there exists α > 0 such that

a1(u, u) > α‖u‖21,Ω for all u ∈ H1
0 (Ω). (2.2)

In this setting, we consider the following Sobolev equation: Let u be the solution
of 

L1ut + L2u = f in Ω× (0, T ),

u(·, t) = 0 on Γ× (0, T ),

u(·, 0) = u0 in Ω,

(2.3)

where ut means the time derivative of u. The datum f is supposed to satisfy
f ∈ L2(0, T ;H−1(Ω)) and the initial value u0 ∈ H1

0 (Ω). Under these assumptions,
problem (2.3) or equivalently

a1(ut(t), v) + a2(u(t), v) = (f(t), v) for all v ∈ H1
0 (Ω) and a.e. t ∈ (0, T ) (2.4)

has a unique (weak) solution in C([0, T ];H1
0 (Ω)), see [3]. This system is a linear

Sobolev equation in Ω, where some a priori error analyses were performed in [1, 13,
17, 19, 20, 23] in some particular situations or with a kind of Neumann boundary
conditions. Some a posteriori error analyses can be found in [17, 26].
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Without loss of generality, we can assume that a2 is also coercive in H1
0 (Ω),

indeed by the change of unknown

ũ(·, t) = e−λtu(·, t),

for a positive real number λ, we see that (2.4) is equivalent to

a1(ũt(t), v) + ã2(ũ(t), v) = (e−λtf(t), v) for all v ∈ H1
0 (Ω) and a.e. t ∈ (0, T ),

(2.5)
where

ã2(u, v) = a2(u, v) + λa1(u, v) for all u, v ∈ H1
0 (Ω)

is clearly coercive in H1
0 (Ω) due to (2.1)-(2.2). Hence from now on we also suppose

that a2 is coercive and denote by

‖u‖ai
=
√
ai(u, u), for all u ∈ H1

0 (Ω),

two equivalent norms of H1
0 (Ω). We further denote by ‖u‖−1 the norm in H−1(Ω)

obtained by using the duality with the second norm of H1
0 (Ω), in other words,

‖g‖−1 = sup
v∈H1

0 (Ω),v 6=0

|〈g; v〉|
‖v‖a2

, for all g ∈ H−1(Ω),

where 〈·; ·〉 means the duality pairing between H−1(Ω) and H1
0 (Ω).

2.1. Time discretization using implicit Euler’s scheme. We now suppose
that f ∈ C([0, T ];H−1(Ω)). We further introduce a partition of [0, T ] into subin-
tervals [tp−1, tp], 1 6 p 6 N such that 0 = t0 < t1 < · · · < tN = T . Denote by
τp = tp− tp−1 the length of [tp−1, tp] and by τ = maxp τp the global time mesh size.

The semi-discrete approximation of the continuous problem (2.3) by an implicit
Euler scheme consists in finding a sequence (up)06p6N solution of

L1

(
up − up−1

τp

)
+ L2u

p = fp in Ω, 1 6 p 6 N,

up = 0 on Γ, 1 6 p 6 N,

u0 = u0 in Ω,

(2.6)

with fp = f(·, tp). This problem admits a unique weak solution up ∈ H1
0 (Ω), whose

variational formulation is

a1(u
p − up−1

τp
, v) + a2(up, v) =

∫
Ω
fpv, for all v ∈ H1

0 (Ω), (2.7)

or equivalently

a1(up, v) + τpa2(up, v) = a1(up−1, v) + τp

∫
Ω
fpv, for all v ∈ H1

0 (Ω). (2.8)

The unique solvability of the variational formulation (2.8) is clearly a direct conse-
quence of the Lax-Milgram lemma.
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Remark 2.1. — An a priori error analysis of the explicit Euler scheme

a1(u
p − up−1

τp
, v) + a2(up−1, v) =

∫
Ω
fp−1v, for all v ∈ H1

0 (Ω), (2.9)

was considered in [3] since it is more appropriate for Sobolev equations. The a
posteriori error analysis that we perform below for system (2.8) is immediately
applicable to (2.9) since it can be re-written as

a1,p(
up − up−1

τp
, v) + a2(up, v) =

∫
Ω
fp−1v, for all v ∈ H1

0 (Ω),

where
a1,p(u, v) = a1(u, v)− τpa2(u, v),

that is coercive uniformly in p, if τp is small enough.

2.2. Full discretization. Problem (2.8) is now discretized by a conforming finite
element method. For that purpose, for any p = 0, 1, · · · , N , let us fix a conforming
mesh Tph of Ω which is regular in Ciarlet’s sense [9, p. 124]. All elements are
triangles or tetrahedra and will be denoted by K. For an element K ∈ Tph, we
recall that hK is the diameter of K and that hp = max

K∈Tph

hK . The set of all

edges/faces of Tph is denoted by Eph. Let E int
ph be the set of interior edges/faces of

Tph and EK be the set of the edges/faces of the element K. Finally for an edge/face
E ∈ EK ∩ EL we denote by hE = d

2 ( |K||E| + |L|
|E| ), its mean height.

Introduce the conforming finite element space:
Vph = {v ∈ H1

0 (Ω) : v|K ∈ P1, for all K ∈ Tph}.
The fully discrete approximation of problem (2.3) using Euler’s scheme and the

conforming finite element is then given by: Given an approximation u0
h ∈ V0h of

u0, find uph ∈ Vph, 1 6 p 6 N , such that

a1(
uph − u

p−1
h

τp
, vh) + a2(uph, vh) =

∫
Ω
fpvh, for all vh ∈ Vph, (2.10)

or equivalently

a1(uph, vh) + τpa2(uph, vh) = a1(up−1
h , vh) + τp

∫
Ω
fpvh, for all vh ∈ Vph. (2.11)

Definition 2.2. — Let up be a solution of (2.8) and uph a solution of (2.11),
then we denote the spatial error by

ep = up − uph.

3. Some useful notations and properties

For a boundary edge/face E we denote the outward normal vector by nE . Given
an interior edge/face E, we choose an arbitrary normal direction nE and denote by
Kin and Kext the two elements sharing this edge/face. Without any restriction, we
may suppose here that nE is pointing to Kext like in Figure 3.1.

The jump of a function v across an edge/face E at a point x is defined by[[
v(x)

]]
E

=
{

lim
α→0+

(v(x+ αnE)− v(x− αnE) if E ∈ E int
ph ,

v(x) if E ∈ Eph \ E int
ph .
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Figure 3.1. Two elements sharing the edge E

Note that the sign of
[[
v(x)

]]
E
depends on the orientation of nE . However, quantity

like a gradient jump
[[
∇v · nE

]]
E

is independent of this orientation.
In the sequel we will use local patches: for an element K we define ωK as the

union of all elements having a common edge/face with K, for an edge/face E, let
ωE be the union of both elements having E as an edge/face and finally for a node
x, let ωx be the union of all elements having x as a node. Similarly denote by ω̃K
(resp. ω̃E) the union of all triangles sharing a node with K (resp. E).

Recall that the Clément interpolation operator is defined as follows: Denote by
Nph the set of nodes of the triangulation Tph and by N int

ph the set of interior nodes
of the triangulation Tph. For each node x ∈ N int

ph denote further by λx the standard
hat function associated with x, namely λx ∈ Vph and satifies

λx(y) = δx,y, for all y ∈ N int
ph .

For any w ∈ L2(Ω), we define I0
Cw by

I0
Cw =

∑
x∈N int

ph

|ωx|−1
(∫

ωx

w
)
λx. (3.1)

Note that I0
Cw belongs to Vph. Moreover this operator has the following properties

[10]:

Lemma 3.1. — For all w ∈ H1
0 (Ω), we have

‖w − I0
Cw‖K . hK‖∇w‖ω̃K

, for all K ∈ Tph, (3.2)

‖w − I0
Cw‖E . h

1/2
E ‖∇w‖ω̃E

, for all E ∈ E int
ph , (3.3)

‖∇I0
Cw‖K . ‖∇w‖ω̃K

, for all K ∈ Tph. (3.4)

If K ∈ Tph, then the element residual is defined on K by

RpK =
(
f(·, tp)− L1

(uph − up−1
h

τp

)
− L2u

p
h

)
|K
,

while if E ∈ E int
ph , then the edge/face residual is

JpE,n =
[[(
A1∇

(
up

h
−up−1

h

τp

)
+A2∇uph

)
· nE

]]
E
,

where for i = 1 or 2, Ai is the d× d symmetric matrix given by

Ai = (a(i)
k,`)16k,`6d.

Now we prove a property satisfied by the spatial error ep that we will use in the
proof of the spatial error bounds.
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Lemma 3.2 (Galerkin orthogonality). — The error ep satisfies the Galerkin or-
thogonality relation

a1(e
p − ep−1

τp
, vh) + a2(ep, vh) = 0, for all vh ∈ Vph. (3.5)

Proof. — It suffices to subtract (2.7) with v = vh ∈ Vph to the identity (2.10). �

Lemma 3.3. — The error ep satisfies

a1(e
p − ep−1

τp
, v) + a2(ep, v) =

∑
K∈Tph

∫
K

RpKv +
∑

E∈Eint
ph

∫
E

JpE,nv, for all v ∈ H1
0 (Ω).

(3.6)

Proof. — We first observe that

a1(e
p − ep−1

τp
, v) + a2(ep, v) = a1(u

p − up−1

τp
, v) + a2(up, v)

−

(
a1(

uph − u
p−1
h

τp
, v) + a2(uph, v)

)
.

We transform the first term on the right-hand side using (2.7) and the second one
by elementwise integration by parts, reminding that

ai(u, v) =
∑

K∈Tph

∫
K

(
(Ai∇u · ∇v +

d∑
k=1

b
(i)
k ∂kuv + c(i)uv

)
.

This leads to the conclusion. �

The above lemmas allow us to prove the following lemma.

Lemma 3.4. — The following identity holds

a1(ep, ep) + τpa2(ep, ep) = a1(ep−1, ep) + τp
∑

K∈Tph

∫
K

RpK(ep − I0
Ce

p)

+ τp
∑

E∈Eint
ph

∫
E

JpE,n(ep − I0
Ce

p). (3.7)

Proof. — We write
a2(ep, ep) = a2(ep, ep − I0

Ce
p) + a2(ep, I0

Ce
p),

then we transform the first term using (3.6) with v = ep − I0
Ce

p and the second
term using the Galerkin orthogonality relation (3.5) with vh = I0

Ce
p. �

4. A posteriori analysis of the time discretization

Inspired from [4, 6, 16, 18, 21], that considered the heat equation, we define the
time error indicator by

ηpt = τ1/2
p ‖u

p
h − u

p−1
h ‖a2 , 1 6 p 6 N. (4.1)

The only difference with the above papers lies on the chosen norm of uph − u
p−1
h .

For shortness we introduce the following notation: Denote by πτf the step func-
tion which is constant and equal to f(tp) on each interval (tp−1, tp), 1 6 p 6 N . For
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a sequence vp ∈ H1
0 (Ω), 0 6 p 6 N , we denote by vτ its “Lagrange" interpolant,

which is affine on each interval [tp−1, tp], 1 6 p 6 N , and equal to vp at tp, i.e.,
defined by,

vτ (t) = tp − t
τp

vp−1 + t− tp−1

τp
vp, for all t ∈ [tp−1, tp], 1 6 p 6 N.

Denote finally eτ = u− uτ , the time discretization error.
As

∂tuτ = up − up−1

τp
on (tp−1, tp),

the semi-discrete equation (2.7) is equivalent to
a1(∂tuτ (t), v) + a2(up, v) = (fp, v), for all v ∈ H1

0 (Ω) and all t ∈ (tp−1, tp). (4.2)
Taking the difference with (2.4), we derive the residual equation

a1(∂teτ (t), v) + a2(eτ (t), v) = ((f − πτf)(t), v) + a2((up − uτ )(t), v), (4.3)
for all v ∈ H1

0 (Ω) and a.e. t ∈ (tp−1, tp).
This identity allows us to prove the next error bound.
Theorem 4.1 (Time upper error bound). — The next estimate holds

‖eτ (tn)‖2a1
+
∫ tn

0
‖eτ (s)‖2a2

ds . (4.4)
n∑
p=1

(ηpt )2 +
∫ tn

0
‖(uτ − uhτ )(s)‖2a2

ds+ ‖f − πτf‖2L2(0,tn;H−1(Ω)).

Proof. — The residual equation (4.3) with v = eτ (t) yields
a1(∂teτ (t), eτ (t)) + a2(eτ (t), eτ (t)) = ((f − πτf)(t), eτ (t)) + a2((up − uτ )(t), eτ (t)),
for a.e. t ∈ (tp−1, tp). As a1 is symmetric, we have

a1(∂teτ (t), eτ (t)) = 1
2∂ta1(eτ (t), eτ (t)),

hence integrating the above identity in t ∈ (tp−1, tp), one gets
1
2a1(eτ (tp), eτ (tp))−

1
2a1(eτ (tp−1), eτ (tp−1)) +

∫ tp

tp−1

a2(eτ (t), eτ (t))

=
∫ tp

tp−1

((f − πτf)(t), eτ (t)) dt+
∫ tp

tp−1

a2((up − uτ )(t), eτ (t)) dt.

Using Young’s inequality, one obtains
1
2a1(eτ (tp), eτ (tp))−

1
2a1(eτ (tp−1), eτ (tp−1)) + 1

2

∫ tp

tp−1

a2(eτ (t), eτ (t)) (4.5)

6
∫ tp

tp−1

‖(f − πτf)(t)‖2−1 dt+
∫ tp

tp−1

‖(up − uτ )(t)‖2a2
dt.

We now estimate the second term of this right-hand side. First by the definition
of uτ we clearly have∫ tp

tp−1

‖(up − uτ )(t)‖2a2
dt = τp

3 ‖u
p − up−1‖2a2

. (4.6)
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Secondly, using the triangular inequality, we simply write

τ1/2
p ‖up − up−1‖a2 6 η

p
t + τ1/2

p ‖up − u
p
h‖a2 + τ1/2

p ‖u
p−1
h − up−1‖a2 . (4.7)

Let us now show that

τp‖up − uph‖
2
a2

+ τp‖up−1 − up−1
h ‖2a2

6 6
∫ tp

tp−1

‖(uτ − uhτ )(t)‖2a2
dt. (4.8)

Indeed by definition, we have

(uτ − uhτ )(t) = tp − t
τp

(up−1 − up−1
h ) + t− tp−1

τp
(up − uph), for all t ∈ [tp−1, tp],

and therefore

‖(uτ − uhτ )(t)‖2a2
=
(
tp − t
τp

)2
‖up−1 − up−1

h ‖2a2
+
(
t− tp−1

τp

)2
‖up − uph‖

2
a2

+ 2(tp − t)(t− tp−1)
τ2
p

a2(up−1 − up−1
h , up − uph),

for all t ∈ (tp−1, tp).
Integrating this expression in t ∈ (tp−1, tp), one finds after simple calculations

that ∫ tp

tp−1

‖(uτ − uhτ )(t)‖2a2
dt =

τp
3 (‖up−1 − up−1

h ‖2a2
+ ‖up − uph‖

2
a2

+ a2(up−1 − up−1
h , up − uph)).

Cauchy-Schwarz’s inequality allows to conclude that (4.8) holds.
In conclusion, the identity (4.6) and the estimates (4.7)-(4.8) yield∫ tp

tp−1

‖(up − uτ )(t)‖2a2
dt . (ηpt )2 +

∫ tp

tp−1

‖(uτ − uhτ )(t)‖2a2
dt. (4.9)

This estimate in (4.5) leads to

a1(eτ (tp), eτ (tp))− a1(eτ (tp−1), eτ (tp−1)) +
∫ tp

tp−1

a2(eτ (t), eτ (t))

. (ηpt )2 +
∫ tp

tp−1

‖(f − πτf)(t)‖2−1 dt+
∫ tp

tp−1

‖(uτ − uhτ )(t)‖2a2
dt.

Summing this estimate in p = 1, · · · , n leads to the conclusion. �

Corollary 4.2 (Second time upper error bound). — The next estimate holds

‖∂teτ‖2L2(0,tn;H1
0 (Ω)) .

n∑
p=1

(ηpt )2+
∫ tn

0
‖(uτ−uhτ )(s)‖2a2

ds+‖f−πτf‖2L2(0,tn;H−1(Ω)).

(4.10)

Proof. — The residual equation (4.3) and the equivalence between the norms
‖ · ‖a1 and ‖ · ‖a2 directly give

‖∂teτ (t)‖a1 . ‖(f − πτf)(t)‖−1 + ‖eτ (t)‖a2 + ‖(up − uτ )(t)‖a2 ,

for all t ∈ (tp−1, tp).
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Integrating the square of this estimate in t ∈ (tp−1, tp) and summing on p, we
obtain∫ tn

0
‖∂teτ (t)‖2a1

dt .∫ tn

0
‖(f − πτf)(t)‖2−1 dt+

∫ tn

0
‖eτ (t)‖2a2

dt+
∫ tn

0
‖(up − uτ )(t)‖2 dt.

The second term of this right-hand side is estimated in (4.4), while the third term
is estimated via (4.9). �

Remark 4.3. — In the implementation point of view, all the terms of the right-
hand side of (4.4) and of (4.10) should be computable. This is indeed the case for
the terms (ηpt )2 and ‖f−πτf‖2L2(0,tn;H−1(Ω)), while the term

∫ tn
0 ‖(uτ−uhτ )(s)‖2a2

ds

is not, because the exact solutions up are used, but it will be estimated by com-
putational quantities in the next section (see Theorem 5.2 and the estimate (6.3)
below).

Let us go on with the local time lower bound.

Theorem 4.4 (Time lower error bound). — For all p = 1, · · · , N , the next
estimate holds

(ηpt )2 .
∫ tp

tp−1

(‖eτ (t)‖2a2
+ ‖∂teτ (t)‖2a1

) dt (4.11)

+ τp(‖up − uph‖
2
a2

+ ‖up−1 − up−1
h ‖2a2

) + ‖f − πτf‖2L2(tp−1,tp;H−1(Ω)).

Proof. — By the triangular inequality we may write

ηpt . τ
1/2
p (‖up − up−1‖a2 + ‖up − uph‖a2 + ‖up−1 − up−1

h )‖a2). (4.12)

Hence it remains to estimate the term τ
1/2
p ‖up−up−1‖a2 . First we recall the identity

(4.6)
τp
3 ‖u

p − up−1‖2a2
=
∫ tp

tp−1

‖(up − uτ )(t)‖2a2
dt.

Second taking as test function in (4.3) v = (up − uτ )(t), with t ∈ (tp−1, tp), one
obtains

a1(∂teτ (t),(up − uτ )(t)) + a2(eτ (t), (up − uτ )(t)) =
((f − πτf)(t), (up − uτ )(t)) + a2((up − uτ )(t), (up − uτ )(t)),

for a.e. t ∈ (tp−1, tp).
With the help of Cauchy-Schwarz’s inequality and the continuity of a1 and the

coerciveness of a2, we arrive at

‖(up − uτ )(t)‖2a2
. ‖∂teτ (t)‖2a1

+ ‖eτ (t)‖2a2
+ ‖(f − πτf)(t)‖2−1,

for all a.e. t ∈ (tp−1, tp). Integrating this estimate in t ∈ (tp−1, tp) we deduce that

τp
3 ‖u

p − up−1‖2a2
.
∫ tp

tp−1

(‖eτ (t)‖2a2
+ ‖∂teτ (t)‖2a1

+ ‖f − πτf‖2−1) dt.

The conclusion follows by inserting this estimate in (4.12). �
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5. A posteriori analysis of the spatial discretization

5.1. An upper error bound. As usual [27] the exact element residual RpK it is
replaced by an approximate element residual

rpK =
(

(fph − L1
(uph − up−1

h

τp

)
− L2u

p
h

)
|K
, (5.1)

where fph is a finite dimensional approximation of f(·, tp). A possible choice is

(fph)|K := 1
|K|

∫
K

f(x, tp) dx, for all K ∈ Tph.

Definition 5.1. — Let p > 1. The local error estimator ηpK is defined by

ηpK = hK‖rpK‖K +
∑
E∈EK

h
1/2
E

∥∥∥JpE,n∥∥∥
E
,

while the global one ηp is given by

(ηp)2 =
∑

K∈Tph

(ηpK)2.

The local and global approximation terms are defined by

ξpK = hK‖f(·, tp)− fph‖ωK
, (ξp)2 =

∑
K∈Tph

(ξpK)2.

Theorem 5.2 (Upper error bound). — The next estimate holds

‖en‖2a1
+

n∑
p=1

τp‖ep‖2a2
.

n∑
p=1

τp((ηp)2 + (ξp)2) + ‖e0‖2a1
. (5.2)

Proof. — This upper bound is a consequence of Lemma 3.4 by estimating appro-
priately each term of the right-hand side of the identity (3.7). First we transform

τp
∑

K∈Tph

∫
K

RpK(ep − I0
Ce

p) = τp
∑

K∈Tph

∫
K

rpK(ep − I0
Ce

p)

+ τp
∑

K∈Tph

∫
K

(f(·, tp)− fph)(ep − I0
Ce

p).

Using successively Cauchy-Schwarz’s inequality, the estimate (3.2) and the defini-
tion 5.1 of the local estimator and the approximation term, we obtain∑

K∈Tph

∫
K

RpK(ep − I0
Ce

p) .
∑

K∈Tph

hK(‖rpK‖K + ‖f(·, tp)− fph‖K) |ep|1,ω̃K

.
∑

K∈Tph

(ηpK + ξpK) |ep|1,ω̃K
.

By discrete Cauchy-Schwarz’s inequality and the coerciveness of a2, we get∑
K∈Tph

∫
K

RpK(ep − I0
Ce

p) . (ηp + ξp) |ep|1,Ω . (ηp + ξp)‖ep‖a2 . (5.3)
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Similarly using (3.3) we estimate the edge residual term:∑
E∈Eint

ph

∫
E

JpE,n(ep − I0
Ce

p) 6
∑

E∈Eint
ph

∥∥∥JpE,n∥∥∥
E

∥∥ep − I0
Ce

p
∥∥
E

.
∑

E∈Eint
ph

∥∥∥JpE,n∥∥∥
E
h

1/2
E |ep|1,ω̃E

.
∑

K∈Tph

ηpK |e
p|1,ω̃K

.

As before discrete Cauchy-Schwarz’s inequality yields∑
E∈Eint

ph

∫
E

JpE,n(ep − I0
Ce

p) . ηp |ep|1,Ω . η
p‖ep‖a2 . (5.4)

Applying Cauchy-Schwarz’s and Young’s inequalities we get

a1(ep−1, ep) 6 1
2(‖ep−1‖2a1

+ ‖ep‖2a1
).

This estimate and (5.3), (5.4) in the identity (3.7) yield

‖ep‖2a1
+ τp‖ep‖2a2

6
1
2(‖ep−1‖2a1

+ ‖ep‖2a1
) + Cτp(ηp + ξp)‖ep‖a2

6
1
2(‖ep−1‖2a1

+ ‖ep‖2a1
) + C2

2 τp(ηp + ξp)2 + 1
2τp‖e

p‖2a2
,

for some constant C > 0 depending only on the minimal angle of Tph, where in the
second step we again use Young’s inequality. After simplification, this estimate is
equivalent to

‖ep‖2a1
+ τp‖ep‖2a2

6 ‖ep−1‖2a1
+ C2τp(ηp + ξp)2,

and we conclude by taking the sum on p = 1, . . . , n. �

Corollary 5.3 (Second upper error bound). — The next estimate holds

‖∂t(uτ − uhτ )‖2L2(0,tn;H1
0 (Ω) .

n∑
p=1

τp((ηp)2 + (ξp)2) + ‖e0‖2a1
. (5.5)

Proof. — By the coerciveness of a1, we have

‖∂t(uτ − uhτ )(t)‖a1 6 sup
v∈H1

0 (Ω)

a1(∂t(uτ − uhτ )(t), v)
‖v‖a1

, for all t ∈ (tp−1, tp). (5.6)

Using the property

∂t(uτ − uhτ )(t) = ep − ep−1

τp
, for all t ∈ (tp−1, tp),

and the semi-discrete equation (2.8), for any t ∈ (tp−1, tp) we may write
a1(∂t(uτ − uhτ )(t), v) = Rp(v)− a2(ep, v),

where the residual Rp is defined by

Rp(v) = (f(·, tp), v)− a1(
uph − u

p−1
h

τp
, v)− a2(uph, v), for all v ∈ H1

0 (Ω).
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As (2.11) implies that

Rp(vh) = 0, for all vh ∈ Vph,

the above identity becomes

a1(∂t(uτ − uhτ )(t), v) = Rp(v − vh)− a2(ep, v), for all vh ∈ Vph, t ∈ (tp−1, tp).

Taking vh = ICv, applying Green’s formula componentwise (see the proof of Lemma
3.3), and using the estimates (3.2) and (3.3) we get

|Rp(v − vh)| . (ηp + ξp)‖v‖a1 ,

and therefore

|a1(∂t(uτ − uhτ )(t), v)| . (ηp + ξp + ‖ep‖a2)‖v‖a1 , for all t ∈ (tp−1, tp).

This estimate in (5.6) leads to

‖∂t(uτ − uhτ )(t)‖a1 . η
p + ξp + ‖ep‖a2 .

Integrating the square of this estimate in t ∈ (tp−1, tp) and summing on p =
1, · · · , n, the conclusion follows from the estimate (5.2). �

5.2. A lower error bound. We now establish the lower error bound of the esti-
mator ηpK in a more or less standard way (see [27]). Since we consider a nonstation-
ary problem, we further need the following assumption (see [6, 29]), that is easily
checked in an adaptive context:

Assumption 5.4. — For each 1 6 p 6 N , there exists a conforming triangula-
tion T̃ph such that each element K of Tp−1,h or of Tph is the union of elements K̃
of T̃ph such that hK ∼ hK̃ .

We further need the assumption on the coefficients of the operators Li.

Assumption 5.5. — For each 1 6 p 6 N , and i = 1, 2, the coefficients a(i)
k,`, b

(i)
k

and c(i) are constant on each element K of T̃ph.

Theorem 5.6 (Local lower error bound). — If Assumptions 5.4 and 5.5 hold,
then for all 1 6 p 6 N and all K ∈ Tph, one has

ηpK . hK‖
ep − ep−1

τp
‖1,ωK

+ ‖ep‖1,ωK
+

∑
K′⊂ωK

ξpK′ . (5.7)

Proof. — Element residual: By fixing an arbitrary element K ∈ T̃ph and by
recalling (5.1), we set

wpK := bKr
p
K ,

where bK =
∏d+1
i=1 λ

K
i is the standard bubble function associated with K (see e.g.

[27]). Standard inverse inequalities (cf. [27, Lemma 3.3]) and Lemma 3.3 with
v = wpK give

‖rpK‖
2
K ∼

∫
K

rpKw
p
K =

∫
K

(fph − f(·, tp))wpK +
∫
K

RpKw
p
K

=
∫
K

(fph − f(·, tp))wpK + a1(e
p − ep−1

τp
, wpK) + a2(ep, wpK).
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Hence by Cauchy-Schwarz’s inequality and again standard inverse inequalities (re-
minding that up−1

h and uph are polynomials of degree 1 in K, see again [27, Lemma
3.3]), one obtains

‖rpK‖
2
K . (‖e

p − ep−1

τp
‖1,K + h−1

K ‖e
p‖1,K + ‖fph − f(·, tp)‖K)‖rpK‖K .

This proves the estimate

hK‖rpK‖K . hK‖
ep − ep−1

τp
‖1,K + ‖ep‖1,K + hK‖fph − f(·, tp)‖K . (5.8)

Now for K ∈ Tph, the assumption 5.4 yields

h2
K‖r

p
K‖

2
K .

∑
K̃∈T̃ph:K̃⊂K

h2
K̃
‖rp
K̃
‖2
K̃
.

Using the estimate (5.8) and the fact that hK̃ 6 hK for K̃ ⊂ K we have proved
that

hK‖rpK‖K . hK‖
ep − ep−1

τp
‖1,K + ‖ep‖1,K + ξpK . (5.9)

Edge/face residual: Next we consider an arbitrary edge/face E of T̃ph and
define

wpE := bEJ
p
E,n,

where bE is the standard bubble function associated with E (see e.g. [27]). Using
inverse estimates and Lemma 3.3 with v = wpE we obtain

‖JpE,n‖
2
E .

∫
E

JpE,nw
p
E = a1(e

p − ep−1

τp
, wpE) + a2(ep, wpE)−

∑
K∈T̃ph

∫
K

RpKw
p
E .

Hence Cauchy-Schwarz’s inequality, standard inverse inequalities and the estimate
(5.8) lead to

h
1/2
E

∥∥∥JpE,n∥∥∥
E
.

∑
K∈T̃ph:E⊂K

(‖e
p − ep−1

τp
‖1,K + ‖ep‖1,K + hK‖fph − f(·, tp)‖K).

By the assumption 5.4, we conclude that

h
1/2
E

∥∥∥JpE,n∥∥∥
E
.
∑
K⊂ωE

(‖e
p − ep−1

τp
‖1,K + ‖ep‖1,K + ξpK). (5.10)

The conclusion follows from the estimates (5.9) and (5.10). �

Corollary 5.7 (Second local lower error bound). — If Assumptions 5.4 and
5.5 hold, then for all 1 6 p 6 N and all K ∈ Tph, it holds

τp(ηpK)2 .
∫ tp

tp−1

‖∂t(uτ − uhτ )(t)‖21,ωK
dt+ τp‖ep‖21,ωK

+ τp
∑

K′⊂ωK

(ξpK′)
2. (5.11)

Proof. — Direct consequence of the property

∂t(uτ − uhτ )(t) = ep − ep−1

τp
, for all t ∈ (tp−1, tp),

and Theorem 5.6. �
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6. A posteriori analysis of the full discretization

For all n = 1, · · · , N , denote the full error E(tn) at time tn by
E(tn)2 = ‖u(tn)− unh‖2a1

+ ‖un − unh‖2a1

+ ‖∂t(u− uτ )‖2L2(0,tn;H1
0 (Ω)) + ‖∂t(uτ − uhτ )‖2L2(0,tn;H1

0 (Ω))

+
∫ tn

0
(‖(u− uτ )(·, s)‖2a2

+ ‖(uτ − uhτ )(·, s)‖2a2
) ds.

Combining the results from the previous sections, we get the following global
upper and lower bounds:

Theorem 6.1 (Full error bounds). — For any n = 1, · · · , N , the next upper
error bound holds:

E(tn)2 .
n∑
p=1

(
(ηpt )2 + τp(ηp)2) (6.1)

+ ‖f − πτf‖2L2(0,tn;H−1(Ω)) +
n∑
p=1

τp(ξp)2 + ‖e0‖2a1
+ τ1‖e0‖2a2

.

If moreover Assumptions 5.4 and 5.5 hold, then for any n = 1, · · · , N , the next
lower error bound holds:

n∑
p=1

(
(ηpt )2 + τp(ηp)2) . E(tn)2 + ‖f − πτf‖2L2(0,tn;H−1(Ω)) +

n∑
p=1

τp(ξp)2. (6.2)

Proof. — Let us start with the upper error bound. First the triangle inequality
directly leads to

E(tn)2 . ‖u(tn)− un‖2a1
+ ‖un − unh‖2a1

+ ‖∂teτ‖2L2(0,tn;H1
0 (Ω)) + ‖∂t(uτ − uhτ )‖2L2(0,tn;H1

0 (Ω))

+
∫ tn

0
(‖eτ (·, s)‖2a2

+ ‖(uτ − uhτ )(·, s)‖2a2
) ds.

By Theorem 4.1 and Corollary 4.2, and the easily checked estimate∫ tn

0
‖(uτ − uhτ )(·, s)‖2a2

ds .
n∑
p=1

τp(‖up−1 − up−1
h ‖2a2

+ ‖up − uph‖
2
a2

), (6.3)

we get

E(tn)2 .
n∑
p=1

(ηpt )2 +
n∑
p=1

τp‖up − uph‖
2
a2

+ ‖f − πτf‖2L2(0,tn;H−1(Ω)) + ‖un − unh‖2a1

+ ‖∂t(uτ − uhτ )‖2L2(0,tn;H1
0 (Ω)) + τ1‖e0‖2a2

.

We conclude using Theorem 5.2 and Corollary 5.3.
We now pass to the lower error bound. Summing (4.11) on p = 1, · · · , n, we get
n∑
p=1

(ηpt )2 .
∫ tn

0
(‖eτ (t)‖2a2

+ ‖∂teτ (t)‖2a1
) dt+

n∑
p=1

τp‖up − uph‖
2
a2

+ τ1‖e0‖2a2

+ ‖f − πτf‖2L2(0,tn;H−1(Ω)).
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By the estimate (4.8), we obtain
n∑
p=1

(ηpt )2 . E(tn)2 + ‖f − πτf‖2L2(0,tn;H−1(Ω)). (6.4)

On the other hand, by Corollary 5.7, we have
n∑
p=1

τp(ηp)2 .
∫ tn

0
‖∂t(uτ − uhτ )(t)‖21,ωK

dt+
n∑
p=1

τp‖ep‖2a1
+

n∑
p=1

τp(ξpK)2.

Again thanks to (4.8), we obtain
n∑
p=1

τp(ηp)2 . E(tn)2 +
n∑
p=1

τp(ξp)2. (6.5)

The estimate (6.2) directly follows from (6.4) and (6.5). �

Remark 6.2. — Under Assumptions 5.4 and 5.5, Theorem 6.1 states that the
error E(tn) is equivalent to the global error estimator(

n∑
p=1

(
(ηpt )2 + τp(ηp)2))1/2

,

up to approximation terms. Since each term of this global error estimator is com-
putable, it may be used for an adaptive algorithm.

7. Numerical experiments

Our theoretical analysis is now confirmed by different numerical examples. The
first two ones are used to confirm the efficiency and reliability of our error esti-
mator, while the third and fourth ones illustrate the usefulness of our estimator
by presenting an adaptive algorithm for solutions having a singular behaviour in
space. For simplicity all the tests will be performed with L1 = I−∆ and L2 = −∆
(∆ being the standard Laplace operator).

7.1. A validation test. This example consists in solving the two dimensional
Sobolev equation on the unit square Ω =]0, 1[×]0, 1[. Here, we use the Lagrange
element on a regular mesh Tph = Th obtained by dividing each segment by n
subintervals and dividing each obtained square into two triangles (see Figure 7.1).

The tests are performed with T = 1s and the following exact solution

u(x, y, t) = e−txy(x− 1)(y − 1) in Ω×]0, 1[,

so that u0(x, y) = xy(x − 1)(y − 1) in Ω and u(., t)|Γ = 0, for all t ∈]0, 1[. All
numerical results will be presented at the final time T = 1s.

First, we check that the numerical solution uNh converges towards the exact one.
For that purpose, we have plotted in Figure 7.2 the error |u(·, tN ) − uNh |21,Ω as a
function of the meshsize (resp. time step) when the time step (resp. meshsize ) is
fixed and small enough. Here and below a double logarithmic scale is used in such a
way that the slope of the curves gives the order of convergence. As we can see, this
figure underlines the theoretical predicted optimal order of convergence h (resp. τp)
as τp (resp. h) is fixed and small enough (see [3]).
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Figure 7.1. The mesh on the unit square with h = 0.2.

2 3 4 5 6
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‖e
N
‖ 1
,Ω

space discretization
time discretization

Figure 7.2. ‖u(·, tN )− uNh ‖1,Ω as a function of Dof at final time
T = 1s for different h with τp = 0.001s (resp. τp with h = 0.00625).

Now we investigate the main theoretical results which are the upper and lower
error bounds (5.2) and (5.7). For that purpose, we fix a small time step τp = 0.1s
and let vary the meshsize h.
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Figure 7.3. qNup wrt DoF for uniform meshes

7.1.1. Reliability of the spatial estimator. First, we define the ratio of the left-hand
side and the right-hand side of the estimate (5.2) at the last time T = 1s:

qNup =

‖eN‖21,Ω +
N∑
p=1

τp|ep|21,Ω

‖e0‖21,Ω +
N∑
p=1

τp
∑

K∈Tph

((ηpK)2 + h2
K‖fp − f

p
h‖

2
K)
.

qNup is referred as the effectivity index. It measures the reliability of the estimator
and is related to the global upper error bound. From Theorem 5.2, the ratio qNup
is bounded from above. This is confirmed by our numerical results presented in
Figure 7.3 and Table 7.1. Hence, the spatial estimator is reliable.

7.1.2. Efficiency of the spatial estimator. Now, we define the (larger) ratio of the
left-hand side and the right-hand side of the estimate (5.7) at the final time T = 1s:

qNlow = max
K∈Tph

ηNK

hK‖
eN − eN−1

τp
‖1,ωK

+ ‖eN‖1,ωK
+ hK‖fN − fNh ‖ωK

.

qNlow is related to the local lower error bound and measures the efficiency of the
estimator. According to Figure 7.4 (see also Table 7.1), qNlow is bounded from above
as theoreticaly predicted in Theorem 5.6. Therefore our spatial estimator is also
efficient.



20 S. Nicaise & F. Bekkouche

2 3 4 5 6

−0.9

−0.85

−0.8

−0.75

−0.7

Dof

qN l
o
w

Figure 7.4. qNlow wrt DoF for uniform meshes

n DoF qN
up qN

low
4 56 0.125 0.20
8 208 0.0759 0.16
16 800 0.0614 0.14
32 3136 0.0557 0.13
64 12416 0.0532 0.127
128 49408 0.0519 0.125
256 197120 0.0514 0.124
512 787456 0.0513 0.123

Table 7.1. qNup and qNlow wrt DoF for uniform meshes.

7.1.3. Non structured meshes. In order to validate the reliability and efficiency of
our spatial error estimator, we have approximated the same problem as before with
the same elements but on different non structured meshes obtained by starting
from a rough non structured mesh of size 0.2 (see Figure 7.5) and by dividing each
triangle into 4 triangles by the standard regular refinements [27]. Figures 7.6 and
7.7 (see also Table 7.2) show respectively the rations qNup and qNlow with respect to
the degrees of freedom. Again we may conclude that both ratios are bounded from
above and consequently our spatial error estimator is reliable and efficient.

7.2. Dependence of the error. From our previous considerations, the error be-
tween the exact solution and its approximated one is expected to depend on the
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Figure 7.5. The non structured mesh on the unit square with h = 0.2.
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Figure 7.6. qNup wrt DoF for non structured meshes

space and/or time discretization. In order to illustrate this phenomenon, as in
[18, 21], we exhibit an example where the error due to the time discretization is
more important than the error due to the space discretization, and another exam-
ple where the converse phenomenon appears. For that purpose we consider the
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Figure 7.7. qNlow wrt DoF for non structured meshes

n DoF qN
up qN

low
4 56 0.0819 0.1525
8 208 0.0630 0.13077
16 800 0.0556 0.1153
32 3136 0.0542 0.10899
64 12416 0.05398 0.1060
128 49408 0.05387 0.1051
256 197120 0.0534 0.105

Table 7.2. qNup and qNlow wrt DoF for non structured meshes.

problem (2.3) for Ω =]0, 1[×]0, 1[ and T = 1s, with the exact solution u1 and u2
defined by:

u1 = sin(πx) sin(πy) sin(πt),
u2 = sin(πx) sin(πy) sin t.

The numerical results are shown in Tables 7.3 and 7.4, where we present the values
of the space indicator η, the time indicator ηt, the error ‖e‖ := max

16p6N
‖ep‖1,Ω and

the spatial effectivity index qNup for different uniform triangulations and constant
time steps. In the first case, we can conclude that the error is mainly due to the
time discretization. Indeed from Table 7.3, we see that for a fixed time step and
decreasing mesh sizes, the error is almost constant, while for a fixed mesh size and
decreasing time steps, the error decreases. We moreover remark a close relationship
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between the error and the time indicator. For the second example, the error is
mainly due to the time discretization, since we see converse relations between the
error and the time steps and mesh size, while we clearly detect a relationship
between the error and space indicator. For the first example qNup is correlated to
the error, while for the second one, the distortion comes for the approximation
terms. Let us further remark that the numerical experiments bring to light that
the indicator ηt is independent of h, while the indicator η is mainly independent of
τp. This important property of uncoupling the two error parts is effectively used
in our adaptive algorithm described below, since the time (resp. space) refinements
or unrefinements are (mainly) based on ηt (resp. η).

h = 1/n 0.1 0.05 0.025 0.0125 0.1 0.05 0.025 0.0125
dt 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05
η 4.62 2.32 1.16 0.58 4.34 2.16 1.08 0.54
ηt 0.22 0.22 0.22 0.22 0.077 0.077 0.077 0.077
‖e‖ 0.53 0.53 0.53 0.53 0.265 0.265 0.265 0.265
qNup 1.77e-4 1.5e-4 1.5e-4 1.5e-4 4.77e-5 4.25e-5 4.25e-5 4.77e-5

h = 1/n 0.1 0.05 0.025 0.0125 0.1 0.05 0.025 0.0125
dt 0.025 0.025 0.025 0.025 0.0125 0.0125 0.0125 0.0125
η 4.48 2.24 1.12 0.56 4.60 2.30 1.15 0.57
ηt 0.027 0.027 0.027 0.027 0.009 0.009 0.009 0.009
‖e‖ 0.13 0.13 0.13 0.13 0.06 0.06 0.06 0.06
qNup 1.57e-5 1.46e-5 1.02e-5 1.01e-5 3.70e-6 3.60e-006 3.54e-6 3.50e-6

Table 7.3. Convergence results when using uniform triangula-
tions and constant time steps for the first example.

h = 1/n 0.1 0.05 0.025 0.0125 0.1 0.05 0.025 0.0125
dt 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05
η 2.56 1.29 0.65 0.32 2.52 1.27 0.65 0.32
ηt 0.039 0.039 0.039 0.039 0.014 0.014 0.014 0.014
‖e‖ 0.30 0.16 0.08 0.04 0.30 0.16 0.08 0.04
qNup 1.36e-4 4.13e-5 2e-5 1.18e-5 1.36e-4 4.13e-5 2e-5 1.18e-5

h = 1/n 0.1 0.05 0.025 0.0125 0.1 0.05 0.025 0.0125
dt 0.025 0.025 0.025 0.025 0.0125 0.0125 0.0125 0.0125
η 2.52 1.27 0.64 0.32 2.52 1.27 0.64 0.32
ηt 0.0049 0.0049 0.0049 0.0049 0.0017 0.0017 0.0017 0.0017
‖e‖ 0.30 0.16 0.08 0.04 0.30 0.16 0.08 0.04
qNup 1.36e-4 4.13e-5 2e-5 1.18e-5 1.36e-4 4.13e-5 2e-5 1.18e-5

Table 7.4. Convergence results when using uniform triangula-
tions and constant time steps for the second example.
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7.3. An adaptive algorithm. From our theoretical considerations and the exam-
ples of the previous subsection, an adaptive algorithm has to use appropriately the
space indicator η, the time indicator ηt and the approximation error ξ. To design
this algorithm, we first define the global indicator η̄ as follows

η̄ :=
( N∑
n=1

((ηnt )2 + τn(ηn)2 + τn(ξn)2)
)1/2

.

For our approximated solution uhτ , we define a relative error estimator Ind by

Ind2 = η̄2∫ T
0 ‖∇uhτ‖2dt

. (7.1)

Let a preset tolerance δ and a parameter 0 6 α 6 1 be given. The goal of our
adaptive scheme is to generate a sequence of sub-intervals [tn−1, tn] and mesh tri-
angulations Tnh, n = 1, ..., N such that Ind, defined by (7.1), is close to the preset
of tolerance δ, in the sense that

(1− α)δ 6 Ind 6 (1 + α)δ. (7.2)
To achieve these bounds, for all n = 1, ..., N, we define two local bounds: a left

one Lbn defined by

Lbn := (1− α)2δ2
∫ tn

tn−1

‖∇uhτ (·, t)‖2dt, (7.3)

and a right one Rbn defined by

Rbn := (1 + α)2δ2
∫ tn

tn−1

‖∇uhτ (·, t)‖2dt. (7.4)

If, for all n = 1, ..., N, the conditions
Lbn 6 (ηnt )2 + τn(ηn)2 + τn(ξn)2 6 Rbn (7.5)

are satisfied, then summing from n = 1 to n = N, we obtain (7.2). Thus our algo-
rithm, described in Algorithm 1, consists in finding time steps and triangulations
such that (7.5) holds for all n. This will be achieved by using the elements ηn and
ξn to control the mesh sizes, and using ξn and ηnt to control the time steps. Note
that it is similar to the one proposed in [18, 21].

In order to test our adaptive scheme, we consider two relevant examples. The
first one when the Sobolev equation (2.3) is considered in the unit square ]0, 1[×]0, 1[
with the exact solution defined by (see [18, 21])

u(x, y, t) = β(t) ∗ exp(−50 ∗ r2(x, y, t)), (7.6)
with r2(x, y, t) = (x− 0.4 ∗ t− 0.3)2 + (y − 0.4 ∗ t− 0.3)2, and

β(t) =
{

1− exp(−50 ∗ (0.98 ∗ t+ 0.01)2) if t < 1/1.96,
1− exp(−50 ∗ (1− 0.98 ∗ t+ 0.01)2) else . (7.7)

This means that u is a Gaussian function whose center moves from point (0.3, 0.3) at
time t = 0s to point (0.7, 0.7) at time t = 1s. The obtained meshes at times 0.1, 0.5
and 1 are shown in Figures 7.8 with the tolerance δ = 0.25 and the parameter
α = 0.5. From these figures we may conclude that the meshes are refined in the
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region of a large gradient of the solution and then follow correctly the moving
centers.

Algorithm 1 The adaptive algorithm

Set T0h, n = 1, t, τ Initialization
while t 6 T do
Compute (ηn)2, (ηnt )2,
(ξn)2,Rbn,Lbn

if (τn ξ
n

2 + ηnt ) < Lbn then
Current time step is to small

τ := 2τ Same time iteration with bigger step
else if (τn (ξn)2

2 + (ηnt ))2 6 Rbn then
if τn((ηn)2 + (ξn)2

2 ) < Lbn then
Continue with criteria Triangulation is too fine
ηnK 6 1.5 min ηnK

else if τn((ηn)2 + (ξn)2

2 ) < Rbn then
Mesh Triangulation is correct

t := t+τ Incrementation of the current time step

n := n+ 1
else
Continue with criteria Mesh Triangulation is too coarse
ηnK > 0.5 min ηnK Same time with finer triangulation

end if
else
Time step is too large
τ := τ/2 Same time iteration with smaller time

step
end if
Generate the new triangulation

end while

As second example, we consider the Sobolev equation (2.3) in the L-shaped
domain ]− 1, 1[2\(]0, 1[×]0,−1[) with exact solution defined by

u(r, θ) = e−t ∗ r2/3 sin
(

2
3θ
)
,

where (r, θ) are polar coordinates centred at (0, 0). In that case, u has a singular
behaviour along the edge (0, 0)×]0, T [. This behavior induces a refinement of the
mesh near (0, 0) during the adaptive algorithm, as Figure 7.9 shows for t = 0.1. We
do not present the meshes for the other time steps since they have a very similar
form as the one for t = 0.1.



26 S. Nicaise & F. Bekkouche

n = 4, tn = 0.1s,Nv = 441

n = 4, tn = 0.5s,Nv = 441

n = 4, tn = 1s,Nv = 441

Figure 7.8. Adapted triangulations and isovalues of uhτ at time
0.1, 0.5, 1 (δ = 0.25, α = 0.5).
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Figure 7.9. Adapted triangulation at time t = 0, 1 with α = 0.5
and δ = 0.25.
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