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REVERSIBLE PART OF QUANTUM DYNAMICAL SYSTEMS:
A REVIEW

CARLO PANDISCIA

Abstract. In this work a quantum dynamical system (M, Φ, ϕ) is constituted by a von
Neumann algebra M, a unital Schwartz map Φ : M → M and a Φ-invariant normal faithful
state ϕ on M. We will prove that the ergodic properties of a quantum dynamical system are
determined by its reversible part (D∞, Φ∞, ϕ∞); i.e. by a von Neumann sub-algebra D∞ of
M, with an automorphism Φ∞ and a normal state ϕ∞, as the restrictions on D∞. Moreover,
if D∞ is a trivial algebra, then the quantum dynamical system is ergodic. Furthermore, we
will show some properties of reversible part of the quantum dynamical system, finally we
will study its relations with the canonical decomposition of Nagy-Fojas of linear contraction
related to a quantum dynamical system.

1. Introduction

This exploratory paper deals with the main properties of the reversible part of
a discrete quantum dynamical system.

It is well-known that in the axiomatic approach of von Neumann-Segal-Mackey
[10, 11], a physical system is characterized by a pair (A,S) constituted by a *-
algebra with unit A and by a convex subset S of the dual space of algebra A.

According to Kadison [20], the temporal evolution of a dynamical system is
described by an affine map Φ◦ : S → S which induces a positive map Φ : A → A
such that ω(Φ(a)) = Φ◦(ω)(a) for all ω ∈ S and a ∈ A. This passage from Φ◦ to Φ
is referred to, in the physics literature, as the passage from the Heisenberg pictures
to the Schrodinger pictures [11].

Physically the loss of pure states of system, during its temporal evolution is a
reversibility index of the map Φ◦.

Indeed, if the affine map Φ◦ is bijective (and therefore maps pure states into
pure states), we obtain that Φ is a Jordan automorphism of the algebra of the
observables [20]. in this case the physical system will be called reversible; however
in the general case the loss of pure states during temporal evolution is unavoidable
therefore the affine map Φ◦ is not bijective. Is it possible to outline a part of
the observables algebra of physical system which is reversible along its temporary
evolution? And, if this is not trivial, what are its main properties?

In this brief work we study the problem when the algebra of the observables is
described by a von Neumann algebra which admits a normal stationary state for
our temporal evolution.

We therefore consider a pair (M,Φ) composed of a von Neumann algebra M and
a unital Schwartz map Φ : M→M, i.e. a normal map with Φ(1) = 1 which satisfies
the inequality:

0 6 Φ(a∗)Φ(a) 6 Φ(a∗a) , a ∈M. (1.1)
The pair (M,Φ) is called (discrete) quantum process and Φ its dynamics.

Math. classification: 46L07, 46L55, 81S22.
Keywords: Quantum dynamical system, Multiplicative core, Algebra of effective observables.
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A quantum process is called reversible if its dynamics is an automorphism of von
Neumann algebras.

A quantum process (R, Φ̌) is a sub-process of (M,Φ) if there is an injective
homomorphism of von Neumann algebras i : R→M and a conditional expectation
E : M→ i(R) such that Φ̌n = E ◦ Φn ◦ i for all natural numbers n.

The reversible part of a quantum process is its maximal reversible sub-process.
We denote with B(H) the C*-algebra of the bounded linear operators on Hilbert

space H and with s and σ respectively, the ultrastrong operator topology and the
ultraweakly operator topology on von Neumann algebra M, while with M∗ its
predual. Furthermore, a normal map or a normal state are σ-continuous maps [7].

We recall that a normal state ϕ on M is called either a stationary state for
the quantum process (M,Φ) if ϕ(Φ(a)) = ϕ(a) for all a ∈ M or an asymptotic
equilibrium if Φn(a)→ ϕ(a)1 as n→∞ in σ-topology.

Let (M,Φ) be a quantum process and ϕ its stationary state, the dynamics Φ
admits a ϕ-adjoint if there is a normal unital Schwartz map Φ] : M→M such that
ϕ(bΦ(a)) = ϕ(Φ\(b)a) for all a, b ∈M.

The conditions for the existence of a ϕ-adjointness of dynamics of quantum
process can be found in [1] and [28].

In what follow we will call a quantum dynamical system (QDS) a triple (M,Φ, ϕ)
constituted by a quantum processes (M,Φ) and normal faithful stationary state ϕ
where the dynamics Φ admits a ϕ-adjoint Φ].

We have tried to keep the exposition as ’self-contained’ as possible, recalling
and proving some well known results of dynamical systems theory [14, 15] and of
decoherence theory [4, 9].

This paper is organized as follows:
In section 2 we recall briefly some properties of multiplicative domain of Schwartz

maps.
In section 3 we introduce the decomposition theorem for an algebraic probability

space (M, ϕ), constituted by a von Neumann algebra M and by one of its normal
faithful states ϕ. Afterwards we study its connection with the multiplicative domain
of dynamics of QDS.

In section 4 we study the connection between the decomposition theorem and
the canonical decomposition of Nagy-Fojas of linear contraction on Hilbert space
[27].

In section 5 we list some simple properties of the reversible part of a QDS in
this case we prove that the ergodic properties of a QDS depend on the ergodic
properties of its reversible part. Furthermore the decomposition th allows to define
a new algebraic structure on M of *-Banach algebra such that its dynamics Φ is a
*-homomorphism.

In section 6 by using some well known results on the Cesaro mean, we study
under what conditions the QDS is completely irreversible, i.e. the reversible part is
a trivial algebra.

2. Multiplicative domains

The multiplicative domain DΦ of a Schwartz map Φ : M → M, is defined as
follows [30, 34]:

DΦ = {a ∈M : Φ(a∗a) = Φ(a∗)Φ(a) , Φ(aa∗) = Φ(a)Φ(a∗)} (2.1)
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and an element a ∈ DΦ if and only if Φ(ax) = Φ(a)Φ(x) and Φ(xa) = Φ(x)Φ(a) for
all x ∈M.

It follows that DΦ is a von Neumann algebra, since it is a unital *-algebra closed
in the σ-topology, that is, DΦ is the largest sub-algebra of M on which Φ behaves
multiplicatively.

A consequence of Schwartz’s inequality is the following remark:
If Φ : M→M is a unital Schwartz map which admits an inverse Φ−1 : M→M

(i.e. a unital Schwartz map such that Φ(Φ−1(a)) = Φ−1(Φ(a)) = a for all a ∈M),
then Φ is an automorphism.

If D+
∞ is the following von Neumann algebra:

D+
∞ =

⋂
n∈N

DΦn (2.2)

then we have that Φ(D+
∞) ⊂ D+

∞ and Φ restricted to D+
∞ is a *-homomorphism,

but it is not surjective map.
We observe that

D+
∞ = {a ∈ DΦ : Φn(a) ∈ DΦ for all n ∈ N} .

Defining the multiplicative core of Φ [33] as

CΦ =
⋂
n∈N

Φn(D+
∞) ⊂ D+

∞ (2.3)

we obtain that Φ(CΦ) ⊂ CΦ.
Indeed for each n > 0 we have Φn+1(D+

∞) ⊂ Φn(D+
∞) and

Φ(
⋂
n∈N

Φn(D+
∞)) ⊂

⋂
n∈N

Φ(Φn(D+
∞)) =

⋂
n∈N

Φn+1(D+
∞) =

⋂
n∈N

Φn(D+
∞).

It is clear that the restriction of Φ to CΦ is a *-homomorphism.
Since Φ is a normal map and its restriction to D+

∞ is a *-homomorphism, the set
Φn(D+

∞) is a von Neumann algebra [7] therefore Cφ is a von Neumann algebra.

Proposition 2.1. — If Φ is an injective map on D+
∞ then we obtain that

Φ(CΦ) = CΦ and its restriction to the CΦ is a *-automorphism.

Proof. — Let y ∈ CΦ, by the definition of CΦ for each natural number n > 0
there exists an element xn ∈ D+

∞ such that y = Φn(xn) for all n > 0.
We have Φ(y) = Φn+1(xn) = Φn+1(xn+1) for all n > 0 and by the injectivity of

Φ we obtain that xn = xn+1 for all n ∈ N hence y = Φ(x0). �

Let ϕ be a stationary state for the quantum process (M,Φ) and (Hϕ, πϕ,Ωϕ) its
GNS representation. It is well-known [28] that there is a unique linear contraction
UΦ,ϕ of B(Hϕ) such that for each a ∈ A we have:

UΦ,ϕπϕ(a)Ωϕ = πϕ(Φ(a))Ωϕ. (2.4)
Furthermore, if ϕ is a faithful state, then there is a unital Schwartz map Φ• :
πϕ(M)→ πϕ(M) such that

Φ•(A)Ωϕ = UΦ,ϕAΩϕ , A ∈ πϕ(M). (2.5)

Proposition 2.2. — Let (M,Φ) be a quantum process and ϕ its faithful sta-
tionary state, we have:

1. For each d ∈ DΦ results UΦ,ϕπϕ(d) = πϕ(Φ(d))UΦ,ϕ .
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2. If UΦ,ϕπϕ(a) = πϕ(Φ(a))UΦ,ϕ then for each x ∈ M result such Φ(ax) =
Φ(a)Φ(x) .

3. U∗Φ,ϕUΦ,ϕ ∈ πϕ(DΦ)′ while UΦ,ϕU
∗
Φ,ϕ ∈ πϕ(Φ(DΦ))′ .

4. The element d belongs to DΦ if, and only if ||UΦ,ϕπϕ(d)Ωϕ|| = ||πϕ(d)Ωϕ||
and ||UΦ,ϕπϕ(d∗)Ωϕ|| = ||πϕ(d∗)Ωϕ|| .

Proof. — It is straightforward. �

By Schwartz’s inequality and by the existence of a faithful stationary state for a
quantum process (M,Φ) we obtain the following inclusions:

· · ·DΦn ⊂ DΦn−1 ⊂ · · ·DΦ2 ⊂ DΦ ⊂M (2.6)
for all natural numbers n ∈ N.

In this case, the map Φ is injective on D+
∞, since for each a ∈ D+

∞ with Φ(a) = 0,
we have:

ϕ(Φ(a∗)Φ(a)) = ϕ(Φ(a∗a)) = ϕ(a∗a) = 0
hence its restricted to CΦ is a *-automorphism.

An example of a Schwartz map whose restriction to the multiplicative core CΦ
is not an automorphism is described in Example 2.3.

Example 2.3. — Let H be a Hilbert space and V an isometry of B(H). We
consider the unital Schwartz map:

Φ(A) = V ∗AV , A ∈ B(H)
and we assume that there exists an element Ω ∈ H such that V Ω = Ω.

For each natural number k we have
DΦk = {Ek}′ , Ek = V kV ∗k.

Indeed, if A ∈ {Ek}′ then A also belongs to DΦk , since
Φk(A∗A) = V ∗kA∗AV k = V ∗kA∗AV kV ∗kV k = V ∗A∗V kV ∗kAV k = Φ(A∗)Φ(A).

Let A belongs to DΦk , we have:
V ∗ kAEkBΩ = V ∗ kAV kV ∗kBΩ = Φk(AB)Ω = V ∗kABΩ

It follows that for each A ∈ DΦk we obtain:
V ∗kAEk = V ∗kA =⇒ EkAEk = EkA.

and hence
D+
∞ =

⋂
k∈N
{Ek}′ .

Let us notice that the algebra D+
∞ is not trivial since one-rank projection |Ω >< Ω|:

|Ω >< Ω|ξ = 〈Ω, ξ〉Ω , ξ ∈ H
belongs to it.

Let Θ : B(H)→ B(H) be any unital Schwartz map, we define
Ψ(A) = V AV ∗ + FV Θ(A)FV , A ∈ B(H)

where FV = I − V V ∗.
The unital Schwartz map Ψ has the following properties:

Φ(Ψ(A) = A , A ∈ B(H)
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and for each A,B ∈ B(H)

< Ω , AΦ(B)Ω >=< Ω ,Ψ(A)BΩ > .

Since FV Ek = 0 for all k ∈ N, we have:

Ψ(T ) ∈ {Ek}′ , T ∈ {Ek}′ .

Therefore the multiplicative core CΦ = D+
∞.

3. Decomposition theorem

It is well known that any Hilbert space decomposes into direct sum of one its
subspaces and its orthogonal complement. We have a similar result in von Neumann
algebras theory.

Indeed, given a faithful normal state of a von Neumann algebra, for any its
sub-algebra that satisfies a modular property we can decompose the von Neumann
algebra in direct sum of vector spaces where a vector space is our sub-algebra and
the other is its orthogonal related to the faithful state. We take as sub-algebra the
multiplicative core of our unital Schwartz map consequently its orthogonal space is
constituted by observables subject to dissipation. The temporal evolution is not a
bijective map for these observables.

In this section we will study some properties of this algebraic decomposition and
its relations with the orthogonal complement of Hilbert space of GNS representation
obtained by our faithful normal state.

We consider a von Neumann algebra M and its faithful normal state ϕ and we
denote by (Hϕ, πϕ,Ωϕ) the GNS representation of ϕ and denoting by {σϕt }t∈R its
modular automorphism group.

Let R be a von Neumann sub-algebra of M, we recall [22] that the ϕ-orthogonal
of R is the set:

R⊥ϕ = {a ∈M : ϕ(a∗x) = 0 for all x ∈ R}. (3.1)

The set R⊥ϕ is a closed linear space in the σ-topology with R⊥ϕ ∩R={0}.
We notice that R⊥ϕ ⊂ kerϕ and if R = CI then R⊥ϕ = kerϕ, where kerϕ =

{a ∈M : ϕ(a) = 0}.
Moreover if y ∈ R and d⊥ ∈ R⊥ϕ then yd⊥ ∈ R⊥ϕ , since

ϕ((yd⊥)∗x) = ϕ(d∗⊥y∗x) = 0 , x ∈ R.

We notice since ϕ is a faithful state, the representation πϕ : M→ B(Hϕ) is faithful
normal map and πϕ(M) a von Neumann algebra isomorphic to M.

Theorem 3.1. — The von Neumann algebra R is invariant under modular
automorphism group σϕt if and only if both conditions are fulfilled:

a. The set R⊥ϕ is closed under the involution operation.
b. For each a ∈M there is a unique a‖ ∈ R and a⊥ ∈ R⊥ϕ such that

a = a‖ + a⊥.

In other words we have the following algebraic decomposition:

M = R⊕R⊥ϕ . (3.2)
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Proof. — From Takesaki [35] we have σϕt (πϕ(R)) ⊂ πϕ(R) for all t ∈ R if and
only if there exists a normal conditional expectation E : M→ R such that ϕ◦E = ϕ.

Assuming R be invariant under modular automorphism group σϕt is simple to
prove that

R⊥ϕ = {a ∈M : E(a) = 0} . (3.3)
Therefore R⊥ϕ is closed under the involution operation.

For each a ∈M we set a⊥ = a− E(a) and
ϕ(a∗⊥x) = ϕ((a∗ − E(a∗))x) = ϕ(a∗x)− ϕ(E(a∗)x) = ϕ(a∗x)− ϕ(E(a∗x)) = 0

for all x ∈ R, hence a⊥ ∈ R⊥ϕ .
So for each a ∈M exists a unique a‖ ∈ R and a⊥ ∈ R⊥ϕ such that a = a‖ + a⊥

where we have set a‖ = E(a).
The uniqueness follows since if a = 0 then a‖ = a⊥ = 0.
Indeed, since a∗‖a⊥ and a∗⊥a‖ belongs to R⊥ϕ , we have ϕ(a∗‖a⊥, ) = ϕ(a∗⊥a‖) = 0

and
ϕ(a∗a) = ϕ(a∗‖a‖) + ϕ(a∗⊥a⊥) = 0

with ϕ faithful state.
Vice-versa, if the set R⊥ϕ is closed under the involution operation and M =

R ⊕ R⊥ϕ then for each a ∈ M exists a unique a‖ ∈ R and a⊥ ∈ R⊥ϕ such that
a = a‖ + a⊥ .

The map a ∈M → a‖ ∈ R is a projection of norm one (i.e. it satisfies (1)‖ = 1
and ((a)‖)‖ = a‖ for all a ∈M ) and for Tomiyama [36] it is a normal conditional
expectation with ϕ(a) = ϕ(a‖) for all a ∈M. �

Remark 3.2. — If the set R⊥ϕ is a *-algebra (without unit) then R⊥ϕ = {0},
since ϕ is a faithful state.

Moreover, if p is an orthogonal projector of M then p /∈ R⊥ϕ .
Remark 3.3. — If a ∈M with a = a‖ + a⊥ where a‖ ∈ R and a⊥ ∈ R⊥ϕ , then

||πϕ(a)Ωϕ||2 = ||πϕ(a‖)Ωϕ||2 + ||πϕ(a⊥)Ωϕ||2. (3.4)
Proposition 3.4. — Let R be a von Neumann algebra, invariant under modu-

lar automorphism group σϕt . If Ho and Ko are respictively the closure of the linear
space πϕ(R)Ωϕ and πϕ(R⊥ϕ)Ωϕ then

Hϕ = Ho ⊕Ko .
Moreover, the orthogonal projection Po on Hilbert space Ho belongs to πϕ(R)′.

Proof. — We have that Ko ⊂ H⊥o , since for each r⊥ ∈ R⊥ϕ and ψo ∈ Ho then
〈πϕ(r⊥)Ωϕ, ψo〉 = lim

α→∞
〈πϕ(r⊥)Ωϕ, πϕ(rα)Ωϕ〉 = lim

α→∞
ϕ(r∗⊥rα) = 0

where ψo = lim
α→∞

πϕ(rα)Ωϕ with {rα}α net belongs to R.
If ψ ∈ Hϕ we can write:

ψ = lim
α→∞

πϕ(mα)Ωϕ = lim
α→∞

(πϕ(rα)Ωϕ + πϕ((rα⊥)Ωϕ)

where mα = rα + rα⊥ for all α.
The net {πϕ(rα)Ωϕ} has limit, since of the relation (3.4) for each ε > 0 there is

a index ν such that for α > ν and β > ν, we have the Cauchy relation:
||πϕ(rα)Ωϕ − πϕ(rβ)Ωϕ|| 6 ||πϕ(mα)Ωϕ − πϕ(mβ)Ωϕ|| 6 ε
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It follows that there are ψ‖ ∈ Ho and ψ⊥ ∈ Ko such that:
ψ = lim

α→∞
πϕ(rα)Ωϕ + lim

α→∞
πϕ((rα⊥)Ωϕ = ψ‖ + ψ⊥ ∈ Ho ⊕Ko .

It is simple to prove that πϕ(R)Ho ⊂ Ho, so Po ∈ πϕ(R)′. �

Proposition 3.5. — Let (M,Φ) be a quantum process and ϕ a normal faithful
state on M. For each natural number n we have:

M = DΦn ⊕D
⊥ϕ
Φn (3.5)

and
M = D+

∞ ⊕D+⊥ϕ
∞ . (3.6)

Furthermore, if ϕ is a stationary state for Φ then

M = CΦ ⊕ C
⊥ϕ
Φ (3.7)

and the restriction of Φ to CΦ is a *-automorphism with Φ(C⊥ϕΦ ) ⊂ C⊥ϕΦ .

Proof. — For each d ∈ DΦn and natural number n we get:
Φn• (σ

ϕ
t (πϕ(d)∗)σϕt (πϕ(d))) = Φn• (σ

ϕ
t (πϕ(d)∗))Φn• (σ

ϕ
t (πϕ(d)))

because Φ commutes with that modular automorphism group σϕt .
It follows that σϕt (πϕ(DΦn)) is into πϕ(DΦn) for all n ∈ N and t ∈ R.
If b ∈ CΦ then σϕt (πϕ(b)) ∈ πϕ(CΦ) for all real number t.
Indeed for each natural number n there is a xn ∈ D+

∞ such that b = Φn(xn), so
we obtain:

σϕt (πϕ(b)) = σϕt (πϕ(Φn(xn)) = Φn• (σ
ϕ
t (πϕ(xn))

and consequently σϕt (πϕ(xn)) ∈ πϕ(D+
∞) for all natural number n.

Therefore σϕt (πϕ(b)) ∈ πϕ(Φn(D+
∞) for all natural number n.

Let y belongs to C⊥ϕΦ , since Φ(CΦ) = CΦ, we have that for each c ∈ CΦ
ϕ(Φ(y)c) = ϕ(Φ(y)Φ(co)) = ϕ(yco) = 0

where c = Φ(co), with co ∈ CΦ ⊂ D+
∞. �

Now we deal with a QDS (M,Φ, ϕ) with ϕ-adjoint Φ].
We define D∞ (or with D∞(Φ) when we have to highlight the map Φ) the

following von Neumann algebra:

D∞ =
⋂
k∈Z

DΦk (3.8)

where for each integer k we denote:

Φk =
{

Φk k > 0
Φ]|k| k < 0

and DΦk the von Neumann algebra of the multiplicative domain of the dynamics
Φk.

Following Robinson [32] for each a, b ∈M and integer number k we define:
Sk(a, b) = Φk(a∗b)− Φk(a∗)Φk(b) ∈M (3.9)

and we have these simple relations:
a. Sk(a, a) > 0 for all a ∈M and integer k.
b. Sk(a, b)∗ = Sk(b, a) for all a, b ∈M and integer k.
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c. d ∈ D∞ if and only if Sk(d, d) = Sk(d∗, d∗) = 0 for all integer k.
d. d ∈ D∞ if and only if ϕ(Sk(d, d)) = ϕ(Sk(d∗, d∗)) = 0 for all integer k.
e. The map a, b ∈ M → ϕ(Sk(a, b)) for all integer k, is a sesquilinear form,

hence

|ϕ(Sk(a, b))|2 6 ϕ(Sk(a, a))ϕ(Sk(b, b)) , a, b ∈M .

Note that Φ(D∞) ⊂ D∞ and Φ](D∞) ⊂ D∞.
Indeed, for each element d ∈ D∞ and integer k we get:

ϕ(Sk(Φ(d),Φ(d)) = ϕ(Sk+1(d, d) = 0

and
ϕ(Sk(Φ](d),Φ](d)) = ϕ(Sk−1(d, d) = 0 .

Assuming that d∗ belongs to D∞ we have

ϕ(Sk(Φ(d)∗,Φ(d)∗) = ϕ(Sk(Φ](d)∗,Φ](d)∗) = 0 .

It follows that restriction of the map Φ to the von Neumann algebra D∞ is a
*-automorphism with Φ(Φ](d)) = Φ](Φ(d)) = d for all d ∈ D∞.

To sum up we have the following statement:

Proposition 3.6. — Let (M,Φ, ϕ) be a QDS. The restriction of Φ to D∞
denoted with Φ∞ is a *-automorphism of the von Neumann algebra D∞.

If B is a von Neumann sub-algebra of M such that the restriction of Φ to B is
a *-automorphism then B ⊂ D∞.

We have a (maximal) reversible QDS (D∞,Φ∞, ϕ∞) where the normal state ϕ∞
and the ϕ∞-adjoint Φ]∞ are respectively the restriction of ϕ and Φ] to the von
Neumann algebra D∞.

Proof. — We prove that if the restriction of Φ to B is an automorphism then
B ⊂ D∞.

As B ⊂ DΦn for all natural number n and if Ψ : B → B is the map such that
Ψ(Φ(b)) = Φ(Ψ(b)) = b for all b ∈ B then Ψ(b) = Φ](b) since

ϕ(aΨ(b)) = ϕ(Φ(aΨ(b))) = ϕ(Φ(a)Φ(Ψ(b)) = ϕ(Φ(a)b)) = ϕ(aΦ](b))

for all a ∈M.
It follows that B is also Φ]-invariant, hence B ⊂ DΦn] for all natural number

n. �

As it is clear that D∞ is Φk-invariant for all integer number k and is invariant
under automorphism group σϕt , by the previous decomposition theorem follows:

Proposition 3.7. — Let (M,Φ, ϕ) be a QDS, there is a conditional expectation
E∞ : M→ D∞ such that

a. ϕ ◦ E∞ = ϕ.
b. D

⊥ϕ
∞ = ker E∞.

c. M = D∞ ⊕D
⊥ϕ
∞ .

d. Φk(D⊥ϕ∞ ) ⊂ D
⊥ϕ
∞ for all integer number k.

e. E∞(Φk(a)) = Φk(E∞(a)) for all a ∈M and integer number k.
f. Hϕ = H∞⊕K∞ whereH∞ and K∞ denotes the linear closure of πϕ(D∞)Ωϕ

and of πϕ(D⊥ϕ∞ )Ωϕ respectively.



REVERSIBLE PART OF QUANTUM DYNAMICAL SYSTEMS: A REVIEW 59

Proof. — The statements (a), (b) and (c) are simple consequences of theorem 3.1.
For the statement (d), if d⊥ ∈ D

⊥ϕ
∞ then for each integer number k and x ∈ D∞,

we have ϕ(Φk(d⊥)∗x) = ϕ(d∗⊥Φ−k(x)) = 0 since Φ−k(x) ∈ D∞.
For the statement (e), for each a, b ∈M we obtain:

ϕ(bE∞(Φk(a))) = ϕ((b‖ + b⊥)E∞(Φk(a))) = ϕ(b‖E∞(Φk(a)) =
= ϕ(E∞(b‖Φk(a))) = ϕ(b‖Φk(a))) = ϕ(Φ−k(b‖)a) =
= ϕ(E∞(Φ−k(b‖)a)) = ϕ(E∞(Φ−k(b‖)a)) =
= ϕ(Φ−k(b‖)E∞(a)) = ϕ(b‖Φk(E∞(a)) =
= ϕ((b‖ + b⊥)Φk(E∞(a)) = ϕ(bΦk(E∞(a))

where we have written b = b‖ + b⊥ with b‖ = E∞(b). �

The QDS (D∞,Φ∞, ϕ∞) is called the reversible part of the QDS (M,Φ, ϕ).
Furthermore, a QDS is called completely irreversible if D∞ = C1.
In this case for each a ∈M we obtain a = ϕ(a)1 + a⊥ and we can write:

M = C1⊕ kerϕ .

In the decoherence theory, the set D∞ is called algebra of effective observables of
our QDS (see e.g. [4, 9]) and we highlight that the previous theorem is a particular
case of a more general theorem that can be found in [5, 24].

We notice also that for all natural number n we obtain

Φ]n(Φn(d)) = d , d ∈ D+
∞

and
Φn(D+

∞) ⊂ DΦ]n .

We conclude this section with some simple remarks.

Remark 3.8. — The algebra of effective observables is independent by the sta-
tionary state ϕ since

D∞ = CΦ . (3.10)
Indeed we have that D∞ ⊂

⋂
n∈N

Φn(D+
∞) since D∞ ⊂ D+

∞ and CΦ ⊂ D∞ by theorem

3.6.
Summarizing, if the quantum process (M,Φ) admits a stationary state ϕ and

the dynamic Φ admits a ϕ-adjoint then its reversible part is (CΦ,Φ∞).

Remark 3.9. — Let (M,Φ, ϕ) be a QDS, we denote with A(P) the von Neumann
algebra generated by the set of all orthogonal projections p ∈M such that Φk(p) =
Φk(p)2 for all integer number k. It is easily proved that D∞ = A(P) (see e.g [8]).

Remark 3.10. — If an orthogonal projection P ∈M satisfies the relation ϕ(P )−
ϕ(P )2 = 0 then P ∈ D∞.

Indeed by faithfulness of ϕ and by Schwartz inequality (1.1) we have Φk(P ) −
Φk(P )2 = 0 for all integer number k. Therefore, if our QDS is completely irre-
versible then we have ϕ(P ) − ϕ(P )2 > 0 for all no trivial orthogonal projection P
of M.

In section 6 we will find the conditions to have D∞ = C1 (see also [9] for the
continuous case and D+

∞ = C1).
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4. Decomposition theorem and linear contractions

We are going to study the relations between canonical decomposition of Nagy-
Fojas of linear contraction UΦ,ϕ [27] and the decomposition theorem 3.7, therefore
recalling the main statements of these topics.

A contraction T on the Hilbert space H is called completely non-unitary (c.n.u.)
if for no non zero, reducing subspace K for T , is T|K a unitary operator, where
T|K is the restriction of contraction T on the Hilbert space K. We set with DT =√
I − T ∗T the defect operator of the contraction T and it is well-known that

TDT = DT∗T .

Moreover, ||Tψ||| = ||ψ|| if, and only if DTψ = 0.
We consider the following Hilbert subspace of H:

H0 = {ψ ∈ H : ||Tnψ|| = ||ψ|| = ||T ∗nψ|| for all n ∈ N}. (4.1)
It is trivial to show that TnH0 = H0 and T ∗nH0 = H0 for all natural number n.

We then obtain the following canonical decomposition [27]:
Theorem 4.1 (Sz-Nagy and Fojas). — For every contraction T on H there is a

uniquely decomposition of H into an orthogonal sum of two subspace reducing T ;
we say H = H0⊕H1, such that T0 = T|H0 is unitary and T1 = T|H1 is c.n.u., where

H0 =
⋂
k∈Z

ker (DTk) and H1 = H⊥0

with
Tk =

{
T k k > 0
T ∗−k k < 0 .

We underline that the linear operators, T− = so − lim
n→+∞

T ∗nTn and T+ =
so− lim

n→+∞
TnT ∗n, exist in sense of strong operator (so) convergence (see [27] pag.

40) .
We now focus our attention on the quantum dynamical systems (M,Φ, ϕ).
We set V− = so − lim

n→+∞
U∗nΦ,ϕU

n
Φ,ϕ and V+ = so − lim

n→+∞
UnΦ,ϕU

∗n
Φ,ϕ, where UΦ,ϕ

that is the contraction as defined in (2.4).
It follows that for each a, b ∈M, we obtain:

lim
n→±∞

ϕ(Sn(a, b)) = 〈πϕ(a)Ωϕ, (I − V±)πϕ(b)Ωϕ〉 (4.2)

where Sn(a, b) is given by (3.9).
We recall that, by the proposition 3.7 we get Hϕ = H∞⊕K∞ with UkH∞ = H∞

and UkK∞ ⊂ K∞, where for every integer k

Uk =
{

UkΦ,ϕ k > 0
U∗−kΦ,ϕ k < 0 .

A simple consequence of proposition 2.2 is the following remark:
Remark 4.2. — For each integers k, we obtain that a ∈ DΦk if and only if

πϕ(a)Ωϕ ∈ ker(DUk) and πϕ(a∗)Ωϕ ∈ ker(DUk).
Therefore, H∞ ⊂ H0 because

πϕ(D∞)Ωϕ ⊂
⋂
k∈Z

πϕ(DΦk)Ωϕ ⊂
⋂
k∈Z

ker(DUk).
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We have shown that for each a, b ∈ M and natural number k follows that (see
[14] theorem 3.1):

lim
n→+∞

ϕ(Sk(Φn(a), b)) = 0. (4.3)

Indeed, for each natural numbers k and n

ϕ(Sk(Φn(a),Φn(b)) = ϕ(Sk+n(a, b))− ϕ(Sn(a, b)) ,

and by the relation (4.2) results that lim
n→+∞

(ϕ(Sk+n(a, b))− ϕ(Sn(a, b))) = 0.
Furthermore, for each natural number k and a, b ∈M

|ϕ(Sk(Φn(a), b))|2 6 ϕ(Sk(Φn(a),Φn(a))ϕ(Sk(b, b)) .

It follows that lim
n→+∞

ϕ(Sk(Φn(a), b) = 0.
We get a well-known statement [17, 24, 33]:

Proposition 4.3. — For all a ∈M, every σ-limit point of the set {Φk(a)}k∈N
belongs to the von Neumann algebra D∞.

Moreover, for each d⊥ in D
⊥ϕ
∞ we have:

lim
k→+∞

Φk(d⊥) = 0 and lim
k→+∞

Φ]k(d⊥) = 0

where the limits are in σ-topology.

Proof. — If y is a σ-limit point of {Φn(a)}n∈N, then there is a net {Φnj (a)}j∈N
such that y = lim

j→+∞
Φnj (a) in σ-topology. Furthermore, for each b ∈M

Sk(y, b) = σ − lim
j→+∞

[ Φk(Φnj (a)b)− Φk(Φnj (a))Φk(b) ] = σ − lim
j→+∞

Sk(Φnj (a), b)

then from (4.3) we obtain lim
j→+∞

ϕ(Sk(Φnj (a), b)) = 0 hence ϕ(Sk(y, b)) = 0 and in
the end follows that ϕ(Sk(y, y)) = 0 and Sk(y, y) = 0.

As that the adjoint is σ-continuous, then we have y∗ = lim
j→+∞

Φnj (a∗) and re-
peating the previous steps we find that Sk(y∗, y∗) = 0 hence y ∈ D∞.

Following to the last statement, we see that ||Φk(d⊥)|| 6 ||d⊥|| for all natural
number k and because the unit ball of the von Neumann algebra M is σ- compact,
we have proved that there is a subnet such that Φkα(d⊥)→ y ∈ D

⊥ϕ
∞ in σ-topology.

From the previous lemma, we can affirm that y ∈ D∞ ∩D
⊥ϕ
∞ as y = 0, then it can

be only lim
k→+∞

Φk(d⊥) = 0 in σ-topology. �

We have understood that the Hilbert space H∞, which is the linear closure of
πϕ(D∞)Ωϕ, is contained in H0. The next step is to understand when these two
Hilbert spaces are equal.

Let (M,Φ, ϕ) be a QDS, so we can define for each integer k, the unital Schwartz
map τk : M→M as

τk = Φ−k ◦ Φk , k ∈ Z . (4.4)
For every integer k

1. ϕ ◦ τk = ϕ ;
2. τk = τ ]k, where τ

]
k is the ϕ-adjoint of τk.
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Then for every integer k, we obtain the dynamical system {M, τk, ϕ} with

D∞(τk) =
⋂
j>0

D(τ jk) ,

where D(τ jk) denotes the multiplicative domains of map τ jk .
From decomposition theorem 3.1, for every integer k

M = D∞(τk)⊕D∞(τk)⊥ϕ

and following the proposition 3.4 we obtain that

Hϕ = H(k) ⊕K(k)

where H(k) and K(k) are the Hilbert spaces, respectively the closure of the linear
space πϕ(D∞(τk))Ωϕ and of πϕ(D∞(τk))⊥ϕ)Ωϕ.

Proposition 4.4. — If πϕ(DΦk)Ωϕ denotes the closure of the linear space
πϕ(DΦk)Ωϕ, it follows that

H0 =
⋂
k∈Z

πϕ(DΦk)Ωϕ ,

where the H0 is the Hilbert space of Nagy decomposition of theorem 4.1.
Furthermore, for each a ∈M, ξ0 ∈ H0 and integer k

UkΦ,ϕπϕ(a)ξ0 = πϕ(Φk(a))UkΦ,ϕξ0 . (4.5)

Proof. — We assume that D(τk) ⊂ DΦk for all integers k.
In fact, if a ∈ D(τk), then

ϕ(Φk(a∗a)) = ϕ(a∗a) = ϕ(τk(a∗a)) = ϕ(τk(a∗)τk(a)) =
= ϕ(Φ−k(Φk(a)∗)Φ−k(Φk(a))) 6
6 ϕ(Φ−k(Φk(a)∗Φk(a))) = ϕ(Φk(a∗)Φk(a)) 6
6 ϕ(Φk(a∗a)).

This proves that ϕ(Sk(a, a)) = 0 and, in the same way, ϕ(Sk(a∗, a∗)) = 0 for all
integers k.

We have proved that

D∞(τk) =
⋂
j∈ N

Dτj
k
⊂ Dτk ⊂ DΦk .

If ξ0 ∈ H0, then for each k integer and natural number n

(U∗kΦ,ϕ,U
k
Φ,ϕ)nξ0 = ξ0

and, for each r⊥ ∈ D∞(τk)⊥ϕ , we can write that

〈πϕ(r⊥)Ωϕ, ξ0〉 =
〈
(U∗kΦ,ϕ,U

k
Φ,ϕ)n πϕ(r⊥)Ωϕ, ξ0

〉
= 〈πϕ(τnk (r⊥)Ωϕ, ξ0〉

and for each integer number k result:

lim
n→+∞

〈πϕ(τnk (r⊥)Ωϕ, ξ0〉 = 0

because τnk (r⊥) −→ 0 as n→∞ in σ-topology.
It follows that H0 ⊂ [πϕ(D∞(τk)⊥ϕ)Ωϕ]⊥ = [Kk]⊥.
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Therefore, for every integers k, we obtain:

H0 ⊂ H(k) ⊂ πϕ(DΦk)Ωϕ =⇒ H0 ⊂
⋂
k∈Z

πϕ(DΦk)Ωϕ.

Let assume ξ0 ∈
⋂
k∈Z πϕ(DΦk)Ωϕ, for every integers k, we have a net dα,k ∈ DΦk

such that πϕ(dα,k)Ωϕ → ξ0 as α→∞ and, for k > 0, we can obtain

U∗kΦ,ϕU
k
Φ,ϕξ0 = U∗kΦ,ϕU

k
Φ,ϕ lim

α
πϕ(dα,k)Ωϕ = lim

α
U∗kΦ,ϕU

k
Φ,ϕπϕ(dα,k)Ωϕ =

= lim
α
πϕ(dα,k)Ωϕ = ξ0 .

In the same way, for k > 0, we have got UkΦ,ϕU∗kΦ,ϕξ0 = ξ0.
It follows that ⋂

k∈Z
πϕ(DΦk)Ωϕ ⊂ H0.

The relationship (4.5) is a straightforward. �

We note that, for each a ∈M and d⊥ ∈ D
⊥ϕ
∞

lim
n→∞

ϕ(a∗Φn(d⊥)a) = 0 (4.6)

because, for each d⊥ ∈ D
⊥ϕ
∞ , we obtain Φn(d⊥)→ 0 as n→∞ in σ-topology.

The polarization identity allows to say that
lim
n→∞

ϕ(aΦn(d⊥)b) = 0, a, b ∈M, d⊥ ∈ D⊥ϕ∞

so because Uϕ is a contraction, it follows that for each ξ ∈ Hϕ and ψ ∈ K∞
lim
n→∞

〈ξ, UnΦ,ϕψ〉 = 0 and lim
n→∞

〈ξ, U∗nΦ,ϕψ〉 = 0 . (4.7)

The proposition 4.5 is a simple statement on the Hilbert spaces H∞ and H0.

Proposition 4.5. — If Φn(d⊥) → 0 [Φ]n(d⊥) → 0] as n → ∞ in s-topology
for all d⊥ ∈ D

⊥ϕ
∞ ; then H∞ = H0 and V+ = P∞ [V− = P∞] .

Proof. — We observe that, for every ψ ∈ K∞, ||UnΦ,ϕψ|| → 0 as n→∞, because
for each k ∈ N there is d⊥k ∈ D

⊥ϕ
∞ such that ||ψ − πϕ(d⊥k )Ωϕ|| < 1/k; as UnΦ,ϕ is a

linear contraction, for all natural number n, we obtain:

||UnΦ,ϕψ|| <
1
k

+ ϕ(Φn(d⊥k )∗Φn(d⊥k )).

If ξ0 ∈ H0 then ξ0 = ξ‖ + ξ⊥ with ξ‖ ∈ H∞ and ξ⊥ ∈ K∞.
As ξ⊥ = ξ0 − ξ‖ ∈ H0

||ξ‖||+ ||ξ⊥|| = ||UnΦ,ϕξ0|| = ||UnΦ,ϕξ‖ + UnΦ,ϕξ⊥|| = ||ξ‖||+ ||UnΦ,ϕξ⊥||
for all natural numbers n then follows that ξ⊥ = 0.

Moreover, for each ξ ∈ Hϕ, we obtain that Un∗Φ,ϕU
n
Φ,ϕξ = ξ0 + Un∗Φ,ϕU

n
Φ,ϕξ1 with

ξi ∈ Hi for i = 1, 2 and V+ξ = ξ0, because ||UnΦ,ϕξ1|| → 0 as n→∞. �

Remark 4.6. — We recall that a QDS {M,Φ, ω} is mixing, if
lim
n→∞

ϕ(aΦn(b)) = ϕ(a)ϕ(b) , a, b ∈M. (4.8)

By the relation (4.6), we can obtain that {M,Φ, ω} is mixing if and only if its
reversible part (D∞,Φ∞, ϕ∞) is mixing.
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Furthermore, let {M,Φ, ω} be a mixing Abelian QDS, then there is a measur-
able dynamics space (X,A, µ, T ) such that D∞ is isomorphic to the von Neumann
algebra L∞(X,A, µ) of the measurable bounded function on X. If the set X is a
metric space and ϕ∞ is the unique stationary state of D∞ for the dynamics Φ∞,
then by the corollary 4.3 of [13] follows that D∞ = C1.

5. Some properties of reversible part of a QDS

In this section we give some consequences of the previous propositions.

5.1. Ergodicity properties. We prove that the ergodic properties of a quantum
dynamical system depends on its reversible part, determined from the algebra of
the effective observables D∞.

Let assume a QDS (M,Φ, ϕ) with ϕ-adjoint Φ]; it is ergodic if:

lim
N→∞

1
N + 1

N∑
k=0

[
ϕ(aΦk(b))− ϕ(a)ϕ(b)

]
= 0 , a, b ∈M , (5.1)

while it is weakly mixing if:

lim
N→∞

1
N + 1

N∑
k=0

∣∣ϕ(aΦk(b))− ϕ(a)ϕ(b)
∣∣ = 0 , a, b ∈M . (5.2)

We will use again the following notations a‖ = E∞(a) while a⊥ = a − a‖ for all
a ∈ M, where E∞ : M → D∞ is the conditional expectation of decomposition
theorem 3.7.

We have the following:

Proposition 5.1. — The QDS (M,Φ, ϕ) is ergodic [weakly mixing] if and only
if the reversible QDS (D∞,Φ∞, ϕ∞) is ergodic [weakly mixing].

Proof. — For each a, b ∈M we have got:

ϕ(aΦk(b))− ϕ(a)ϕ(b) = ϕ(aΦk(b‖)) + ϕ(aΦk(b⊥))− ϕ(a‖)ϕ(b‖) .

Moreover, lim
N→∞

1
N + 1

N∑
k=0

ϕ(aΦk(b⊥)) = 0, because by relation (4.6) for every a ∈

M we have lim
k→∞

ϕ(aΦk(b⊥)) = 0, hence

lim
N→∞

1
N + 1

N∑
k=0

[
ϕ(aΦk(b))− ϕ(a)ϕ(b)

]
=

= lim
N→∞

1
N + 1

N∑
k=0

[
ϕ(aΦk(b‖))− ϕ(a‖)ϕ(b‖)

]



REVERSIBLE PART OF QUANTUM DYNAMICAL SYSTEMS: A REVIEW 65

with ϕ(aΦk(b‖)) = ϕ(a‖Φk(b‖))+ϕ(a⊥Φk(b‖)) and ϕ(a⊥Φk(b‖)) = 0 so the element
a⊥Φk(b‖) ∈ D

⊥ϕ
∞ . It follows that

lim
N→∞

1
N + 1

N∑
k=0

[
ϕ(aΦk(b))− ϕ(a)ϕ(b)

]
=

= lim
N→∞

1
N + 1

N∑
k=0

[
ϕ∞(a‖Φk∞(b‖))− ϕ∞(a‖)ϕ∞(b‖)

]
.

For the weakly mixing properties, we obtain

lim
N→∞

1
N + 1

N∑
k=0

∣∣ϕ(aΦk(b))− ϕ(a)ϕ(b)
∣∣ =

= lim
N→∞

1
N + 1

N∑
k=0

∣∣ϕ(a‖Φk(b‖)) + ϕ(a⊥Φk(b‖)) + ϕ(aΦk(b⊥))− ϕ(a)ϕ(b)
∣∣ =

= lim
N→∞

1
N + 1

N∑
k=0

∣∣ϕ∞(a‖Φk∞(b‖))− ϕ∞(a‖)ϕ∞(b‖) + ϕ(aΦk(b⊥))
∣∣ .

Moreover

lim
N→∞

1
N + 1

N∑
k=0
|ϕ(aΦk(b⊥))| = 0, a, b ∈M .

If our QDS (M,Φ, ϕ) is weakly ergodic then

lim
N→∞

1
N + 1

N∑
k=0

∣∣ϕ∞(a‖Φk∞(b‖))− ϕ∞(a‖)ϕ∞(b‖)
∣∣ = 0 ,

therefore ∣∣ |ϕ∞(a‖Φk∞(b‖))− ϕ∞(a‖)ϕ∞(b‖)| − |ϕ(aΦk(b⊥))|
∣∣ 6

6
∣∣ϕ(aΦk(b))− ϕ(a)ϕ(b)

∣∣ ,
while if the reversible QDS (D∞,Φ∞, ϕ∞) is weakly mixing, then our QDS is weakly
mixing because∣∣ϕ(aΦk(b))− ϕ(a)ϕ(b)

∣∣ 6 ∣∣ϕ∞(a‖Φk∞(b‖))− ϕ∞(a‖)ϕ∞(b‖)
∣∣+
∣∣ϕ(aΦk(b⊥))

∣∣ .
�

5.2. Particular *-Banach algebra. Let (M,Φ, ϕ) be a QDS and E∞ : M→ D∞
the map of proposition 3.7. We can define into the set M another frame of *-Banach
algebra changing the product among elements of M as follows:

a× b = a‖ b‖ + a‖ b⊥ + a⊥ b‖ , a, b ∈M , (5.3)

where we have denoted with a‖ = E∞(a) and with a⊥ = a− a‖ for all a ∈M.
We want to stress once more that a‖ b⊥, a⊥ b‖ ∈ D

⊥ϕ
∞ since E∞(a‖ b⊥) =

a‖E∞( b⊥) = 0 and E∞(a⊥ b‖) = E∞(a⊥) b‖ = 0.
We then obtain that

a⊥ × b⊥ = 0 .
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The (M,+,×) is a Banach *-algebra with a unit, because for each a, b ∈M we get:

||a× b|| 6 ||a|| ||b|| .

We define M[ this Banach *-algebra.
However M[ it is not a C*-algebra as for each d⊥ ∈ D

⊥ϕ
∞ , d⊥ 6= 0 we have that

its spectrum in M[ is σ(d⊥) ⊂ {0}, while ||d⊥|| 6= 0.
Another consequence is also that for each a, b ∈M results

Φ(a× b) = Φ(a)× Φ(b) .

Consequently that Φ : M[ →M[ is a *-homomorphism of Banach algebra.
For ϕ-adjoint Φ] we have:

ϕ(a× Φ(b)) = ϕ(a‖ Φ(b‖)) = ϕ(Φ](a‖) b‖) = ϕ(Φ](a)× b)

with Φ] : M[ →M[ *-homomorphism of Banach algebra.
Moreover as ϕ(a∗ × a) = ϕ(a∗‖a‖), if ϕ(a∗ × a) = 0 then a‖ = 0 and then ϕ is

not a faithful state on M[.
It is easy to prove that for each a, b ∈ M[ we have ϕ(a∗ × b∗ × b × a) =

ϕ(a∗‖ b∗‖ b‖ a‖) and then

ϕ(a∗ × b∗ × b× a) 6 ||b|| ϕ(a∗ × a)

so we can make the GNS representation (H[ϕ, π[ϕ,Ω[ϕ) of the state ϕ on Banach *
algebra M[ with the following properties [12]:

The representation π[ϕ : M[ → B(H[ϕ) is a continuous map, i.e. ||π[ϕ(a)|| 6 ||a||
for all a ∈M[, while Ω[ϕ is a cyclic vector for *-algebra π[ϕ(M[) and

ϕ(a) = 〈Ω[ϕ, π[ϕ(a)Ω[ϕ〉[ , a ∈M[ .

Furthermore we can find a unitary operator U [ϕ : H[ϕ → H[ϕ such that

π[ϕ(Φ(a) = U [ϕπ
[
ϕ(a)U [∗ϕ , a ∈M[ ,

because Φ and Φ] are *-homomorphism of Banach algebra and

U [ϕπ
[
ϕ(a)π[ϕ(b)Ω[ϕ = π[ϕ(Φ(a× b))Ω[ϕ = π[ϕ(Φ(a))π[ϕ(Φ(b))Ω[ϕ =

= π[ϕ(Φ(a))U [ϕπ[ϕ(b)Ω[ϕ .

The linear map Z : H[ϕ → Hϕ so defined Zπ[ϕ(a)Ω[ϕ = πϕ(E∞(a))Ωϕ for all a ∈M

is an isometry with adjoint Z∗πϕ(a)Ωϕ = π[ϕ(E∞(a))Ω[ϕ for all a ∈M[.
Furthermore, we have ZU [nϕ = ZUnΦ,ϕ for all natural number n.

5.3. Abelian algebra of effective observables. We are going to prove that for
every QDS (M,Φ, ϕ), there is an abelian algebra A ⊂ D∞ that contains the center
Z(D∞) of D∞ and with Φ(A) ⊂ A.

The question of the existence of an abelian subalgebra which remains invariant
under the action of a given quantum Markov semigroup, is widely debated in [2, 31].

We consider a discrete quantum process (M,Φ) with a Φ *-automorphism defin-
ing as P(M) the pure states of M.

It is well-known that if ω(a) = 0 for all ω ∈ P(M) then a = 0 (see e.g. [6]).
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For each ω ∈ P(M) with Dω, we set the multiplicative domain of the unital
completely positive map a ∈M→ ω(a)I ∈M then

Dω = {a ∈M : ω(a∗a) = ω(a∗)ω(a) and ω(aa∗) = ω(a)ω(a∗)}
is a von Neumann sub-algebra of M.

Proposition 5.2. — The von Neumann algebra

A =
⋂
{Dω : ω ∈ P(M)}

is an abelian algebra with Φ(A) ⊂ A. Furthermore, for every stationary state
ϕ of our quantum process (M,Φ), there is a ϕ-invariant conditional expectation
Eϕ : M→ A such that

Eϕ ◦ Φ = Φ

Proof. — If a, b ∈ A, for each pure state ω of M, we have ω(ab) = ω(a)ω(b) =
ω(ba), then ω(ab− ba) = 0 which brings to ab− ba = 0.

The von Neumann algebra A is Φ-invariant Φ(A) ⊂ A as ω ◦ Φ ∈ P(M) for all
ω ∈ P(M) because Φ is a *-automorphism. Then for each a ∈ A we have:

ω(Φ(a∗)Φ(a)) = ω(Φ(a∗a)) = ω(Φ(a∗))ω(Φ(a))
which proves Φ(a) ∈ A.

Let {σtϕ}t∈R be a modular group related to the GNS representation (Hϕ, πϕ,Ωϕ)
of ϕ. Since the state ϕ is normal and faithful, we have πϕ(A)′′ = πϕ(A) and
σtϕ(πϕ(A)) ⊂ πϕ(A) for all t ∈ R.

Since σtϕ is a *-automorphism, for each a ∈ A

ω(σtϕ(a∗)σtϕ(a)) = ω(σtϕ(a∗a)) = ω(σtϕ(a∗))ω(σtϕ(a)) , ω ∈ P(M) ,
so ω ◦ σtϕ ∈ P(M) for all real number t.

From Takesaki theorem [35], we obtain that there is a conditional expectation
Eϕ : M→ A such that

πϕ(Eϕ(m)) = ∇∗πϕ(m)∇ , m ∈M ,

where ∇ : πϕ(A)Ωϕ −→ Hϕ is the embedding map (see also [1]).
We recall that every pure state is multiplicative on the center Z(M) = M

⋂
M′

of M (see [26]), so we have Z(M) ⊂ Dω for all pure states ω and A = M in abelian
case. �

Having (M,Φ, ϕ) as a QDS with ϕ-adjoint Φ], by the decomposition theorem,
we have a *-automorphism Φ∞ : D∞ → D∞ with D∞ von Neumann algebra, so by
the previous proposition, we can say that there exists an abelian algebra A ⊂ D∞
with Φ(A) ⊂ A getting the following commutative diagram:

M
Φ−→ M

i∞ ↑ ↓ E∞
D∞

Φ∞−→ D∞
io ↑ ↓ Eϕ

A Φo−→ A
where i∞ and io are the embeddig of D∞ and A respectively, while Φ∞ and Φo are
the restriction of Φ to D∞ and A respectively.

We notice that if the von Neumann algebra M is abelian then A = D∞.
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5.4. Dilation properties. A reversible QDS (M̂, Φ̂, ϕ̂) is called a dilation of the
QDS (M,Φ, ϕ), if the quantum process (M,Φ) is a sub-process of (M̂, Φ̂) with
conditional expectation E such that [22]:

ϕ̂ = ϕ ◦ E . (5.4)

We want to underline that the problem of establishing when a given QDS admits
a reversible dilation is still largely open [16].

The view point of the dilation theory is the reverse of the open dynamical system
theory (see [18]). Briefly, we have a little physical system, indicated by S, which
interacting with its environment, the reservoir R. The composed system S + R
is considered to be isolated, so that its dynamics is a *-automorphism. The open
dynamical system theory is interested in the reduced dynamics, i.e. a sub-process
of our reversible process under assumption that the initial state ϕ̂ of S+R satisfies
the (5.4).

The following proposition shows the connection between the algebra of effective
observable and the reversible dilation (see also [29]).

Proposition 5.3. — If (M̂, Φ̂, ϕ̂) is a dilation of QDS (M,Φ, ϕ), then

Φ̂(i(a) = i(Φ(a)) if and only if a ∈ DΦ.

Proof. — Having i(Φ(a)∗) i(Φ(a)) = Φ̂(i(a)∗)Φ̂(i(a)) follows that

Φ(a∗) Φ(a) = E(i(Φ(a)∗Φ(a))) = E(Φ̂(i(a∗a)) = Φ(a∗a).

For vice-versa, if y = i(Φ(a))− Φ̂(i(a)), then we have

y∗y = i(Φ(a∗a))− Φ̂(i(a∗)i(Φ(a))− i(Φ(a∗))Φ̂(i(a)) + Φ̂(i(a∗a))

because a ∈ DΦ. It follows that E(y∗y) = 0 with E faithful map, then y = 0. �

Let M = D∞⊕D
⊥ϕ
∞ be the decomposition of theorem 3.1 of our QDS (M,Φ, ϕ)

and E∞ : M→ D∞ the conditional expectation defined in proposition 3.7, we have
the following remark.

Remark 5.4. — For each a ∈M and integer k, we have:

Φ̂k(i(E∞(a))) = i(Φk(E∞(a)).

We observe that

X ∈ i(D∞)⊥ϕ̂ if and only if E(X) ∈ D⊥ϕ∞

therefore i(D∞)⊥ϕ̂ = {X ∈ M̂ : ϕ̂(X∗i(d)) = 0 ∀d ∈ D∞} and ϕ̂(X∗i(d)) =
ϕ(E(X∗)d) for all d ∈ D∞.

We can write the following algebraic decomposition of linear spaces:

M̂ = i(D∞)⊕ i(D∞)⊥ϕ̂ ,

and the unital completely positive map Ê∞ = i◦E∞ ◦E is a conditional expectation
from M̂ onto i(D∞).
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6. Decomposition theorem and Cesaro mean

In this section, we are going to study the connection between the decomposition
theorem 3.1 and some ergodic results briefly introduced here below.

The following proposition is well-known [21, 25]:

Proposition 6.1. — Let {M, τ, ω} be a QDS. We consider the Cesaro mean:

sn = 1
n+ 1

n∑
k=0

τk.

Then, there is a ω-conditional expectation E of M onto fixed point

F(τ) = {a ∈M : τ(a) = a}

such that:
lim
n→0
||φ ◦ sn − φ ◦ E|| = 0 , φ ∈M∗ .

A simple consequence of the proposition 6.1 is the following remark:

Remark 6.2. — {M, τ, ω} is ergodic if, and only if F(τ) = C1 .

Assuming (M,Φ, ϕ) be a QDS and τk : M → M the Schwartz map defined in
(4.4) it follows

Proposition 6.3. — For each integer k, we obtain:

F(τk) = DΦk .

Proof. — Without lost generality we set k = 1, then τ1 = Φ] ◦ Φ.
If x ∈ F(τ1), we can write ϕ(Φ(x∗)Φ(x)) = ϕ(x∗τ1(x)) = ϕ(x∗x) = ϕ(Φ(x∗x)),

then x ∈ DΦ. The converse is proved similarly. �

Now let us ask when D∞ is trivial algebra (see also [9] proposition 15).

Proposition 6.4. — If D∞ = C1, then the normal state ϕ is of asymptotic
equilibrium and the QDS (M,Φ, ϕ) is ergodic.

Proof. — By decomposition theorem M = C1⊕D⊥ϕ∞ and for each a ∈M, results
that a = ϕ(a)1 + a⊥ with a⊥ ∈ D

⊥ϕ
∞ . It follows that

Φn(a) = ϕ(a)1 + Φn(a⊥)

and Φn(a⊥)→ 0 in σ-top. . �

A simple consequence of the previous propositions is

Corollary 6.5. — If the QDS {M, τk, ϕ} is ergodic for some integer k, then
D∞ = C1.

Proof. — If we have ergodicity, then F(τk) = DΦk = C1. �

Summarizing:

τ1 ergodic =⇒ Φ completely irreversible =⇒ Φ ergodic .

We can declare that, if (M,Φ, ϕ) is a QDS with Φ homomorphism, we obtain
τ1 = Φ] ◦ Φ = id. Hence while (M,Φ, ϕ) can be ergodic, the dynamical system
{M, τ1, ϕ} is not ergodic (if ϕ is not a multiplicative functional).
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Example 6.6. — Let Mn(C) be the complex n-dimensional matrix algebra and
we consider the unital completey positive map Φ : Mn(C) → Mn(C) which fix
diagonals.

It well known [23] that these maps have the form:
Φ(X) = A ∗X + I ∗X, X ∈Mn(C)

where ∗ denote the Hadmard product, I denotes the identity matrix, A is a self-
adjoint matrix with zero diagonal which satisfies A+ I > 0.

Since A ∗ I = 0, for each natural number n we have:
Φn(X) = A(n) ∗X + I ∗X , X ∈Mn(C)

with

A(n) =
k︷ ︸︸ ︷

A ∗A ∗ . . . ∗A .
We consider the following unital completely positive map Φ between M2(C):(

x1,1 x1,2
x2,1 x2,2

)
−→

(
x1,1 ax1,2
ax2,1 x2,2

)
where a is real number with −1 6 a 6 1 and ϕ the faithful state

ϕ(X) = tr(X) = x1,1 + x2,2.

QDS (M2(C),Φ, ϕ(X)) is not ergodic because for each X,Y ∈Mn(C) we obtain

lim
N→∞

1
N + 1

N∑
k=0

[
tr(XΦk(Y ))− tr(X)tr(Y )

]
= −x1,1y2,2 − x2,2y1,1.

The multiplicative domains of map Φn is given by

DΦn =
(
x1,1 0

0 x2,2

)
, n ∈ N

which is an abelian algebra isomorphic to C⊕ C.
Furthermore, for each X,Y ∈Mn(C) results that

tr(XΦ(Y )) = tr(Φ(X)Y ).
Therefore Φ] = Φ and τk = Φ2k for all integers numbers k.

Summarizing we have that D∞ = C⊕C and the automorphism Φ∞ : D∞ → D∞
is the identity map.

For each integer k, we consider the Schwartz map:

Sn,k = 1
n+ 1

n∑
j=0

τ jk . (6.1)

From proposition 6.1 we have a positive map Ek : M→M such that
||φ ◦ Sn,k − φ ◦ Ek|| → 0 , φ ∈M∗

and Ek is the conditional expectation related of von Neumann algebra DΦk of
theorem 3.1. Therefore Ek : M→ DΦk and ϕ ◦ Ek = ϕ, for all integers number k.

From relation 2.6 results that
Eh ◦ Ek = Ek , k > h > 0

then follows DΦk ⊂ DΦh for all k > h.
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For each a ∈ M result ||Ek(a)|| 6 ||a|| for all integers k and, if we apply the
σ-compactness property for the bounded net {Ek(a)}k∈N of von Neumann algebra
M, then we obtain that there is at least a σ-limit point E+(a), therefore, there is a
net {Enα(a)}α such that E+(a) = σ − limα Enα(a).

We obtain that E+(a) ∈ DΦk for all natural number k because, for each a ∈M
follows Eh(Enα(a)) = Enα(a) when nα > h. Since Eh are normal maps, it follows
that

Eh(E+(a)) = E+(a) , h ∈ N.
Furthermore, for each x ∈ D+

∞ we obtain that

ϕ(xa) = lim
α→∞

ϕ(Enα(xa)) = lim
α→∞

ϕ(xEnα(a)) = ϕ(xE+(a)) .

It follows that we get a unique σ-limit point E+(a) for the net {En(a)}n∈N.
Therefore, we obtain a map E+ : M→ D+

∞.
Moreover, Enα(E+(a)) = E+(a) for all α, then E2

+ = E+ and for Tomiyama [36]
the positive map E+ is a conditional expectation such that ϕ ◦ E+ = ϕ; precisely it
is the conditional expectation of relation (3.6).

We can also prove the following

Proposition 6.7. — Let {M,Λk, ϕ}k∈N be a family of QDS. We consider the
contraction Vk : Hϕ → Hϕ, defined in (2.4), related to Schwartz map Λk:

Vkπϕ(a)Ωϕ = πϕ(Λk(a))Ωϕ , a ∈M .

If || [V ∗k − V ∗h ] ξ|| → 0 as h, k → ∞ for all ξ ∈ Hϕ, then there is a unital positive
map Λ : M→M, such that

||φ ◦ Λk − φ ◦ Λ|| → 0 (6.2)

as k →∞ for each φ ∈M∗ with

ϕ(Λ(a∗)Λ(a)) 6 ϕ(a∗a) , a ∈M

and ϕ ◦ Λ = ϕ.

Proof. — Simple consequence of proposition 1.1 of [25] �

For each natural number n, we consider the following Schwartz map:

Zn = 1
2n+ 1

n∑
k=−n

τk .

It is obvious that ϕ is a stationary state for Zn with ϕ(xZn(y)) = ϕ(Zn(x)y) for
all x, y ∈M.

Moreover, for each a ∈M results

πϕ(Zn(a))Ωϕ = 1
2n+ 1

n∑
k=−n

πϕ(τk(a))Ωϕ =

= 1
2n+ 1

n∑
k=0

U∗kΦ,ϕU
n
Φ,ϕπϕ(a))Ωϕ +

+ 1
2n+ 1

n∑
k=1

UkΦ,ϕU
∗k
Φ,ϕπϕ(a))Ωϕ
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and because U∗nΦ,ϕU
n
Φ,ϕ → V+ and UnΦ,ϕU∗nΦ,ϕ → V− in strong operator topology, we

obtain:
πϕ(Zn(a))Ωϕ →

1
2(V+ + V−)πϕ(a)Ωϕ

From the previous proposition follows that there is a ϕ invariant Schwartz map
Z : M→M such that:

||φ ◦ Zn − φ ◦ Z|| → 0 , φ ∈M∗

and
πϕ(Z(a))Ωϕ = 1

2(V+ + V−)πϕ(a)Ωϕ .

We consider the decomposition M = D∞ ⊕ D
⊥ϕ
∞ , for each a = a‖ + a⊥ ∈ M it

results:
Z(a‖ + a⊥) = a‖ + Z(a⊥)

with Z(a⊥) ∈ D
⊥ϕ
∞ .

We notice that, if Φn(d⊥) → 0 and Φ]n(d⊥) → 0 as n → ∞ in s-topology for
all d⊥ ∈ D

⊥ϕ
∞ (see proposition 4.5), Z(d⊥) = 0 for all d⊥ ∈ D

⊥ϕ
∞ . We have a ϕ

invariant Schwartz map Z : M→ D∞, such that

Z(xa) = xZ(a), x ∈M, a ∈ D∞ .

It follows that Z is the conditional expectation E∞ of proposition 3.7.
We give an application of the previous results to quantum statistical inference

theory, for further details, see [3, 19].
Let M be a von Neumann algebra and S a family of normal states of M∗. The

sub-algebra Mo ⊂M is called sufficient for (M,S) if for each a ∈M exists â ∈Mo

such that ω(a) = ω(â) for all ω ∈ S.
We have the following result (see also [19] theorem 3):

Proposition 6.8. — Let (M,Φ, ϕ) a quantum dynamical system, S a family
of normal states of M∗ and τk : M → M the Schwartz map defined in 4.4. If for
ω ∈ S we have:

ω ◦ τk = ω , k ∈ N (6.3)
then D+

∞ is sufficient for (M,S).

Proof. — By relation (6.3), we obtain that ω ◦ τ jk = ω for all j ∈ N. It follows
that ω ◦ Sn,k = ω for all natural numbers j, k, where Sn,k is the sum (6.1).

Since ω is normal state we have ω ◦ Ek = ω for all k ∈ N, where Ek is the
conditional expectation Ek : M→ DΦk .

Therefore, we can say that ω(E+(a)) = ω(a) for all a ∈M and E+ is the condi-
tional expectation E+ : M→ D+

∞. �

We notice that if the family S is Φ and Φ] stationary, i.e. for every ω ∈ S

ω ◦ Φ = ω , ω ◦ Φ] = ω

the condition 6.3 is fulfilled.
Moreover, with similar arguments of the previous proposition, if Φn(d⊥) → 0

and Φ]n(d⊥)→ 0 as n→∞ in s-topology for all d⊥ ∈ D
⊥ϕ
∞ , then D∞ is sufficient

for (M,S).
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7. Conclusions

In this work, we studied the properties of the maximal reversible sub-system of
a quantum dynamical system (QDS), called the reversible part. We proved that
the ergodic properties of a QDS are induced by its reversible part and if it is trivial
the QDS is ergodic.

We called a QDS completely irreversible when its reversible part is trivial, so
that if the QDS is not ergodic, then it is not completely irreversible. Furthermore
we given some conditions for the completely irreversibility.

The von Neumann algebra of our QDS has an algebraic decomposition in two
linear spaces, in which one of them is constituted by the observable algebra of
the reversible part (algebra of effective observables). We studied properties of this
algebraic decomposition at the level of Hilbert spaces, and its relationships with
the Nagy-Fojas decomposition for the linear contractions related to our QDS.
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