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ON HARDER-NARASIMHAN FILTRATIONS AND THEIR
COMPATIBILITY WITH TENSOR PRODUCTS

CHRISTOPHE CORNUT

Abstract.  We attach buildings to modular lattices of finite length and show that they
yield a natural framework for a metric version of the Harder-Narasimhan formalism. We
establish a sufficient condition for the compatibility of Harder-Narasimhan filtrations with
tensor products and verify our criterion in various cases coming from p-adic Hodge theory.
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The Harder-Narasimhan formalism, as set up for instance by André in [1], re-
quires a category C with kernels and cokernels, along with rank and degree functions

rank : skC— N and deg:skC—R

on the skeleton of C, subject to various axioms. It then functorially equips every
object X of C with a Harder-Narasimhan filtration Fgn(X) by strict subobjects.
This categorical formalism is very nice and useful, but it does not say much about
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4 C. Cornut

what Fpn(X) really is. The build-in characterization of this filtration only in-
volves the restriction of the rank and degree functions to the poset Sub(X) of strict
subobjects of X, and a first aim of this paper is to pin down the relevant formalism.

André’s axioms on (C,rank) imply that the poset Sub(X) is a modular lattice of
finite length [14]. Thus, starting in section 2 with an arbitrary modular lattice X of
finite length, we introduce a space F(X) of R-filtrations on X. This looks first like a
combinatorial object with building-like features: apartments, facets and chambers.
The choice of a rank function on X equips F(X) with a distance d, and we show
that (F(X),d) is a complete, CAT(0)-metric space, whose underlying topology and
geodesic segments do not depend upon the chosen rank function. The choice of a
degree function on X amounts to the choice of a concave function on F(X), and we
show that a closely related continuous function has a unique minimum F € F(X):
this is the Harder-Narasimhan filtration for the triple (X, rank, deg). The fact that
modular lattices provide a natural framework for the Harder-Narasimhan theory
was discovered independently by Hugues Randriambololona, see [20, §1].

In section 3, we derive our own Harder-Narasimhan formalism for categories
from this Harder-Narasimhan formalism for modular lattices. It differs slightly
from André’s: we are perhaps a bit more flexible in our axioms on C, but a bit
more demanding in our axioms for the rank and degree functions.

When the category C is also equipped with a k-linear tensor product, is the
Harder-Narasimhan filtration compatible with this auxiliary structure? Many cases
have already been considered and solved by ad-hoc methods, often building on
Totaro’s pioneering work [22], which itself relied on tools borrowed from Mumford’s
Geometric Invariant Theory [18]. Trying to understand and generalize the latest
installment of this trend [17], we came up with some sort of axiomatized version
of its overall strategy in which the GIT tools are replaced by tools from convex
metric geometry. This is exposed in section 4, which gives a numerical criterion for
the compatibility of HN-filtrations with various tensor product constructions. Our
approach simultaneously yields some results towards exactness of HN-filtrations,
which classically required separate proofs, often using Haboush’s theorem [15].

In the last section, we verify our criterion in three cases (which could be combined
as explained in section 4.3.2): filtered vector spaces (5.1), normed vector spaces
(5.2) and normed p-modules (5.3). The first case has been known for some times,
see for instance [9]. The second case seems to be new, and it applies for instance to
the isogeny category of sthukas with one paw, as considered in Scholze’s Berkeley
course or in [2]. The third case is a mild generalization of [17, 3.1.1].

Acknowledgements. — I would like to thank Brandon Levin and Carl Wang-
Erickson for their explanations on [17]. In my previous attempts to deal with the
second and third of the above cases, a key missing step was part (3) of the proof of
proposition 5.6. The related statement appears to be lemma 3.6.6 of [17]. Finally,
I would like to end this introduction with a question: in all three cases, the semi-
stable objects of slope 0 form a full subcategory C° of C which is a neutral k-linear
tannakian category.

What are the corresponding Tannaka groups?
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2. THE HARDER-NARASIMHAN FORMALISM FOR MODULAR LATTICES
2.1. Basic notions. We refer to [14] for all things pertaining to basic lattice theory.

2.1.1. A lattice is a partially ordered set (a poset) (X, <) such that every pair of
elements (z,y) € X has a meet x V y := sup{z,y} and a join x Ay := inf{z, y}.
It is bounded if it has both a minimal element Oy and a maximal element 1x.
It is distributive (resp. modular) if and only if x A (y V 2) = (x Ay) V (z A 2)
for all z,y,z € X (resp. for all z,y,z € X with 2 < x). A subposet of X is a
subset equipped with the induced partial order, a sublattice is a subposet stable
under the meet and join operators of X, and a chain in X is a totally ordered
subposet. A chain of length ¢ is a finite chain of order ¢ + 1 and the length of X
is the supremum of the length of its finite chains (with values in NU {oco}). An
element x of a bounded lattice X is join-irreducible if x # O0x and x = yV z implies
xr =y orzx =z itisan atom if z # 0x and y < z implies y = 0x or y = x. We
denote by Atom(X) C Ji(X) the set of atoms and join-irreducible elements of X.
A complement of x is an element y of X such that t Ay =0x andxVy=1x. A
complemented lattice is a bounded lattice in which every element as a complement.
A boolean lattice is a complemented distributive lattice. A non-decreasing map
between bounded lattices is a lattice map (resp. a {0,1}-map) if it is compatible
with the meet and join operators (resp. with the minimal and maximal elements).
For z < y in X, we denote by [z,y] or £ the subposet {z € X : z < z < y} of X.

x

2.1.2. Let X be a fixed bounded modular lattice of finite length r. An apartment
in X is a maximal distributive sublattice S of X. Any such S is finite [21, Theorem
4.28], of length r [16, Corollary 2], with also |Ji(S)| = r by [14, Corollary 108].
The formula ¢; = ¢;_1 A s; yields a bijection between the set of all maximal chains
C ={cyp <+ <e¢-}in S and the set of all bijections i — s; from {1,--- ,r} to Ji(.5)
whose inverse s; — i is non-decreasing. The theorem of Birkhoff and Dedekind [14,
Theorem 363] asserts that any two chains in X are contained in some apartment.

2.1.3. A degree function on X is a function deg : X — R such that

deg(0x) =0 and deg(x Vy)+ deg(z Ay) > deg(x) + deg(y)
for every x, y in X. We say that it is exact if also — deg is a degree function, i.e.

deg(z V y) + deg(z A y) = deg(z) + deg(y)
for every z, y in X. A rank function on X is an increasing exact degree function.
Thus a rank function on X is a function rank : X — R4 such that rank(0x) = 0,
rank(z V y) + rank(z A y) = rank(z) + rank(y)

for every z, y in X and rank(z) < rank(y) if © < y. The standard rank function is
given by rank(z) = height(x), the length of any maximal chain in [0x, z].

2.1.4. For a chain C = {¢g < -+ < ¢s} in X, set

S
Grg def H Grl with Grl o [ci—1, ¢
i=1
For the direct product partial order on Grg. defined by

def .
(x17"'7xs)<(y17"'7y8) <:C> Vle{la"'as}: migy'ﬁ
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this is again plainly a modular lattice of finite length < r, which is even a finite
boolean lattice of length r if C' is maximal. We denote by ¢c : X — Grg the
non-decreasing {0, 1}-map which sends z € X to pc(x) = (x Aei) Veim1)i,. The
restriction of p¢ to any apartment containing C' is a lattice {0, 1}-map.

2.1.5. For deg: X — R, rank : X — R, and C as above, we still denote by
deg: Gry = R and rank: Grg — Ry

the induced degree and rank functions on Grg, defined by

deg ((z)iy) & D deg(z:) — des(ci-1)

S

rank ((z;)i-1) def Z rank(z;) — rank(c;—1)

i=1
for z; € Gric = [¢i—1,¢]. If C is a {0, 1}-chain, i.e. ¢g = 0x and ¢s = 1x, then

deg(z) < deg (pc(z)) and rank(z) = rank (pc(x))

for every z in X. Indeed since A c;j—1 = (x A¢;) Aej—q for all i € {1,--- s},
Soi_jdeg(xAc) —deg(x Acimy) < Db deg((mAe) Veim1) — deg(ci—t)
= deg(x) = deg (pc(z))
with equality if and only if for every i € {1,--- , s},

deg(z A ¢;) +deg(ci—1) = deg ((z Ae;) Vei—1) + deg(x A ci—q).
This occurs for instance if deg is exact on the sublattice of X spanned by C' U {z}.

2.1.6. In particular, a rank function on X is uniquely determined by its values on
any maximal chain C'= {¢g < -+ < ¢} of X. Indeed for every = € X,

rank(z) = Z rank(c;) — rank(c;—1).
i€{l, - r}
(x/\ci)\/ciflzci

If C is a maximal chain in X, the degree map on Grg, is exact and

deg(z) < > deg(ci) — deg(ci1)
ie{l,,r}
(m/\ci)\/ci,lzci

for every x € X. In particular, deg : X — R is bounded above.

2.1.7. We started with a modular lattice of finite length, but the definition of a
rank function makes sense for an arbitrary bounded lattice X. We claim that:

LEMMA 2.1. — A bounded lattice X is modular of finite length if and only if it
has an integer-valued rank function rank : X — N.

Proof. — One direction is obvious: if X is modular of finite length, then the
standard rank function height : X — N works. Suppose conversely that rank :
X — N is a rank function. Then rank(1x) bounds the length of any chain in X,
thus X already has finite length. For modularity, we have to show that for every
a,b,c € X with a < ¢, (aVbd)Ac=aV (bAc). Replacing ¢ by ¢ = (a Vv b) A c, we
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may assume that a < ¢ < a Vb, thus a Vb= cVb. Replacing a by ' =aV (bAc),
we may assume that also a Ab = ¢ A b. In other words, we have to show that if
a<c,aANb=cAband aVb=cVb, then a = c. But these assumptions imply that

rank(a) +rank(b) = rank(aVb)+ rank(a A b)
= rank(cVb)+rank(cAb) = rank(c)+ rank(b)
thus rank(a) = rank(c) and indeed a = ¢ since otherwise rank(a) < rank(c). O

2.1.8. An apartment S of X is special if S is a (finite) boolean lattice.

LEMMA 2.2. — Suppose that X is complemented. Then any chain C in X is
contained in a special apartment S of X.

Proof. — Indeed, we may assume that C = {¢y < --- < ¢, } is maximal. Since
X is complemented, an induction on the length r of X shows that there is another
maximal chain €’ = {¢{j < --- < €.} in X such that ¢/._; is a complement of ¢;

for all ¢ € {0,---,r} — we then say that C’ is opposed to C. We claim that any
apartment S of X containing C and C” is special. Indeed, if Ji(S) = {z1, - ,2,}

with ¢; = ¢;_1Va; foralli € {1,--- ,r}, thencd, = c,_; Va4 foralli € {1,--- ,r},
thus z; — ¢ and z; — r 4+ 1 — ¢ are non-decreasing bijections Ji(S) — {1,---,r},
so Ji(S) is unordered and S is indeed boolean by [14, 11.1.2]. O

2.2. R-filtrations. Let again X be a modular lattice of finite length r.

2.2.1. An R-filtration on X is a function f : R — X which is non-increasing,
exhaustive, separated and left continuous: f(v1) = f(72) for v1 < 72, f(y) = 1x
for v < 0, f(v) =0x for v > 0 and f(y) =inf{f(n) : n < v} for v € R. We set

F+() S sup {f() :n >} < f(y) and G} = [f1(9), F(7)]

Note that fi () is indeed well-defined since f(R) is a (finite) chain in X. Equiv-
alently, an R-filtration on X is a pair (C,v) where C = {¢p < -+ < ¢5} is a
{0,1}-chain in X (i.e. with ¢ = Ox, ¢ zilx) and y = (11 > -+ > ) is a
decreasing sequence in R. The correspondence f < (C’,jy) is characterized by

C=F(H) Y f®R) and 7= Jump(f) L {fyG]R:Gr} #0},

where Gr}y # 0 means f1(v) # f(v). Thus for every v € R,

co =0x fory >,
f(v) =qe for yiy1 <y <y, i €{l,---,s -1},
cs = 1x for v < s.
2.2.2.  We denote by F(X) the set of all R-filtrations on X. We say that f, f' €
F(X) are in the same facet if F(f) = F(f’). We write F~1(C) o {f:fR)=C}
for the facet defined by a chain C; thus Jump yields a bijection from F~1(C) to
S def S
RE = {(y1,-+ ,7s) ER® 191 > --- > 7.}, s =length(C).
The closed facet of C is F(C) = {f : f(R) C C}, isomorphic to

def
RS S {(y, o 7) €R i 2 > i)

We call chambers (open or closed) the facets of the maximal C’s.
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2.2.3. For any p € R, we denote by X (u) the unique element of F~1({0x,1x})
such that Jump(X(p)) = w, i.e. X(p)(y) = 1x for v < p and X (u)(y) = 0x for
v > . We define a scalar multiplication and a symmetric addition map

R, x F(X) 5> F(X) and F(X)x F(X) > F(X)

by the following formulas: for A > 0, f,g € F(X) and v € R,

A HE) E FAy) and (F+9)(0) =\ {f0n) Aglr) s +92 =1},

while for A = 0, we set 0- f = X (0). Note that the formula defining f + ¢g indeed
makes sense since f(R) and g(R) are finite. One checks easily that

X () + X(uz) = X (p1 + p2)
X(p) = X(Aw)
(f+g>=A f+X-g
and  (f+X(u)(v) = flv—n)

for every pi, po,pn € R, A€ Ry, f,g € F(X) and v € R.

2.2.4. Ezamples. If (X, <) = {co < --- < ¢} is a finite chain, the formula

Fup{yeR: e < f(7)}

yields a bijection f +— f* between (F(X),-,+) and the closed cone

df
R = {(y1, ) ER iy = >0}

Note that the left continuity of f implies that for all i € {1,---,r}, also

fiﬁ:max{’yeRfCi < f()}-

More generally if (X, <) is a finite distributive lattice (and thus also a bounded
modular lattice of finite length, so that F(X) is well-defined), the formula

yields a bijection f +— f# between (F(X),-,+) and the cone of all non-increasing
functions f* : Ji(X) — R, where Ji(X) C X is the subposet of all join-irreducible
elements of X (compare with [14, I1.1.3]). The inverse bijection is given by

:\/{eri(X):fu(x) >}

In particular if (X, <) is a finite boolean lattice, Ji(X) = Atom(X) is the unordered
finite set of atoms in X and the above formula yields a bijection between (F(X), -, +)
and the finite dimensional R-vector space of all functions Atom(X) — R.
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2.2.5. Functoriality. Let ¢ : X — Y be a non-decreasing {0,1}-map between
bounded modular lattices of finite length. Then ¢ induces a map

F(p):F(X) = F(Y), [freof
Plainly for every p € R, A € Ry and f € F(X),

F(p)(X(w) =Y (n) and F(p)(X-f) =A-F(p)(f)-

If moreover ¢ is a lattice map, i.e. if it is compatible with the meet and join
operations on X and Y, then F(ip) is also compatible with the addition maps:

F(o)(f +9) = F(p)(f) + F(p)(9)-

2.2.6. An apartment of F(X) is a subset of the form F(S), where S is an apartment
of X, i.e. a maximal distributive sublattice of X. Thus (F(S),,+) is isomorphic
to the cone of non-increasing maps Ji(S) — R by 2.2.4. The map S — F(S) is
a bijection between apartments in X and F(X). The apartment F(S) is a finite
disjoint union of facets of F(X), indexed by the {0, 1}-chains in S. By [14, Theorem
363], for any f,g € F(X), there is an apartment F(S) which contains f and g.
We also write 0 € F(X) for the trivial R-filtration X (0) on X. It is a neutral
element for the addition map on F(X). More precisely, for every f,g € F(X),
f+g=fif and only if g = 0: this follows from a straightforward computation in
any apartment F(S) containing f and g. We say that two R-filtrations f and f’
are opposed if f + f/ = 0. If f belongs to a special apartment F(S) (i.e. one with
S boolean), then there is a unique f’ € F(S) which is opposed to f. Thus if X is
complemented, any f € F(X) has at least one opposed R-filtration by lemma 2.2.

2.2.7. For any chain C in X, the {0,1}-map ¢¢ : X — Grg induces a map
° def
re :F(X) = F(Grg),  re = Fleco).

If S is an apartment of X which contains C, the restriction of p¢ to S is a lattice
{0, 1}-map and the restriction of r¢ to F(S) is compatible with the addition maps.
If C' is maximal, then Grg, = []/_; Gr¢ is a finite boolean lattice and

Atom(Grg) = {c], -+ ,cr}

with ¢ corresponding to the atom ¢; of Gre = {¢;_1,¢;}. For C € S C X as above,
the {0, 1}-lattice map ¢cl|s : S — Grg then induces a bijection

Ji(pcls) : Atom(Grg) = Ji(Grd) — Ji(S)
mapping ¢ to s;, characterized by ¢; = ¢;—1 V s; for all i € {1,--- ,r}. Then
ro : F(S) = F(Grg)

maps a non-increasing function f# : Ji(S) — R to the corresponding function
ffoli(pcls) : Atom(Grd) — R. In particular, it is injective.
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2.2.8.  The rank function height : X — {0,--- ,r} is a non-decreasing {0, 1}-map,
it thus induces a function t := F(height) which we call the type map:

t:F(X)—F({0,---,r}) =RL.
The restriction of t to an apartment F(S) maps f* : Ji(S) — R to
t(f === with [{i:y=9}={z:f(x)=7}]

The restriction of t to a closed chamber F(C') is a cone isomorphism (i.e. a bijection
compatible with the scalar operations and addition maps).

2.2.9. The set F(X) is itself a lattice, with meet and join given by

def def
(A9 = f(y)Agly) and (fVg)(y) = f(1)Ve(y)
for every f,g € F(X) and v € R. Moreover, there is a natural lattice embedding

1x if~ <0,
X < F(X), x— x(—) with x(y)déf r o<y,
Ox if1<’y.

It maps Ox to X(0) and 1x to X(1). Viewing X as a sublattice of F(X), the
addition map on F(X) sends (x,y) € X? to the R-filtration = +y € F(X) given by
1x  ify <0,
xVy if0<ny
Ay ifl<y
Ox if 2 <.

(z+y)(y) =

For every f € F(X) with Jump(f) C {y1,--,v~n} where 11 < --- < N, we have

N
f=mn-1x+Y (v—7-1) ()
1=2

Since the addition map on F(X) is not associative, the above sum is a priori not
well-defined. However, all of its summands belong to the closed facet F(C) of f
(with C' = f(R)), and the formula is easily checked inside this commutative monoid.

2.2.10. A degree function on F(X) is a function (x, —) : F(X) — R such that for
ANER, and f,g € F(X), (1) (5, Af) = Ak, f), (2) (5, f+g) = (% f) + (x,9) and
(3) ( f+g) = {x,f)+ (¥, g) if f(R)Ug(R) is a chain. We claim that:

LEMMA 2.3. — Restriction from F(X) to its sublattice X — F(X) yields a
bijection between degree functions on F(X) and degree functions on X.

Proof. —If (x,—) : F(X) — R is a degree function on F(X), then for any
T,y € X,

—~
~

a b ¢

travy)+ o ny) @ o vyrany) L o ty) > o)+ )
using (3) for (a), the equality z +y =2 Vy+z Ay in F(X) for (b), and (2) for (c).
Since also (x,0x) = 0 by (1), it follows that x — (x, z) is a degree function on X:
our map is thus well-defined. It is injective since any function deg : X — R with
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deg(0x) = 0 has a unique extension to a function (x,—) : F(X) — R satisfying (1)
and (3), which is given by the following formula: for any f € F(X),

xf) =Y 7 deg (Grf)  with Gi} = [£4(7), f(7)
yER

where deg ([z,y]) = deg(y) — deg(x) for < y in X. Equivalently,
N

(ko f) =1 - deg (1x) + Y (3 — Yim1) - deg (f (1))

i=2
whenever Jump(f) C {1, - ,yn} with v1 <--- <n.
It remains to establish that if we start with a degree function on X, this unique

extension also satisfies our concavity axiom (2). Note that the last formula for
(%, f) then shows that for any {0, 1}-chain C in X,

<*a f> < <*7 TC(f)>
with equality if the initial degree function is exact on the sublattice of X spanned
by CU f(R). Here ro(f) = ¢c o f in F(Gr) and (x,—) : F(Gry) — R is the
extension, as defined above, of the degree function deg : Grg: — R induced by our
initial degree function on X. Now for f,g € F(X), pick an apartment S of X
containing f(R) U g(R) and a maximal chain C' C S containing (f + ¢)(R). Then

o ft9)=0oro(f+9)) with ro(f+9) =ro(f) +rol9)

since deg is exact on the chain C D (f + ¢)(R) and f,g € F(S) with C' C S. Since
also (x, f) < (x,rc(f)) and (x,g) < (x,7c(g)), it is sufficient to establish that

(rro(f) +ro(g)) = (& ra(f)) + (kro(g)) .-

We may thus assume that X is a finite Boolean lattice equipped with an exact
degree function, in which case the function (x, —) : F(X) — R is actually linear:

k= D fHa)deg(a).
acAtom(X)
This finishes the proof of the lemma. O

2.3. Metrics. Let now rank : X — R, be a rank function on X.
2.3.1. We equip F(X) with a symmetric pairing
def
(- =) F(X)xF(X) >R, (fi,f2) % 3 917 rank (Gr’fﬂ }j)

Y1,72€ER

with notations as above, where for any f1, fo € F(X) and 71,72 € R,

Gre def Ji(v) A fa(72)
Mol T () A f2(2) V (i) A fat (72)
Note that with these definitions and for any A € Ry,

<)‘f17f2> - )\<f17f2> = <f17>\f2> .
If Jump(f,) C {~{, -+ ,7% } with»{ <--- <~ and T = fy('yj’-’) for v € {1,2},

o1 52 ) m%/\x2
(f1, f2) 7;7j - rank
b2 ZZ v (zh Aa?) v (af Aadyy)

i=1j=1 i+l
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with the convention that 2% ., = 0x. Thus with r; ; = rank (z} A x?), also

S1 S2
(frofa) = DD 7 (rig = rovrg = Tigrn +riv1 )
i=1 j=1
S1 S2
*ZZ *% 1 *’YJ 1)7"17] Jr’Yl’Y17'11
1=2 j=2
+Z = Yi)iTia +Z% — V)T

j=2

2.3.2. Let ¢ : X — Y be a non-decreasing {0, 1}-map between bounded modular
lattices of finite length such that the rank function on X is induced by a rank
function on Y. Then for the pairing on F(Y),

S1 S2
(pofipof)=2 > (—1) (0 —5-1)riy
=2 j=2
s1 S9
FE D (=) Y (= A
i=2 =2

where r” = rank (@(z}) A p(x3)). Since p(x} A z3) < p(x}) A p(2?) with equality
when ¢ or j equals 1, r j = 1ij with equality when i or j equals 1, thus

(f1, f2) <A{po fi,p0 fa).

If p(z1 A 22) = @(21) A p(22) for all z, € f,(R), for instance if the restriction of ¢
to the sublattice of X generated by f1(R) U f2(R) is a lattice map, then

(fi,f2) = (po fr,po fa).
In particular, this holds whenever f1(R) U f2(R) is a chain.
2.3.3.  For a {0,1}-chain C = {cy < --- < ¢s} in X, we equip Gr& = [[5_, Gri
with the induced rank function as explained in 2.1.5. Applying the previous discus-

sion to the rank-compatible {0, 1}-map ¢¢ : X — Gr (which restricts to a lattice
map on any apartement S of X containing C'), we obtain the following lemma.

LEMMA 2.4. — Let C be a {0,1}-chain. Then for every f1, fo € F(X),
(f1, f2) < (re(fr),re(f2))
with equality if C, f; and fo are contained in a common apartement of F(X).

2.3.4.  This yields another formula for the pairing on F(X): for every apartment
F(S), there is a function g : Ji(.S) — Rsg such that for every f1, fo € F(5),

(fuf)= > fi ds(x)

z€Ji(S)

where f* : Ji(S) — R is the non-increasing map attached to f € F(S). Indeed,
pick a maximal chain C' C S. Then (fi1, fo) = (rc(f1),7c(f2)). But the pairing on
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F(Grg) is easily computed, and it is a positive definite symmetric bilinear form:
for g; and gy in F(Grd,) corresponding to functions ¢¢ and g4 : Atom(Gr) — R,

(g.g2)= Y. di(a)gi(a)rank(a).

a€Atom(GrY,)

For g, = rc(f,) = ¢c o f,, we have seen that gf = f% o Ji(pc|S), where Ji(poc|s)
is the bijection Atom(Grg) ~ Ji(S). This proves our claim, with dg(z) = rank(a)
if Ji(pels)(a) = z. If C = {¢g < -+ < ¢}, then Ji(S) = {z1, - ,z,} with
¢i = ¢i—1 Ax; and dg(z;) = rank(c;) — rank(c;—1) for all 4 € {1,--- ,r}.

2.3.5.  The next lemma says that our pairing is concave.
LEMMA 2.5. — For every f, g and h in F(X), we have

(frg+h) =2 (f9)+ ([, h)
with equality if f, g and h belong to a common apartement of F(X).

Proof. — Indeed, choose S, C and S’ as follows: S is an apartment of X con-
taining g(R) and h(R), C is a maximal chain in S containing (g + h)(R) C S, and
S’ is an apartment of X containing f(R) and C. If f, g and h belong to a common
apartement, we may and do also require that S = 5’. In all cases,

(1) (2)
(f,g+h) = (re(f),rc(g+h)) and ro(g+h) =rc(g) +rc(h)

since respectively (1) C C 8" and f, g+ h belong to F(S’) and (2) C C S and g, h
belong to F(S). Since C' is maximal, Grg, is boolean, F(Grg,) is an R-vector space
and the pairing on F(Grg,) is a positive definite symmetric bilinear form, thus

tre(f).relg) +re() 2 tre(f).re(@) + tre(f).ro(h).
Our claim now follows from (1), (2) and (3) since also by lemma 2.4,
(ra(f),re(9)) = (f,9) and  (ro(f),ra(h)) = (f,9)
with equality if, along with g, h and C, also f belongs to F(S5). O

2.3.6. It follows that for every f € F(X), the function g — (f,g) is a degree
function on F(X). The corresponding degree function on X maps z € X to

deg () def Z ~ rank (Gr}m> with  Grj,,
vER
For f = X(1), we retrieve the rank: degy)(x) = rank(z). For f € F(X),
def
deg(f) = (X(1), f) = > vyrank (Gr})

vER

Cfet) A, fy) A

is the natural degree function on F(X) and the formula

deg(f + g) > deg(f) + deg(g)
follows either from 2.3.5 or from 2.2.10.
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2.3.7. For f,g e F(X), (f,f) =2 0and 2(f,9) < (f, f)+ (g,9): this follows from
the formula in 2.3.4. We may thus define

11 VTR and d(f.g) 1717 + gl —2(f,9)
For every {0,1}-chain C in X, ||rc(f )|| = ||f|| and
d(rc(f),re(g)) <d(f,9)
with equality if there is an apartment F(S) with C C S and f,g € F(S). Also,
191 =d0x.9), lefl=¢lfll, dtr,t) = tdf,0)
and |[f +glI” = /1" + gl +2(f.9)

for every f,g € F(X) and ¢t € Ry. The first three formulas are obvious, and the
last one follows from the additivity of the symmetric pairing on any apartment. If

f and f’ are opposed in F(X), then || f|| = [|f'[| = 3d(f, f') and (f, ') = = || f|*.
2.3.8.  We refer to [5] for all things pertaining to geodesic and CAT(0)-spaces.

PROPOSITION 2.6. — The function d : F(X) x F(X) — Rx¢ is a CAT(0)-
distance.

Proof. — If X is a finite boolean lattice, then d is the euclidean distance attached
to the positive definite symmetric bilinear form (in short: scalar product) (—, —)
on the R-vector space F(X), which proves the proposition. For the general case:

VigeF(X):  d(f9)=0—= f=y
Indeed, choose an apartment with f,g € F(S), a maximal chain C C S. Then
d(re(f),rc(g)) =0, thus 7o (f) = re(g) since d is a (euclidean) distance on F(Grg)
and f = g since the restriction 7¢|g(g) : F(S) — F(Grg) is injective.
Vf,g.h e F(X):  d(f,h) <d(f,g)+d(g,h).
Indeed, choose an apartment with f,h € F(S), a maximal chain C C S. Then
d(f,h) = d(rc(f),rc(h))
<d(ro(f),rolg)) +d(re(g), ro(h))
<d(f,9) +d(g,h).

Thus d is a distance, and a similar argument shows that (F(X),d) is a geodesic
metric space. More precisely, for every g,h € F(X) and ¢ € [0, 1], if

=(1—-t)g+th
is the sum of (1 —¢)-g and t- h in F(X), then d(g,9:) =t - d(g, h), thus ¢t — g; is
a geodesic segment from g to h in F(X). Note also that
lgell* = (1 =) llgll* + ¢ | P]* + 2(1 = ) {g, ) -
For the CAT(0)-inequality, we finally have to show that for every f € F(X),
d(f? gt)2 + t(l - t)d(ga h)2 < (1 - t)d(fv 9)2 + td(f? h)2
Given the previous formula for ||g,||*, this amounts to
which is the already established concavity of (f, —). O



ON HARDER-NARASIMHAN FILTRATIONS 15

2.3.9. Let dgiq : F(X) x F(X) — R be the distance attached to the standard rank
function x — height(z) on X. By 2.1.5, there are constants A > a > 0 such that
a < rank(y) — rank(z) < A for every < y in X. It then follows from 2.3.4 that
there are constants B > b > 0 such that bdsia(f,9) < d(f,9) < Bdswa(f,g) for
every f,g € F(X). The topology induced by d on F(X) thus does not depend upon
the chosen rank function. We call it the canonical topology. Being complete for
the induced distance, apartments and closed chambers are closed in F(X).

PROPOSITION 2.7. — The metric space (F(X),d) is complete.

Proof. — We may assume that d = dgtg. The type function t : F(X) — RY
defined in 2.2.8 is then non-expanding for the standard euclidean distance d on R :
this follows from 2.3.2 applied to height : X — {0,--- ,r}. In fact, for any maximal
chain C in any apartment S of X, the composition of the isometric embeddings

F(O)— F(8)— =~ = F(Gry) ~ R”

with the non-expanding type map t : F(Grg,) — RY is an isometry F(C) ~ RL. It
follows that for every pair of types (t1,t2) in RY,

f, € F(S) f, € F(Cr2)
t(fu) =ty } < {d(fl’f2) t(fu) = tuc }

and both sets are finite with the same minimum d(t1, t2), thus also

fr e F(X) 1, € F(Grg)
t(fl/) =t } . {d(fl,fé) t(fl/) = tVC }

is finite with minimum d(¢1,¢2). In particular, there is a constant €(¢1,t2) > 0 such
that for every fl, f2 S F(X) with t(fl) =ty and t(fg) = ta,

d(f1, fo) = d(t1,t2) or d(f1,f2) = d(t1,t2) + e(t1,t2).

Let now (fn)n>0 be a Cauchy sequence in F(X). Then ¢, = t(f,) is a Cauchy
sequence in RY, so it converges to a type t € RY. Fix N € N such that

{atn. )

{atn. )

A(frs frm) < 3e(t,t) and  d(t,,t) < 3e(t,t)

for all n,m > N. For each n > N, pick a maximal chain C,, containing f,(R) and
let g, be the unique element of the closed chamber F(C,,) such that t(g,) = t.
Then d(fpn,gn) = d(tn,t) since f, and g, belong to F(C,,). Note that if g, is any
other element of F(X) such that t(g),) =t and d(fn,g,) = d(t,,t), then

d(gn,gi,,) < d(gn, fn) + d(fnvg;L) = 2d(tn,t) < %e(t,t) < e(t, ),
therefore g, = g/,. Similarly for every n,m > N,

d(Gn, gm) < d(Gns fn) + d(fn, fm) + d(fm, gm) < €(t,?)
thus g, = gm. Call g € F(X) this common value. Then

d(fn,g) = d(fn, gn) = d(tn,t)
thus f, — g in F(X) since t,, — ¢ in RY. O
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2.3.10. Let deg: X — R be a degree function on X and let (x,—) : F(X) — R be
its unique extension to a degree function on F(X), as explained in 2.2.10.

PROPOSITION 2.8. — Suppose that lim f,, = f in F(X). Then
lim sup (x, fr) < (x, f).
If moreover deg(X) is bounded, then {x,—) : F(X) — R is continuous.
Remark 2.9. — The first assertion says that (x, —) is upper semi-continuous.

Proof. — Let C = f(R) = {cp < -+ < ¢5}. In the previous proof, we have seen
that for every sufficiently large n, any maximal chain C,, containing f,(R) also
contains C'. Since our degree function is exact on the chain C,,,

(5, fn) = (5 re(fa)) and (%, f) = (& re(f))-
Since d (re(fn),rc(f)) < d(fn, f), also limre(fr) = re(f) in F(X). Now on

F(Gry) = HF Gry) with Grh =[ci1,¢)

the distance and degree are respectlvely given by

S

d ((ai), (b:)* = Zdi(ai,bi)z and (%, (@) =) (%, @)

i=1
where d; and (x;, —) are induced by the corresponding rank and degree functions
rank;(z) = rank(z) — rank(c;—1) and deg;(z) = deg(z) — deg(c;—1)
for z € Gric. All this reduces us to the case where f = X (u) for some p € R. Now

Sn

(% fn) = Tn,1 deg(1x) + Z('Ynz - ’Yn,i—l) deg (fn(’Yn,Z))

i=2

with Jump(fn) = {’Yn,l <o < 'Vn,sn}' Since hmt(fn) t(f) (Ma T ,,u) in R;,
limyp1 =p and  limsup{yn; = ni-1:2 <7 <snt=0.

Since finally deg(X) is bounded above, we obtain

limsup (x, f,) < pdeg(lx) = (x, f)
and lim (x, f,,) = (x, f) if deg(X) is also bounded below. O

2.3.11. For f € F(X), the degree function (f,—) : F(X) — R is continuous since

(.90 =5 (191 + gl — d(£,9))
This also follows from proposition 2.8 since for every = € X,
|deg s (2)] = [(f, 2)| < Lf] ]
with ||z||? = rank(z) < rank(1x), but a bit more is actually true:
ProposITION 2.10. — The degree function
(fi=) F(X) =R
is || f ||-Lipschitzian.
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Proof. — We have to show that |(f,h) — (f,g)| < ||f| - d(g,h) for every g,h €
F(X). Pick an apartment S of X with g, h € F(S) and set g, = (1—t)g+th € F(S)
for t € [0,1]. Since F(S) is the union of finitely many closed (convex) chambers,

there is an integer N > 0, a finite sequence 0 = ¢ty < --- < t§y = 1 and maximal
chains C4, -+ ,Cyx in S such that for every 1 <4 < N and ¢ € [t;_1,t;], g+ belongs
the closed chamber F(C;). Set g; = g4, for i € {0,--- , N}. Since
N N
() = (o 9) = D (frgi) = (Fr9i1) Z| £.9i) = (£,9i-1)]
i=1

and d(g,h) = Zfil d(gi—1,9i), we may assume that g, h € F(C) for some maximal
chain C' in X. Now choose an apartment S of X containing C' and f(R) and let
f'.g' 1 be the images of f, g, h under r¢ : F(X) — F(Grg). Then

by = Ry =

(frg) = ({.9) d(g,h) = d(g',1)
since f,g,h € F(S) with C C S. This reduces us further to the case of a finite
boolean lattice X, where F(X) is a euclidean space and our claim is trivial. O

2.4. HN-filtrations. Suppose now that our modular lattice X is also equipped
with a degree function deg : X — R and let (x,—) : F(X) — R be its unique
extension to a degree function on F(X), as explained in 2.2.10.

2.4.1. We say that X is semi-stable of slope u € R if and only if for every x € X,
deg(z) < prank(z) with equality for x = 1x. More generally for every z < y in X,
we say that the interval [z, y] is semi-stable of slope p if and only if it is semi-stable
of slope p for the induced rank and degree functions, i.e. for every z € [z, y],

deg(2) < 1 (rank(z) - rank(y)) + deg(y)

with equality for z = y. Note that for z =y, [z,y] = {z} is semi-stable of slope u
for every p € R. For any = < y, the slope of [x,y] is defined by

~ deg(y) — deg(x)
p(lz,y]) = rank(y) — rank(z)

2.4.2. For any x,y,z € X with x <y < 2z, we have
) = T vk () + Tk sk
thus one of the following cases occurs:
1z, y)) < pllz, 2]) < plly, 2)),
or  pu([z,y]) > p(lx, 2])

< p
> [y, 2])s
or p([z,y]) = p([r,2]) = u(ly, 2]).

LEMMA 2.11. — Suppose that ¢ < ¢’ < y' and < y < ¢ with [z,y] semi-
stable of slope p and [z',y'] semi-stable of 5lope W If > g, then also y < a'.

eR.

n([z, y])

Proof. — Suppose not, i.e. 2’ <y V2’ and y Az’ <y. Then

(1) e @

p< pynasyl) < pla’yva'l) < p
since (1) y Az’ belongs to [x,y] which is semi-stable of slope p, (3) y V' belongs to
[',y'] which is semi-stable of slope u/, and (2) follows from the definition of p. O
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2.4.3. The main result of this section is the following proposition.

PROPOSITION 2.12. — For any F € F(X), the following conditions are equiva-
lent.
(1) For every f € F(X), ||F|* =2 (%, F) <[If|* = 2(x, f).
(2) For every f € F(X), (x, f) < (F, f) with equality for f = F.
(3) For every v € R, GrZ is semi-stable of slope 7.
Moreover, there is a unique such F, and || F||* = (x, F).

Proof. — Tt is sufficient to establish (1) = (2) = (3), and the existence (resp.
uniqueness) of an F € F(X) satisfying (1) (resp. (3)). We start with the following
claim.

There is a constant A > 0 such that (x, f) < A||f||. Indeed, pick any maximal
chain C'in X. Then (x, f) < (x,rc(f)) and || f]| = |lrc(f)|| for every f € F(X). But
on the finite dimensional R-vector space F(Grg), (x,—) : F(Grg) — R is a linear
form while ||—|| : F(Grg) — R4 is a euclidean norm. Our claim easily follows.

Existence in (1). Since (x,f) < A||f||, the function f — [[f]|> — 2 (x, f) is
bounded below. Let (f,) be any sequence in F(X) such that ||fn]|* — 2 (x, fn)

converges to I = inf {||f||2 —2(x,f): f€ F(X)} By the CAT(0)-inequality,

2
2([3fn+ S+ Sd(fns )2 < Wl + 1l
By concavity of f +— (%, f),
(e 3t 5 > B )+ (0 F)
We thus obtain

21+ 3d(fu frn)® 2|13 00+ 3fml* =205 3+ 3hm)) + (i, fn)?

( ||fn||2 -2 <*7 fn> ) + ( ||me2 -2 <*a fm> )
Tt follows that (f,) is a Cauchy sequence in F(X), and therefore converges to some
F € F(X). Then ||f,]| — | F|| and (x, f) — <||]-"H2 - I). By proposition 2.8,

|F|I> = 2 (x, F) < I thus actually ||F||* — 2 (%, F) = I by definition of I.
(1) implies (2). Suppose (1). Then for any f € F(X) and ¢t > 0,

<
<

IFI* =2 (6, F) S IF +tf]” = 2%, F +¢f) .
Since [|F +tf[* = | FII* + 2 |FII* + 2t (F, f) and (6, F +tf) = (6, F) +t(x, f),
0< I +2t ((F, f) — (5. f)) -
Since this holds for every ¢ > 0, indeed (%, f) < (F, f). On the other hand,
IFI? =2 66, F) < [6FI° =2 (6, tF) = 7 | F||* = 2t (x, F)

for all t > 0, therefore also || F||> = (x, F).
(2) implies (3). Suppose (2). Let s be the number of jumps of F and set

FR)={co<---<e} and Jump(F)={y1 > - >"s}.
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For ¢ € {1,---,s} and 0 sufficiently close to ;, let f; o be the unique R-filtration
on X such that f; o(R) = F(R) and Jump(fie) \ {6} = Jump(F) \ {7v:}. Then

(: fio) = 0 deg (Gr) = (x, F) — 7i deg (Gr)
and (F, fi9) — 0~ rank (Gr}_i) =(F,F)— %‘2 rank (Gr}i) .

Since (x, fi.0) < (F, fio) and (x, F) = (F, F), it follows that
(0 — i) (virank (Grz) — deg (Grz)) > 0.

Since this holds for every 6 close to 7;, it must be that v; = u (Gr}). Now for any
ci—1 < z < ¢; and a sufficiently small € > 0, let f; . . be the unique R-filtration on
X such that f; . (R) = F(R) U{z} and Jump(f; ) = Jump(F) U {v; + €}. Then

(%, fize) = (¥, F) + edeg (Cz_l)
and  (F, fize) = (F,F)+evi rank(

Since again (x, fi ».c) < (F, fize) and (x, F) = (F, F), we obtain
deg (m:) < ; rank (072—71) .

Thus Gr} is indeed semi-stable of slope ~; for all i € {1,--- ,s}.
Unicity in (3). Suppose that F and F’ both satisfy (3) and set

ci

{r1 >+ >} = Jump(F) UJump(F'), v =m+1

We show by ascending induction on ¢ € {0,--- ,s} and descending induction on
J € {i,---,s} that F(y;) < F'(v;). For ¢ =0 or j = s there is nothing to prove
since F(v9) = 0x and F'(vs) = 1lx. Suppose now that 1 < ¢ < j < s and we
already now F(v;—1) < F'(vi-1) and F(v;) < F'(vj41). Then F(v;) < F'(v;) by
lemma 2.11. Thus F(vy;) < F'(y;) for all i € {1,--- ,s}. By symmetry F =F'. O

DEFINITION 2.13. — We call F € F(X) the Harder-Narasimhan filtration of
(X, deg).

2.4.4. Ezample. For f € F(X) and the degree function deg;(z) = (f,z) on X, the
Harder-Narasimhan filtration F € F(X) of (X, deg;) minimizes

g = A"+ llgl* = 2(f. 9) = d(f.9)

thus plainly F = f. More generally suppose that Y is a {0, 1}-sublattice of X with
the induced rank function. Then F(Y) < F(X) is an isometric embedding, with
a non-expanding retraction, namely the convex projection p : F(X) — F(Y) of
[5, 11.2.4]. Then for any f € F(X), y — (f,y) is a degree function on Y and the
corresponding Harder-Narasimhan filtration F € F(Y') equals p(f). In particular,

(f,9) < (p(f),9)
for every f € F(X) and g € F(Y') with equality for g = p(f).
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2.4.5. If X is complemented and deg : X — R is exact, the Harder-Narasimhan

filtration may also be characterized by the following weakening of condition (2):
(2") For every f € F(X), (x, f) < (F, f).

We have to show that for any F € F(X) satisfying (2'), (x, F) > (F,F). Since X

is complemented, there is an R-filtration 7’ on X which is opposed to F. Since deg

is exact, f — (x, f) is additive, thus (x, F) + (x, F') = (x, F + F’') = 0 and indeed

<*’]:>:7<*’]:/>>7<}—af/>:<‘/—'.v}—>'
This also shows that then (x, F') = (F, F') for any F' € F(X) opposed to F.

3. THE HARDER-NARASIMHAN FORMALISM FOR CATEGORIES (AFTER ANDRE)

3.1. Basic notions. Let C be a category with a null object 0, with kernels and
cokernels. Let sk C be the skeleton of C: the isomorphism classes of objects in C.

3.1.1. Let X be an object of C. Recall that a subobject of X is an isomorphism
class of monomorphisms with codomain X. We write z < X for the subobject
itself or any monomorphism in its class. We say that f : x — X is strict if f is a
kernel. Equivalently, f is strict if and only if f = im(f). Dually, we have the notions
of quotients and strict quotients, and f +— cokerf yields a bijection between strict
subobjects and strict quotients of X, written  — X/x. A short exact sequence is
a pair of composable morphisms f and g such that f = kerg and g = cokerf: it is
thus of the form 0 - = — X — X/z — 0 for some strict subobject = of X.

3.1.2. The class of all strict subobjects of X will be denoted by Sub(X). It is
partially ordered: (f: 2z — X) < (f’: 2’ — X) if and only if there is a morphism
h :x — 2’ such that f = f’ o h. Note that the morphism A is then unique, and is
itself a strict monomorphism, realizing z as a strict subobject of ’. Conversely, a
strict subobject = of 2’ yields a subobject of X which is not necessarily strict.

3.1.3.  The pull-back of a strict monomorphism z < X by any morphism ¥ — X
exists, and it is a strict monomorphism y < Y it is the kernel of Y — X — X/z.
Dually, the push-out of a strict epimorphism X — X/z by any morphism X — Y
exists, and it is a strict epimorphism Y — Y/y: it is the cokernel of z — X — Y.

3.1.4.  Suppose that C is essentially small and the fiber product of any pair of
strict monomorphisms z < X and y < X (which exists by 3.1.3) induces a strict
monomorphism x X x ¥y — X. Then Sub(X) is a set and (Sub(X), <) is a bounded
lattice, with maximal element X and minimal element 0. The meet of z,y € Sub(X)
is the image of x X x y — X, also given by the less symmetric formulas

z Ay =ker(z = X/y) = ker(y — X/x).

The join of x,y is the kernel of the morphism from X to the amalgamated sum of
X — X/x and X — X/y, also given by the less symmetric formulas

x Vy = ker (X — coker (x — X/y)) = ker (X — coker (y — X/x)).

3.1.5. A degree function on C is a function deg : sk C — R which is additive on
short exact sequences and such that if f : X — Y is any morphism in C, then
deg(coimf) < deg(imf). It is exact if —deg : sk C — R is also a degree function on
C. A rank function on C is an exact degree function rank : sk C — Ry such that
for every X € sk C, rank(X) = 0 if and only if X = 0.
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3.1.6. Under the assumptions of 3.1.4, if deg : sk C — R is a degree function on C,
then for every object X of C, x — deg(z) is a degree function on Sub(X). Indeed,
for every z,y € Sub(X), we have a commutative diagram with exact rows

0 TAY x x/x ANy—=0
bl
0 Q<—-X/y I 0

I
0<~—X/zVy<=— X <——2aVy<—=20

where I = im(f) and Q = coker(f) = im(mw o g) with z/x Ay = coim(f) and
X/x Vy = coim(rm o g). It follows that

deg(x) — deg(z N y) = deg(z/z A y)
and deg(X) — deg(z Vy) = deg(X/x Vy)

thus since also deg(X) = deg(X/y) + deg(y),
deg(z) + deg(y) < deg(z Ay) + deg(z V y).

If deg : skC — R is exact, so is deg : Sub(X) — R. If rank : skC — R, is a rank
function, then so is rank : Sub(X) — R.

deg I = deg(X/y) — deg(Q)
deg @

<
<

3.1.7.  Suppose that C satisfies the assumptions of 3.1.4 and admits an integer-
valued rank function rank : sk C — N. We then have the following properties:

e C is modular of finite length in the following sense: for every object X of C,
the lattice (Sub(X), <) of strict subobjects of X is modular of finite length.

This follows from 2.1.7. We write length(X) for the length of Sub(X).

e For every X € C and any x in Sub(X), the following maps are mutually
inverse rank-preserving isomorphisms of lattices:

[0, z] <— Sub(x) [r, X] <—— Sub(X/z)
Yy and y————1im(y - X/x)
im(z = X)<—z2 ker (X — (X/z)/2) =<—12

e Forany f:Z — Y in C with trivial kernel and cokernel, the following maps
are rank-preserving mutually inverse isomorphisms of lattices:

Sub(Y') Sub(Z)

y——>ker(Z = Y/y)
im(z—=>Y)<——z
Write («, ) for any of these pairs of maps. One checks that for y and z as above,

Boaly) <y and z< aof(z).

It is therefore sufficient to establish that all of our maps are rank-preserving (the
rank on [z, X| maps y to rank(y) — rank(x) = rank(y/x)). Writing (o, 5;) for the
i-th pair, this is obvious for aq; for f1, im(z — X) and z = coim(z — X)) have the
same rank; for ag, im(y — X/z) and y/z = coim(y — X/x) have the same rank;
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for B2, X — (X/x)/z is an epimorphism, its coimage X/fB2(z) and image (X/x)/z
thus have the same rank, and so do f82(z)/x and z; for ag, the cokernel of Z — Y/y
is trivial, thus Y/y = im(Z — Y/y) and Z/as(y) = coim(Z — Y/y) have the same
rank, and so do y and a3(y) since also rank(Z) = rank(Y); for f3, the kernel of
z — Y is trivial, thus z = coim(z) and f5(z) = im(z — Y') have the same rank.

e The composition of two strict monomorphism (resp. epimorphisms) is a
strict monomorphism (resp. epimorphisms).

e For every X € C and a < b in Sub(X), the following maps are mutually
inverse rank-preserving isomorphisms of lattices

[a,b]

Sub(b/a)
x —————>1im(z — b/a)
ker(b — (b/a)/y) =—y

This follows easily from the previous statements.

e For any morphism f : X — Y, the induced morphism f : coim(f) — im(f)
has trivial kernel and cokernel.

The kernel of f always pulls-back through X — coim(f) to the kernel of f, so it
now also has to be the image of that kernel, which is trivial by definition of coim(f).
Similarly, the image of f always pushes-out through im(f) — Y to the image of f,
so it now has to be this image, i.e. coker(f) = 0.

e The length function length : sk C — N is an integer-valued rank function.
Indeed, for a short exact sequence 0 — z — X — X/x — 0 in C,

length(X) = length(Sub(X))
= length([0, z]) + length([z, X])
= length(Sub(z)) + length(Sub(X/x))
= length(z) + length(X/x)

and for any morphism f : X — Y, since ker(f) = 0 = coker(f),
length(coim(f)) = length(Sub(coim(f)) = length(Sub(im(f)) = length(im(f)).

3.1.8. Suppose that C is a proto-abelian category in the sense of André [1, §2|:
(1) every morphism with zero kernel (resp. cokernel) is a monomorphism (resp. an
epimorphism) and (2) the pull-back of a strict epimorphism by a strict monomor-
phism is a strict epimorphism and the push-out of a strict monomorphism by a
strict epimorphism is a strict monomorphism. In this case, a degree function on C
is a function deg : sk C — R which is additive on short exact sequences and non-
decreasing on mono-epi’s (=morphisms which are simultaneously monomorphisms
and epimorphisms). Our definitions for rank and degree functions on such a cate-
gory C are thus more restrictive than those of André (beyond the differences between
the allowed codomains of these functions): he only requires the slope u = deg /rank
to be non-decreasing on mono-epi’s, while we simultaneously require the denomi-
nator to be constant and the numerator to be non-decreasing on mono-epi’s. In all
the examples we know, the rank functions satisfy our assumptions.
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3.2. HN-filtrations. Let C be an essentially small category with null objects, ker-
nels and cokernels, such that the fiber product of strict subobjects z,y — X is a
strict subobject x Ay — X, and let rank : sk C — N be a fixed, integer-valued rank
function on C.

3.2.1. For every object X of C, write F(X) for the set of R-filtrations on the
modular lattice Sub(X). Thus F(X) = F(Sub(X)) is the set of “R-filtrations on
X by strict subobjects”. It is equipped with its scalar multiplication, symmetric
addition, its collection of apartments and facet decomposition. The rank function
on C moreover induces a rank function on Sub(X), which equips F(X) with a scalar
product (—, —), a norm ||—||, a complete CAT(0)-distance d(—, —), the underlying
topology, and the standard degree function deg : F(X) — R which maps F to

deg(F) =(X(1),F) = Zwrank (Gr}).

vER

Here X () is the R-filtration on X with a single jump at p and we may either view
Gr) as an interval in Sub(X), or as the corresponding strict subquotient of X.
For a strict subquotient y/x of X and F € F(X), we denote by F,/, the induced
R-filtration on y/z, given by Fy/,(v) = (F(v) Ay) Va/z = (F(y) V) Ay/z.

3.2.2.  We denote by F(C) the category whose objects are pairs (X, F) with X € C
and F € F(X). A morphism (X,F) — (Y,G) in F(C) is a morphism f: X — Y in
C such that for any v € R, f(F(v)) € G(v). Here f : Sub(X) — Sub(Y) maps z to

im(z = X N Y)

and we have switched to the notation C for the partial order < on Sub(—). The
category F(C) is essentially small, and it also has a zero object, kernels and co-
kernels. For the above morphism, they are respectively given by (ker(f), Fier(s))
and (coker(f), Geoker(r))- The fiber product of strict monomorphisms is a strict
monomorphism. The forgetful functor w : F(C) — C which takes (X, F) to X is
exact and induces a lattice isomorphism Sub(X, F) ~ Sub(X), whose inverse maps
x to (x, F,). The category F(C) is equipped with rank and degree functions,

rank (X, .7-") = rank( ) and deg(X,F) o deg(F).

Indeed, the first formula plainly defines an integer valued rank function on F(C),
which thus satisfies all the properties of 3.1.7. For any exact sequence

0— (z,F2) = (X, F) = (X/x, Fx/z) = 0
in F(C), there is an apartment S of Sub(X) containing F(R) and C = {0,z,1x};
the corresponding apartment of F(X) contains X (1) and F, thus by 2.3.3
deg(X,F) = (X(1), F)
= (rc (X(1)),rc(F))
= (z( )+ (X/x(1), Fx/a)
= deg(z, Fp) + deg(X/z, Fx/z)-

Z?ﬂ
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For a morphism f : (X, F) — (Y,G) with trivial kernel and cokernel, the induced
map f : Sub(X) — Sub(Y) is a rank preserving lattice isomorphism, thus

deg(X, F) =1 -rank(X) + Y ;_o(vi — vi—1) - rank (F(v:))
=y - rank(Y) 4+ 327 o (vi — yi—1) - rank (f(F (7))
<y rank(Y) + 3500 (v — yi-1) - rank (G(v;))
= deg(Y, G).

where {71 < -+ <75} = Jump(F) U Jump(G). This shows that deg : skF(C) - R
is indeed a degree function on F(C). Note also that with notations as above, we
have deg(X, F) = deg(Y, G) if and only if G(v) = im(F(vy) — Y) for every v € R.

3.2.3. A degree function deg : skC — R on C gives rise to a degree function
on Sub(X) for every X € C, which yields an Harder-Narasimhan R-filtration
Fun(X) € F(X) on X: the unique R-filtration F on X (by strict subobjects) such
that GrZ is semi-stable of slope + for every v € R. Here semi-stability may either
refer to the lattice notion of semi-stable intervals in Sub(X), as defined earlier, or to
the corresponding categorical notion: an object Y of C is semi-stable of slope p € R
if and only if deg(Y) = prank(Y') and deg(y) < prank(y) for every strict subobject
y of Y. This is equivalent to: deg(Y) = prank(Y) and deg(Y/y) > prank(y) for
every strict subobject y of Y. Note that Y = 0 is semi-stable of slope u for every
© € R. In general, the slope of a nonzero object X of C is given by

(X) = m R
For any x € Sub(X) with z # 0 and X/x # 0,
) = (o) + e (X )

thus either one of the following cases occur:

p(z) < p(X) < p(X/z),
or p(x) > p(X) > p(X/x),
or p(x)=p(X)=puX/x).

3.2.4. We claim that the Harder-Narasimhan filtration X — Fpn(X) is func-
torial. This easily follows from the next classical lemma, a categorical variant of
lemma 2.11.

LEMMA 3.1. — Suppose that A and B are semi-stable of slope a > b. Then
Homc¢ (A, B) = 0.
Proof. — Suppose f : A — B is nonzero, i.e. coim(f) # 0 and im(f) # 0. Then

(1) ) 3)
a < pfcoim(f)) < p(im(f)) < b

since (1) A is semi-stable of slope a, (3) B is semi-stable of slope b, and (2) follows
from the definition of u. This is a contradiction, thus f = 0. O
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3.2.5. We thus obtain a Harder-Narasimhan functor
Fun : C—= F(Q)

which is a section of the forgetful functor w : F(C) — C. The original degree
function on C may be retrieved from the associated functor Fyy by composing
it with the standard degree function on F(C) which takes (X, F) to deg(F). The
above construction thus yields an injective map from the set of all degree functions
on C to the set of all sections C — F(C) of w : F(C) — C. A functor in the image of
this map is what André calls a slope filtration on C [1, §4].

Remark 3.2. — For the rank and degree functions on C' = F(C) defined in sec-
tion 3.2.2, the Harder-Narasimhan filtration is tautological: Fyy(X,F) = F in

F(X) = F(Sub(X)) = F(Sub(X, F)) = F(X, F).

3.2.6. As mentioned in the introduction, our Harder-Narasimhan formalism for
categories is closely related to André’s formalism in [1], which indeed was our main
source of inspiration. The formalism used by Fargues in [11] is a specialization
of André’s, with a set-up closer to what we will have in the next section. Other
formalisms have been proposed, dealing with categories equipped with auxilliary
structures: triangulations in [4], exact sequences and geometric structures in [7].

4. THE HARDER-NARASIMHAN FORMALISM ON QUASI-TANNAKIAN CATEGORIES

4.1. Tannakian categories. Let k be a field and let A be a k-linear tannakian
category [10] with unit 15 and ground field k4 = Enda(14), an extension of k. Let
also G be a reductive group over k. We denote by Rep(G) the k-linear tannakian
category of algebraic representations of G on finite dimensional k-vector spaces.
Finally, let wg.a : Rep(G) — A be a fixed exact and faithful k-linear ®-functor.

4.1.1. The category A is equipped with a natural integer-valued rank function
rankp : sk A — N.

Indeed, recall that a fiber functor on A is an exact faithful ka-linear ®-functor
wa,¢ : A — Vecty

for some extension ¢ of ka. The existence of such fiber functors is part of the
definition of tannakian categories, and any two such functors wa ¢, and wa ¢, become
isomorphic over some common extension {3 of ¢; and ¢ [10, §1.10]: we may thus
set

VX eskA:  ranka(X) % dimy (wae(X)).

This equips Sub(X) with a natural rank function and F(X) = F(Sub(X)) with a
natural norm, CAT(0)-distance and scalar product — for every object X of A.

4.1.2. The category F(A) is a quasi-abelian ka-linear rigid ®-category, with

(X1, F)® (Xo, Fo) ¥ (X1 9 Xo, FL®F) and (X, F)" Y (x*, 7

where 1 ® F2 € F(X; ® X5) and F* € F(X*) are respectively given by

(FLoF)) S i) @ Falya) and F (1) < (X/F ()"
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Note that the formula defining F; ® F» indeed makes sense, since Fi(R) and F3(R)
are finite subsets of Sub(X;) and Sub(X3), and the ®-product is exact. For the
standard degree function degy : sk F(A) — R of section 3.2.2,

degp (F1 ® F2) = ranka(X1) - dega (F2) + ranka(X3) - dega (F1)

and dega (F*) = — dega(F). This can be checked after applying some fiber functor
wa,e 1 A — Vect, as above: the formulas are easily established in Vect,.

4.1.3. We denote by F(wg a) the set of all factorizations
waa : Rep(G) -2 F(A) =5 A
of our given exact ®-functor wg a through a k-linear exact ®-functor
F : Rep(G) — F(A).
Thus for every 7 € Rep(G), we have an evaluation map
F(wga) = F(wgalr)), F = F(7).

For instance, the trivial filtration 0 € F(wg,a) maps 7 € Rep(G) to the R-filtration
on wg a(7) with a single jump at v =0, i.e. 0(7) = wg,a(7)(0).

THEOREM 4.1. — The set F(wg,a) is equipped with a scalar multiplication and
a symmetric addition map given by the following formulas: for every T € Rep(G),

N-F))EN-Flr) and (F+6)(r) € F(r) +6(r).
The choice of a faithful representation 7 of G equips F(wg,a) with a norm, a
distance, and a scalar product given by the following formulas: for F,G in F(wg a),

def def def
17l = [IFOI,  dr(F,G) = d(F(7),G(7)) and (F,G), = (F(7),G(7)).
The resulting metric space (F(wg.a),d;) is CAT(0) and complete. The underlying
metrizable topology on F(wea ) does not depend upon the chosen T.

Proof. — If A = Vecty, and wg a is the standard fiber functor wg x, which maps
a representation 7 of G on the k-vector space V(1) to the ka-vector space V(1) ®ka,
then F(wg ,) is the vectorial Tits building of G, studied in [8, Chapter 4] where
everything can be found. For the general case, pick an extension ¢ of ka and a fiber
functor wa ¢ : A — Vecty such that wa ¢owg a is ®-isomorphic to the standard fiber
functor wg ¢. Then, for every 7 € Rep(G), we obtain a commutative diagram

F (wga) > F (wa )

i !

F (wg (1) F (wg,e(7))

The horizontal maps are injective since wa is exact and faithful. The second
vertical map is continuous, and so is therefore also the first one (for the induced
topologies). Moreover, both vertical maps are injective if 7 is a faithful represen-
tation of G by [8, Corollary 87]. For the first claims, we have to show that the
functors Rep(G) — F(A) defined by the formulas for A - F and F + G are exact and
compatible with tensor products: this can be checked after post-composition with
the fiber functor wa ¢, see [8, Section 3.11.10]. It follows that for any faithful 7,
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F(wg,a) is a convex subset of F(wg a(7)) and F(wg (), the function d, is a CAT(0)-
distance on F(wg a) and the resulting topology does not depend upon the chosen
7 [8, Section 4.2.11]. It remains to establish that (F(wga),d;) is complete, and
this amounts to showing that F(wg a) is closed in F(wg,s). But if F,, € F(wg,a)
converges to F € F(wg ), then for every 7 € Rep(G), F,.(7) € F(wga(T)) con-
verges to F(7) € F(wg (7)), thus actually F(7) € F(wg,a(7)) since F(wg,a(7)) is
(complete thus) closed in F(wg ¢(7)), therefore indeed F € F(wg a). O

4.1.4. For a faithful representation 7 of G, we have just seen that evaluation at
7 identifies F(wg,a) with a closed convex subset F(wg a)(T) of F(we a(T)). Let

p:F(wga(r)) = Flwea)(T)

be the corresponding convex projection with respect to the natural distance d on
F(wga(7)). For every F € F(wga) and f, g € F(wga(7)), we have

d(p(f),p(9)) <d(f,9), lp(HI <IfII and  (F(7), f) < {F(7),p(f))

The first formula comes from [5, I11.2.4]. The second follows, with g = p(g) = 0(7).
The third formula can be proved as in section 2.4.4, see also [8, Section 5.7.7].

4.2. Quasi-Tannakian categories. Let now C be an essentially small k-linear
quasi-abelian ®-category with a faithful exact k-linear ®-functor wc A : C = A such
that for every object X of C, wc a induces a bijection between strict subobjects of
X in C and (strict) subobjects of wca(X) in A. We add to this data a degree
function degc : skC — R, i.e. a function which is additive on short exact sequences
and non-decreasing on mono-epis. Together with the rank function

rankc(X) def ranka (we (X)),
it yields a Harder-Narasimhan filtration on C, which we view as a functor over A,
]:HN:C—>F(A), wo}"HN:wc’A.

Note that this functor Fp is usually neither exact, nor a ®-functor.

4.2.1. We denote by C(X) the fiber of wca : C — A over an object X of A, and
for x € C(X), we denote by (z,—) : F(X) — R the concave degree function on

F(X) = F(Sub(X)) = F(Sub(z)) = F(x)
induced by our given degree function on C, thereby obtaining a pairing
(=, =) : C(X) x F(X) =R
By proposition 2.12, the Harder-Narasimhan filtration Fpgy(z) of x is the unique

element F € F(X) with the following equivalent properties:

(1) For every [ € F(X), |FI2 = 2 (&, F) < |£I2 — 2z, f).

(2) For every f € F(X), (z, f) < (F, f) with equality for f = F.

(3) For every v € R, Grk(x) is semi-stable of slope 7.
In (3), Gry(z) = F(x)/F](z) where F(x) and F](x) are the strict subobjects
of z corresponding to the (strict) subobjects F(v) and F4 () of X = wc a(z).
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4.2.2.  We denote by C®(wga) the set of all factorizations

we A

waa : Rep(G) = C =5 A

of our given exact ®-functor wg a through a k-linear exact ®-functor
z : Rep(G) — C.
Thus for every 7 € Rep(G), we have an evaluation map
C®(wga) — Clwa.alr)), x — (1)
and the corresponding pairing
(= =), : CPwan) x Flwga) = B, (0,F), = (a(r), F(r)).

Note that the latter is concave in the second variable.

PROPOSITION 4.2. — For z € C®(wg,a) and any faithful representation T of G,
there is a unique F in F(wg ) which satisfies the following equivalent conditions:

(1) For every f € F(wg.a), | Fll; = 2(x, F). < [fI7 = 2(x. f),.
(2) For every f € F(wga), (z, f), < (F, f), with equality for f = F.
Suppose moreover that for every f € F(wg a(7)) with projection p(f) € F(wga)(7),

((7), f) < (2(7), p(f)) -
Then F(1) = Fun(x(1)).

Proof. — For the first claim, it is sufficient to establish the implication (1) = (2)
for any F € F(wg,a), the existence of an F satisfying (1), and the uniqueness of any
F satisfying (2). The first two of these are proved as in proposition 2.12, replacing
everywhere the complete CAT(0)-space F(X) by F(wg a) and the concave function
(x,—) by (x,—).. As for uniqueness, if F and G both satisfy (2), then

IFI? = (@, F), <(G. F), and |G| = (2,9), < (F,0),
therefore d. (F,G)? = | F||> + |G]|> = 2(F,G)_ < 0 and F = G. For the last claim,
IFEI* =2 (2(r), F(r) < Ip(H)II* = 2 @(r), p() < IFI* = 2 (x(7), f)

for every f € F(wg,a(T)) by the first characterization of F, the assumption on (x, 7)
and the inequality ||p(f)|| < ||f|l. Thus indeed F(7) = Fun(z(7)) by 4.2.1. O

PROPOSITION 4.3. — Fix @ € C®(wg,a). Suppose that for every faithful repre-
sentation T of G and every f € F(wg (1)) with projection p(f) € F(wga)(T), we
have

((7), f) < (2(1),p(f))-
Then Fyn(x) := Fugn o x is an exact ®@-functor Fyy(x) : Rep(G) — F(A) and for

every faithful representation T of G, Fyn(x) is the unique element F of F(wg a)
which satisfies the following equivalent conditions:

(1) For every f € F(wa,a), | FI7 =2 (@, F), < |17 —2(z, f),.
(2) For every f € F(wga), (z, f), < (F, f), with equality for f = F.
(3) For every v € R, Gr}(ﬂ (x(7)) is semi-stable of slope 7.
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Proof. — By the previous proposition, for any faithful 7, the three conditions
are equivalent and determine a unique F, € F(wga) with Fr(7) = Fun(z)(7).
For any o € Rep(G), 7/ = 7 @ o is also faithful. By additivity of F, and Fgn(z),

Frr (1) @ Fri(0) = Fo(7') = Fun(2)(r') = Fo (1) @ Fn (2) (o)
inside F(wg a(7)) X F(wg,a(o)) C F(wa,a(7")), therefore
Fr(r)=Fo(r) and Fpn (x)(0) = Fr(0).

Since evaluation at 7 is injective, F, = F,» and Fyn(z)(o) = F-(0) for every
o € Rep(G). In particular, F = F, does not depend upon 7 and Fyy(z) = F is
indeed an exact ®-functor. This proves the proposition. O

4.3. Compatibility with ®-products. Let us now slightly change our set-up.
We keep k£ and A fixed, view C, wca : C — A and degc : skC — R as auxiliary
data, and we do not fix G or wg A.

4.3.1. A faithful exact k-linear ®-functor z : Rep(G) — C is good if it satisfies the
assumption of the previous proposition, when we view it as an element of C®(wg a)
with wg A =wca oz Then Fyy(x) := Fyn oz is an exact k-linear @-functor

Fun(z) : Rep(G) — F(A).

We say that a pair of objects (x1,22) in C is good if the following holds. For
1 € {1,2}, set d; = rankc(z;) and let 7; and 1; be respectively the tautological and
trivial representations of GL(d;) on V(7;) = k% and V(1;) = k. We require the
existence of a good exact k-linear ®-functor

x: Rep (GL(dy) x GL(dg)) — C
mapping 71 = 71 W 15 to 21 and 74 = 17 K 75 to 25. Then
Fun(r1 @ 22) = Fun(21) ® Fun(22).
We say that (C,deg¢) is good if every pair of objects in C is good.
COROLLARY 4.4. — If (C,degc) is good, then Fyy : C — F(A) is a ®-functor.

4.3.2.  Suppose that (w; : C; — A, deg,;);er is a finite collection of data as above.
Let w : C — A be the fibered product of the w;’s, with fiber C(X) =[] C;(X) over
any object X of A and with homomorphisms given by
def .
Homc (), (y;)) = N;Home, (z;,%;) in Homa(X,Y)

for (z;) € C(X), (y;) € C(Y). Then C is yet another essentially small quasi-abelian
k-linear ®-category equipped with a faithful exact k-linear ®-functor w : C — A
which identifies Sub((z;)) and Sub(X) for every (z;) € C(X). Fix A = (\;) € R!
with A; > 0 and for every object © = (x;) of C, set deg, (x) := >_ A; deg;(x;). Then

degy :skC— R
is a degree function on C and for every X € A, z = (x;) € C(X) and F € F(X),
(@, F) =Y Xi{zi, F).

Thus an exact k-linear ®-functor = : Rep(G) — C is good if it has good components
x; : Rep(G) — C;, a pair ((z;), (y;)) in Cis good if it has good components (z;,y;) in
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C;, and (C, deg,) is good if the (C;, deg,)’s are, in which case the Harder-Narasimhan
filtration Fyn : C — F(A) is compatible with tensor products.

4.3.3. Our use of an auxiliary reductive group G to establish the compatibility
of Harder-Narasimhan filtrations with tensor products may obscure the main idea,
which goes back to at least Totaro’s [22]: once the Harder-Narasimhan filtration has
been characterized as the (unique) solution of an optimization problem on a space of
R-filtrations, the desired compatibility Fgn (21 ®z2) = Fun(21) @ F gy (x2) follows
from an inequality of the form (x; ® xa, f) < (1 ® 22, p(f)), for every R-filtration
f € F(z1 ® x2), where p is the convex projection of F(x; ® x3) onto the image of
the tensor product map ® : F(z1) X F(z2) — F(z1 ® x2). Note that p(f) is itself
the (unique) solution of a different and easier optimization problem. For a strict
subobject z of 1 ® x2 mapping to some f in F(z1 ® x2) under the embedding of
section 2.2.9, a pair of R-filtrations (Fi, F2) € F(z1) x F(x2) with the property that
Fi1®@F2 = p(f) in F(x1®2x2) is what would be called a Kempf filtration in [22] or [17].
In our set-up, the tensor product map is the evaluation map F(wga) — F(wga(T))
induced by the tensor product representation 7 of G := GL(d;) x GL(dz2) (with
d; = rank(z;)). It turns out that in all the examples we know, the proofs of the
desired inequalities work equally well for arbitrary G and 7, and the final results
thus obtained are stronger: in addition to their compatibility with ®-products,
our Harder-Narasimhan filtrations also have some exactness properties, a feature
that usually required further arguments, most notably Haboush’s theorem [15]. Of
course, our set-up is also tailor-made for the applications that we have in mind.

5. EXAMPLES OF GOOD C’s

5.1. Filtered vector spaces.

5.1.1. We consider the following set-up: k is a field, ¢ is an extension of k£ and

wV,F) =V,
A =Vect, and C=Fil, with rank(V,F) = dim,V,
deg(V,F) = deg(F).

Here Fili is the category of all pairs (V, F) where V is a finite dimensional k-vector
space and F is an R-filtration on V; := V ® ¢, i.e. a collection F = (F7),ecr of
l-subspaces of V; such that 7Y € FY if v/ < ~, FY =V for vy < 0, F¥ = 0 for
v > 0and F7 = N, o, F7 for every v € R. A morphism f : (Vi,F1) — (Va, Fa)
is a k-linear morphism f : Vi3 — Vi such that f,(F]) C Fj for every v € R,
where fy : Vi ¢ — Va0 is the ¢-linear extension of f. The kernel and cokernel of f
are given by (ker f, Fi xer f) and (coker f, Fo cokerf) Where fﬁkerf and f;cokerf are
respectively the inverse and direct images of 7, and F; under (ker f), < V; 0 and
Vae — (cokerf)y. The morphism f is strict if and only if 75 N fo(Vie) = fo(F7)
for every v € R. It is a mono-epi if and only if the underlying map f: V3 — V5 is
an isomorphism. The category Filf; is quasi-abelian, the rank and degree functions
are additive on short exact sequences, and they are respectively constant and non-
decreasing on mono-epis. More precisely if f : (Vi,F1) — (Va,F2) is a mono-epi,
then deg 1 < deg Fo with equality if and only if f is an isomorphism. We thus
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obtain a HN-formalism on Filf;. There is also a tensor product, given by

V1, F1) @ (Va, Fo) = (Vi @ Vo, i @ Fa),

with (FLeR) < Y F'eF.
Y1+v2=Y

We will show that if £ is a separable extension of k, the HN-filtration is compatible
with ®-products. This has been known for some time, see for instance [9, 1.2],
where a counter-example is also given when / is a finite inseparable extension of k.
For k = ¢, we simplify our notations to Filg := Fill,z = F(Vecty).

5.1.2. Let F(G) be the smooth k-scheme denoted by FX(G) in [8]. Thus

F(G,0) € F(G)(¢) = Fwa,) = (Fil)®(we )

is the vectorial Tits building of G, where wg ¢ : Rep(G) — Vect, is the standard
fiber functor. The choice of a finite dimensional faithful representation 7 of G
equips these buildings with compatible complete CAT(0)-metrics d, whose induced
topologies do not depend upon the chosen 7. These constructions are covariantly
functorial in G, compatible with products and closed immersions, and covariantly
functorial in ¢. We thus obtain a (strictly) commutative diagram of functors

Red(k) x Ext(k) — " Top

(F(7)7)>d7) j

Red(G) x Ext(k) ———— CCat(0)

where Red(k) is the category of reductive groups over k, Red(G) is the poset of all
(closed) reductive subgroups H of G viewed as a subcategory of Red(k), Ext(k) is
the category of field extensions ¢ of k, Top is the category of topological spaces and
continuous maps, and CCat(0) is the category of complete CAT(0)-metric spaces
and distance preserving maps. For 7, H and ¢ as above, the commutative diagram

(F(H> k)7 d‘r)(—> (F(G, k)a d‘r)

| |

(F(H7 E), d‘r)c—> (F(G7 6)7 d‘r)

is cartesian in CCat(0) since F(H)(k) = F(H)(¢)NF(G)(k) inside F(G)(¢). Using [5,
11.2.4], we obtain a usually non-commutative diagram of non-expanding retractions

Pk

(F(H7 k)a d‘r) ~ (F(Ga k)v dT)

De

(F(Ha é)a dT) ~ (F(Ga é)a d‘r)

where each map sends a point in its source to the unique closest point in its target.
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THEOREM 5.1. — If ¢ is a separable extension of k, the diagrams

F(H k)< F(G k) and F(H k)‘—sF(G k)

TH ure
I T |
F(H, () <2 F(G,0) F(H,{)——F(G,!)
are commutative, moreover mg does not depend upon 7 and defines a retraction
m:F(—4) > F(—, k)
of the embedding F(—, k) < F(—,¢) of functors from Red(k) to Top. Finally,
V(z,y) €F(H,O) x F(G.R):  (0,y), < (o.pu(y)),

Proof. — This is essentially formal.

Commutativity of the first diagram. We have to show that for every z € F(G, k),
y = pe(x) belongs to F(H,k) C F(H,{) — for then indeed y = pp(x). Since
F(H,¢) = F(H)(¢) and F(H) is locally of finite type over k, there is a finitely
generated subextension ¢’ of £/k such that y belongs to F(H)(¢') = F(H, {¢'). Plainly
y = pe(x), and we may thus assume that ¢ = ¢’ is a finitely generated separable
extension of ¢. Then [3, V, §16, n°7, Corollaire of Théoréme 5] reduces us to the
following cases: (1) ¢ = k(t) is a purely transcendental extension of k or (2) ¢
is a separable algebraic extension of k. Note that in any case, y is fixed by the
automorphism group I' of £/k. Indeed, T acts by isometries on F(G,¢) and F(H, ¢),
thus py is T-equivariant and T fixes y = py(x) since it fixes € F(G, k). This settles
the following sub-cases, where k is the subfield of ¢ fixed by I': (1’) ¢ = k(¢t) with &k
infinite (where I' = PG L2 (k)), and (2') ¢ is Galois over k (where I' = Gal(¢/k)). If
¢ is merely algebraic and separable over k, let £’ be its Galois closure in a suitable
algebraic extension. Then ¢'/¢ and ¢'/k are Galois, thus p¢(x) = pe (z) = pr(x) by
(2"), which settles case (2). Finally if ¢/ = k(t) with k¥ = F, finite, the Frobenius
o(t) = t9, also not bijective on ¢, still induces a distance preserving map on F(G, ¢)
and F(H,?¢). Thus d,(z,y) = d.(z, oy) since oz = x, but then oy = y by definition
of y = pi(z), and y € F(G, k) as desired.

Final inequality. For z,y € F(H,{) x F(G,?), (z,y). < (z,pe(y)), by [8, 5.7.7]
and for y € F(G, k), also ps(y) = px(y) by commutativity of the first diagram.

Commutativity of the second diagram. For x € F(H,{) and y = ng(x) €
F(G, k),

dr (z,y) = dr (pe(x), pe(y)) = dr (2, pr(y))

since py is non-expanding, equal to the identity on F(H, /) and to py on F(G,k)
by commutativity of the first diagram. Since px(y) € F(H, k) C F(G, k), it follows
that px(y) = y by definition of y. In particular y € F(H, k), thus also y = 7y (x).

Independence of T and functoriality. Let G7 and G2 be reductive groups over k
with faithful representations 7y and 75. Set 73 = 7 H 75, a faithful representation
of G3 = G1 X Go. Then F(G3) = F(G1) X F(G2) and for every extension m of k,

(F(G?nm)vde) = (F(G17m)7d7'1) X (F(G27m)7d7'2)
in CCat(0). This actually means that for x5 = (21, 22) and y3 = (y1,y2) in
F(G3,m) = F(G1,m) X F(Gg,m)
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we have the usual Pythagorean formula

dry(23,y3) = V/dr, (21, 51)% + dry (22, 42)2-

It immediately follows that
(P(Gs.0) 2 B (G b)) = (F(Gl,é) K F (G, 0) T B(GhL B % F(Go, k)>

where m; = 7, is the retraction attached to 7;. Applying this to G1 = Gy = G
and using the commutativity of our second diagram for the diagonal embedding
A: G — GxG, weobtain Aowg = (71, 72) 0 A, where 73 is now the retraction ¢
attached to the faithful representation 7 @® 7o = A*(73) of G. Thus m = 73 = 7o,
i.e. mg does not depend upon the choice of 7. Using the commutativity of our
second diagram for the graph embedding Ay : G; — G1 x G2 of a morphism
f: Gy — Gs, we similarly obtain the functoriality of G — 7¢. O

5.1.3. For G = GL(V), evaluation at the tautological representation 7 of G on
V identifies F(G, —) with F(V ®; —). For any reductive group G with a faithful
representation 7 on V' = V(7), the projection p : F(V) — F(G, k) of proposition 4.3
becomes the projection pp : F(GL(V), k) — F(G, k) of the previous theorem for
the embedding 7 : G < GL(V). Thus if ¢ is a separable extension of k, then every
z € F(G,?) is good. Similarly for every pair z1 = (V1,F1) and xo = (Va, Fa) of
objects in Fill,, F(GL(V1) x GL(Va), £) ~ F(Vy @1 £) x F(Va ®3 £) contains (Fy, Fa),

which implies that then also (Fili7 deg) is good. We thus obtain:
PROPOSITION 5.2. — Suppose that ¢ is a separable extension of k. Then
Fun : Fill, = Fily, is a ®-functor.
For every x € F(G,{), Fun(x) := Fyn o x belongs to F(G, k), i.e.
Fun(x) : Rep(G) — Fily, is an exact ®@-functor.
Moreover, Fyn(x) = ng(x) in F(G, k).

Proof. — The last assertion follows either from proposition 4.3 (both Fgn ()
and 7g(z) minimize f +— d,(x, f)? = Hx||i+||f\|3—2 (x, f),. on F(G, k)) or from the
functoriality of wg (for every o € Rep(G), mg(z)(0) = Fun(z)(o) by 2.4.4). O
Once we know that the projection g : F(G,¢) — F(G, k) computes the Harder-

Narasimhan filtrations, the compatibility of the latter with tensor product con-
structions also directly follows from the functoriality of G — 7g:

PROPOSITION 5.3. — The Harder-Narasimhan functor Fgpn : Filf; — Filg is
compatible with tensor products, symmetric and exterior powers, and duals.

Proof. — Apply the functoriality of G — 7g to GL(V1)xGL(V3) — GL(V1®@Vs),
GL(V) = GL(Sym"V), GL(V) — GL(A"V) and GL(V) — GL(V*). O
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5.2. Normed vector spaces.

5.2.1. Let K be a field with a non-archimedean absolute value |—| : K — R
whose valuation ring O = {x € K : |z| < 1} is Henselian with residue field ¢. A
K-norm on a finite dimensional K-vector space V is a function a : ¥V — R such
that a(v) =0 < v =0, a(v; + v2) < max {a(v1), a(v2)} and a(iv) = |A| a(v) for
every v,v1,v9 € V and A € K. It is splittable if and only if there exists a K-basis
e = (e1, - ,e.) of V such that a(v) = max {|\;] a(e;)} for all v =" N\e; in V; we
then say that « and e are adapted, or that e is an orthogonal basis of (V,«). We
denote by B(V) the set of all splittable K-norms on V: it is the extended Bruhat-
Tits building of GL(V). If K is locally compact, then every K-norm is splittable
[13, Proposition 1.1]. Given two splittable K-norms « and § on V, there is a K-
basis e of V which is adapted to both ([6, Appendice] or [19]), we may furthermore
assume that \; = log a(e;) — log 8(e;) is non-increasing, and then [8, 6.1 & 5.2.8]

d(OZ’B)d;f(Ah"'aAr)ERQ and V(aaﬂ)défAl‘F""FAreR

do not depend upon the chosen adapted basis e of V. The functions
d:B(V)xB(V) =R, and v:B(V)xB(V)—=R
satisfy the following properties [8, 6.1 & 5.2.8]: for every «, 8,7 € B(V),

d(a,y) < d(e, ) +d(8,7) and v(a,v) =v(a,B)+v(B,7)
where the inequality is with respect to the usual dominance order on the convex
cone RL. A splittable K-norm « on V induces a splittable K-norm ay on every
subquotient X = Y/Z of V, given by the following formula: for every x € X,

aX(:v)d;finf{a(y):yayn—mre)(}:min{a(y):yBnyGX}.

For a K-subspace W of V and any «a, € B(V), we then have [8, 6.3.3 & 5.2.10]

d(a, B) = d(aw, Bw) * d(ay w, Byw)
and v(a, B) = v(aw, Bw) + vy w, yww)

where the x-operation just re-orders the components.

5.2.2.  We denote by Normg the quasi-abelian ®-category of pairs (V, a) where V
is a finite dimensional K -vector space and « is a splittable K-norm on V [8, 6.4].
A morphism f : (V1,a1) = (Va,a2) is a K-linear morphism f : V; — Vs such
that as(f(z)) < ai(z) for every € V. Its kernel and cokernels are given by
(ker(f), a1 ker(f)) and (coker(f), @ coker()). The morphism is strict if and only if

az(y) = inf{a1(2) : f(z) =y} =min{ai(z) : f(z) =y}
for every y € f(V1). It is a mono-epi if and only if f:V; — Vs is an isomorphism,
in which case v(f.(a1), a2) > 0 with equality if and only if f is an isomorphism in

Normpg, where f, (o) is the splittable K-norm on V with f.(a1)(f(z)) = a1 ().
The tensor product of Normg is given by the formula

Vi, 1) @ (Va, a2) o V1 @k Va, a1 @ i)

where for every v € V; ®k Vs,

V=014 @V }

def . .
(a1 ® ag)(v) = min {max {a1(v1,)az(vay) i} 1 EV1, Vs € Vi
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This formula indeed defines a splittable K-norm on V; ® V5 by [6, 1.11].

5.2.3. A lattice! in V is a finitely generated O-submodule L of V which spans V
over K. Any such lattice is actually finite and free over O. The gauge norm of L
is the splittable K-norm «ay, : V — R, defined by

ar(v) e inf {|\| : v € AL}.
This construction defines a faithful exact O-linear ®-functor
a_ : Bunp — Normg

where Bune is the quasi-abelian O-linear ®-category of finite free O-modules. A
normed K-vector space (V, «) belongs to the essential image of this functor if and
only if a(V) C |K|. This essential image is stable under strict subobjects and
quotients, and the functor is an equivalence of categories if |K| = R,.

5.2.4. Suppose that k is a subfield of O. Thus |k*| =1 and ¢ is an extension of k.
We denote by Norm 5 the quasi-abelian k-linear ®-category of pairs (V, «) where V/
is a finite dimensional k-vector space and « is a splittable K-norm on Vi := V@, K.
A morphism f: (Vi,a1) = (Va,as) is a k-linear morphism f : V; — V5 inducing a
morphism fx : (Vi,k, 1) = (Va,ix,a2) in Normg. Its kernel and cokernel are given
by the obvious formulas, the morphism is strict if and only if fx is so, it is a mono-
epi if and only if f: V3 — V4 is an isomorphism, in which case v(fx «(a1),a2) > 0
with equality if and only if f is an isomorphism in Normf . The tensor product
in Norka is given by (V1,a1) @ (Va,a0) := (V1 ® Vo, a1 ® ag) and the forgetful
functor w : Normy — Vecty, is a faithful exact k-linear ®-functor which identifies
the poset Sub(V, ) of strict subobjects of (V, a) in Normi with the poset Sub(V)
of k-subspaces of V' = w(V, a). In addition, there are two exact ®-functors

Normf = Normg, (V,a)— (Vk,a) or (Vk,ayvgo)
where V®@ O =V ®;, O is the standard O-lattice in Vi =V ®;, K. We set
rank(V, «) © Qimy V' and deg(V, @) L v(ayvgo, ).

These functions are both plainly additive on short exact sequences and respectively
constant and non-decreasing on mono-epis. More precisely, if f : (Vi,a1) = (Va, as)
is a mono-epi, then f :V; — V3 is an isomorphism, fx .(av,g0) = av,eo and

deg(Vi, o) = v(av, g0, 1)
= v(av,eo, fr«(a1))
=v(av,20,02) — V(fK (1), a2) < deg(Va, o)

with equality if and only if f is an isomorphism in Norka .

1Not to be confused with the eponymous notion from section 2.1.1



36 C. Cornut

5.2.5. We may thus consider the following set-up

w(V,a) =V,
A =Vect, and C=NormZ with rank(V,a) = dimgV,
deg(V,a) = v(avgo, ),

giving rise to a HN-formalism on Normfj , with HN-filtration
Fun : Normp — Fily.

We will show that if  is a separable extension of k, then for any reductive group G
over k, sufficiently many o’s in (Normy )®(wg x) are good for the pair (Normi , deg)
itself to be good. In particular, Fpy is then a ®-functor.

5.2.6. A variant. Let Buny be the category of pairs (V, L) where V is a finite di-
mensional k-vector space and L is an O-lattice in V. With the obvious morphisms
and tensor products, this is yet another quasi-abelian k-linear ®-category, and the
k-linear exact @-functor (V, L) — (V,ay) identifies Bung with a full subcategory
of Norm}*, made of those (V, a) such that a(Vx) C |K|, which is stable under strict
subobjects and quotients. The above rank and degree functions on Norka therefore
induce a HN-formalism on Bunj whose corresponding HN-filtration

Frn : Buni — Fily,
is a ®-functor if ¢ is a separable extension of k. Note that

deg(V,L) = log|A;| if V@ O =@aj_,0¢; and L = &j_,O\e;.

i=1

If K is discretely valued, it is convenient to either normalize its valuation so that
log | K *| = Z, or to renormalize the degree function on Normj , so that its restriction
to Buny takes values in Z. The HN-filtration on Bunj is then a Q-filtration.

5.2.7. For a reductive group G over O, let B¢(G ) be the extended Bruhat-Tits
building of Gk . There is a canonical injective and functorial map [8, Theorem 132]

o : B¢(Gk) = Norm% (wg i)
from the building B¢(G) to the set Norm% (wg i) of all factorizations
we, ik : Rep(G) %5 Normg — Vecty
of the standard fiber functor we ik : Rep(G) — Vectk through an exact ®-functor
a : Rep(G) — Normg-.

Here Rep(G) is the quasi-abelian ®-category of algebraic representations of G on
finite free O-modules. We shall refer to o as a K-norm on wg k-
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5.2.8. For a reductive group G over k, we set B¢(G, K) = B°(Gk). Pre-com-
position with the base change functor Rep(G) — Rep(Go) then yields a map

Norm% (wee 1) — Norm® (wa i)

which is injective: a K-norm on wg,, x is uniquely determined by its values on
arbitrary large finite free subrepresentations of the representation of Gp on its ring
of regular functions A(Gp) = A(G) ®; O [8, 6.4.17], and those coming from finite
dimensional subrepresentations of A(G) form a cofinal system. Note that

K

Norm® (wa i) = (Norm; )® (wa 1 ).-
We thus obtain a canonical, functorial injective map
a:B¢(G, K) — (Normf)®(wg.r).
We will show that if ¢ is a separable extension of k, then any « in
B(wa, K) = a(B*(G, K)) C (Normf)® (we 1)
is good in the sense of section 4.3.

5.2.9. For a reductive group G over k, the extended Bruhat-Tits building B¢(G, K)
of G is equipped with an an action of G(K), a G(K)-equivariant addition map

+:B%(G,K) x F(G,K) - B°(G, K),
a distinguished point o fixed by G(O), and the corresponding localization map
loc: B*(G, K) - F(G,?).
For f € F(G,k) C F(G,K), loc(o + f) = f in F(G, k) C F(G,?), i.e.
F(G k) — = B¢(G, K) —= = F(G, ()
is the base change map F(G, k) — F(G, (). For G = GL(V), the composition
B*(G, K) % B(wg, K) =% Normi (V) = B(Vk)

of the isomorphism a with evaluation at the tautological representation of G' on
V is a bijection from B¢(G, K) to the set B(Vk) of all splittable K-norms on V.
The distinguished point is the gauge norm of V' ® O, the addition map is given by

(a4 F)(v)  min {max {e7a(vy) v ER} v = va, Uy € P} ,
and the localization map loc : B(Vk) — F(V;) sends « to the R-filtration

Ldef {PEVR®O:av)<e 7} +Veam Voo
Veom Veom

where m = {\ € K : |\| < 1} is the maximal ideal of O. For a general reductive
group G over k, the corresponding addition map, distinguished point and localiza-

tion map on B(wg, K) are given by the following formulas: for 7 € Rep(G),

loc(a)

€

(a+ F)(7) def a(t) + F(1), a(o)(r) def Qg (rgo  and  loc(a)(T) def loc(a(T)).
LEMMA 5.4. — If O is strictly Henselian, then B(wg, K) contains the image of
Bung (we.x) = Norm% (wa k)

If moreover |K| = Ry, then a : B¢(G, K) — Norm% (wg.x) is a bijection.



38 C. Cornut

Proof. — Plainly wg,o € Bung(we, ) maps to a(o) € B(wg, K), and since all
of our maps are equivariant under G(K) = Aut® (wg x ), it is sufficient to establish
that G(K) acts transitively on Bun$(wg x). Any L € Bund(we k) is a faithful
exact ®-functor L : Rep(G) — Bunp. The groupoid of all such functors is equivalent
to the groupoid of all G-bundles over Spec(Q), and the latter are classified by the
étale cohomology group HJ,(Spec(O),G), which is isomorphic to H},(Spec(f), G)
by [12, XXIV 8.1], which is trivial since ¢ is separably closed. It follows that all
L’s are isomorphic, i.e. indeed conjugated under G(K) = Aut®(wg k). If also
|K| = Ry, then Bunp — Normg is an equivalence of categories, Bun%(wQK) —
Norm® (wg k) is a bijection, and thus B(wg, K) = Norm% (we k). O

5.2.10. The choice of a faithful representation 7 of G yields a distance d, on
B¢(G, K) [8, 5.2.9], defined by d.(z,y) := ||F||, if y = z + F in B*(G, K), where
|- : F(G, K) — Ry is the length function attached to 7. The resulting metric
space is CAT(0) [8, Lemma 112], complete when (K, |—|) is discrete [8, Lemma 114],
the addition map is non-expanding in both variables [8, 5.2.8], the localization map
is non-expanding [8, 6.4.13 & 5.5.9], and the induced topology on B¢(G, K) does
not depend upon the chosen 7. These constructions are covariantly functorial in G,
compatible with products and embeddings, and covariantly functorial in (K, |—|).
In particular, we thus obtain a (strictly) commutative diagram of functors

Red(k) x HV (k) ———"_. Top

(Be(777)7d
_—

Red(G) x HV(k) =) Cat(0)

where HV (k) is the category of Henselian valued extensions (K, |—|) of k¥ and Cat(0)
is the category of CAT(0) metric spaces with distance preserving maps.

5.2.11. For a closed subgroup H of G, the commutative diagram of CAT(0)-spaces

(F(H, ki), dT)C—> (F(G7 k)a d'r)

(B¢(H,K),d,)— (B*(G,K),d;)

is cartesian: for F € F(G, k) such that o + F € B¢(H, K), loc(o + F) = F belongs
to F(H,{), thus F belongs to F(H, k) = F(G,k) NF(H,¢). The corresponding (a
priori non-commutative) diagram of non-expanding retractions

Pk

(F(H,k),d-) (F(G, k), dr)

WHT wcT

(B¢(H,K),d,) <"% - (B(G, K),d,)

has a caveat: since (B¢(H, K),d,) may not be complete (and B¢(H, K) perhaps
not even closed in B¢(G, K)), we can not directly appeal to [5, I1.2.4], but its proof
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shows that a non-expanding retraction px is at least well-defined on the subset
Jy € B¢(H, K) such that

dr(xz,y) =inf{d,(z,y) : vy € B¢(H,K)} [~

Of course B¢(H, K) C B¢(G, K)" and B¢(G, K)' = B°(G, K) if B°(H, K) is com-

plete, for instance if H is a torus or if (K,|—|) is discrete [8, 5.3.2].

B°(G,K) ¥ {x € B*(G,K)

THEOREM 5.5. — If ¢ is a separable extension of k, then
B¢(G, K)' contains o +F (G, k).
Moreover, the diagrams

Pk

F(H, k) F(G,k) and F(H k) >F(G, k)

| R

B°(H,K) <% B°(G,K) B¢(H, K)“—— B*(G, K)

are commutative, wg does not depend upon T and defines a retraction
w: Be(_aK) - F(_ak)
of the embedding F(—, k) — B¢(—, K) of functors from Red(k) to Top.

Proof. — This is again essentially formal.
First claim and commutativity of the first diagram. For F € F(G,k) and any
element y € B¢(H, K),

dr(o+ F,y) = dr (F,loc(y)) = dr (F,pe(F)) = dr (F, pr(F))
since loc is non-expanding and py = py on F(G, k) by theorem 5.1, therefore
dr (F,pi(F)) = dr (0 + F, 0+ p(F)) = inf {d-(o + F,y) : y € B(H, K)}.
This says that o + F € B¢(G, K)' with px (o + F) = o + pi(F).
Commutativity of the second diagram. For x € B¢(H, K) and F := wg(z) in
F(G,k), x and o + F belong to B¢(G, K)', moreover
dT('r? o+ f) P dT (pK(x)apK(o +‘F)) = dT (],‘70 +pk(]:))

by commutativity of the first diagram, thus F = py(F) by definition of F = wg(z),
in particular F belongs to F(H, k), from which easily follows that also F = wg (z).

Independence of T and functoriality. Let G; and G2 be reductive groups over k
with faithful representations 7 and 5. Set 73 := 71 H 75, a faithful representation
of G3 = G1 X GQ. Then

(B“(G3, K),dy,) = (B*(G1, K), dy,) x (B*(Go, K),d>,)
in Cat(0). This actually means that for x3 = (21, 22) and y3 = (y1,¥2) in
B¢(G3,K) = B*(G1, K) x B*(Ge, K)
we have the usual Pythagorean formula
dry(23,y3) = \/dr, (21, 91)2 + doy (22, 42).
It immediately follows that

(1,2

B (G, K) =5 (G, b)) = (B(Gr, K) x BE (G, K) 5 (G, ) x F(Ga, k)
( )=( )



40 C. Cornut

where w; := wg, is the retraction attached to 7. Applying this to G; = G2 = G
and using the commutativity of our second diagram for the diagonal embedding
A : G = GxG, we obtain Aows = (w7, w2)oA, where w3 is now the retraction wg
attached to the faithful representation 73 &7 = A*(73) of G. Thus w; = w3 = wo,
i.e. wg does not depend upon the choice of 7. Using the commutativity of our
second diagram for the graph embedding Ay : G; — G; x G2 of a morphism
f : G1 — G2, we similarly obtain the functoriality of G — wg. O

5.2.12. With notations as above, the Busemann scalar product is the function
(—,—), : B(G, K)?>xF(G,K) =R

which maps (z,y,F) to
(@0, F), ENF|, - lim (dr(@,z + tF) = dy(y, 2+ 1F))

Here z is any fixed point in B¢(G, K): the limit exists and does not depend upon
the chosen z [8, 5.5.8]. For every z,y,z € B¢(G,K), F € F(G,K) and t > 0,

(@2, F), = (@), F), + (%, F), and (T),tF), =t (), F),

As a function of z, (z7, F)._ is convex and || F||_-Lipschitzian; as a function of y, it is
concave and [|F||_-Lipschitzian; as a function of F, it is usually neither convex nor
concave, but it is d,(x, y)-Lipschitzian [8, 5.5.11]; as a function of 7, it is additive:
if 7/ is another faithful representation of G, then

<@af>7—@q—’ = <@af>r + <‘ﬁ/af>7—’
For any z € B¢(G, K) and F € F(G, k), we have the following inequality [8, 5.5.9]:
(. ), < (loc(x), F)

This is an equality when z belongs to F(G, k) ~ o + F(G, k).

PROPOSITION 5.6. — Suppose that ¢ is a separable extension of k. Let H be a
reductive subgroup of G. Then for every x € B(H,K) and F € F(G, k),

(o2, 7)., < (5F,pu(F)),
where py, : F(G, k) — F(H, k) is the convex projection attached to d.

Proof. — Set G = pi(F) € F(H, k) and pick a splitting of G [8, Cor. 63],
corresponding to an R-filtration G’ € F(H, k) opposed to G: for any representation
oof H,

wik(0) = ByerG(0)" NG (0)77

Let Qg C Pg and Qg C Pg: be the stabilizers of G and G’ in H and G, so that
(Qg,Qg/) and (Pg, Pg:) are pairs of opposed parabolic subgroups of H and G,
with Levi subgroups H' := Qg N Qg and G’ := Pg N Pg:. Let R“(—) denote
the unipotent radical. Then for x € {k,¢, K}, B¢(H',K), B¢(G',K), F(H',*) and
F(G', *) are fundamental domains for the actions of R*Qg(K), R*Pg(K), R*Qg(x)
and R"Pg(x) on respectively B¢(H, K), B¢(G, K), F(H,*) and F(G, *) [8, 5.2.10].
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We denote by the same letter r the corresponding retractions. They are all non-
expanding, and the following diagrams are commutative:

B¢(H,K)“———~ B*(G, K) F(H, ) F(G,*)
B¢(H', k) B*(G', K) F(H' %) —F (G, %)

Let 2’ := r(x) and F' := r(F), so that 2’ € B*(H',K), F' € F(G', k). Note that
already G,G' € F(H', k). We will establish the following inequalities:

(5%, F). < (5%, F')_ 2 (loc(a’), F').. ¢ (loc(2),6), @ (5#,6)_ 2 (5%,6) .

The second inequality was already mentioned just before the proposition.

Proof of (1). Since F' = r(F), there is a u € R*Pg(k) such that F' = uF. Since
u € G(k) and all of our distances, norms etc... are G(k)-invariant, it follows that
|FIl. = IF'|l.. Since u € G(O) fixes o, u(o 4+ tF) = o 4+ tF’ belongs to B*(G’, K).
Since u € R*Pg(K), r(o +tF) = o+ tF’ for all t > 0. Thus

(3, F), = Fl, Jim (¢1F], = dr(,0+1F)
<IN, Jim (F ], — do (a0 + 1)
_ <@/7]_-/>T
since r : B¢(G, K) — B¢(G’, K) is non-expanding.

Proof of (3). Note that loc(z’) € F(H',¢) and F' € F(G',k). By the last
assertion of theorem 5.1, it is sufficient to establish that p},(F') = G for the convex
projection pj : F(G', k) — F(H’, k) — which is usually not equal to the restriction
of pi : F(G, k) — F(H, k) to F(G',k). For t > 0, F +tG = F' + G by [8, 5.6.2].
In particular F + tG belongs to F(G’, k) since 7' and G do. On the other hand,

pe(F +1G) = (1+t)pg (%Hf+ %Hg> =(1+t)g
using [5, I1.2.4] for the second equality. Since this belongs to F(H’, k), actually
Pr(F' +1G) = pi(F +1G) = pi(F +1G) = (1 +1)G.

Now observe that H — H +tG and H — H + tG’ are mutually inverse isometries
of F(G', k) and F(H', k), thus pj commutes with both of them and

Pr(F) = po(F' +19) +1¢" = (1 + )G +1G' = G.
Proof of (4). This follows from [8, 5.5.3].

Proof of (5). Since ' = r(z), there is a u € R*Qg(K) such that uz = 2’. For
t > 0, u fixes o + tG by [8, 5.4.6]. Then d, (2’,0 4+ tG) = d;, (x,0+tG) and

(3#,G), = |61, lim (t]g], - dr(a',0+1G))
=[Gl Jim (¢|G]l, — d-(z,o +tG))
= (%,G)_.
This finishes the proof of the proposition. 0

COROLLARY 5.7. — For every v € B*(G,K), F — <@,]—'>T is concave on
F(G,k).
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Proof. — We have to show that for any x € B¢(G, K) and F,G € F(G, k),
(o&,F)_+(31,G)_ < (52, F+G)_.
For the diagonal embedding A : G — G x G, the proposition gives
(o, M) g, < (5%, pp(H)),, = 2 (o2, pr(H)),
for every H in F(G x G, k) = F(G, k) x F(G, k). For H = (F,G), we have
(M), = (38, F), + (34,0),

and pg(H) is the point closest to (F,G) in the diagonally embedded F(G,k): the
middle point $(F +G) = 3F + 3G of the geodesic segment [F,G] of F(G, k). Thus

(o2, F), +(54,G), <2(o%, 3(F +9)), = (o4, F + 3.,

which proves the corollary. O

5.2.13.  For V € Vectg and for the canonical metric on F(V), there is an explicit
formula for the corresponding Busemann scalar product

(=, =) :BV)2 x F(V) = R.
which maps («, 3, F) to

(B, F) = |F|l - lim (d(a,y+tF) = d(B, +F)).

By [8, 6.4.15], the latter may indeed be computed as

(af,F) = Zw Gl (a), GrL(8))

where Gr)(a) and GrJ(f) are the splittable K-norms on Grk(V) induced by «
and 8. If V = Vg and F = fx for some V € Vect, and f € F(V), then Grk(V)
equals Gr}(V) ®p K; if moreover « is the gauge norm of V ®; O, then Gri(a) is
the gauge norm of Gr}(V) ®g O. In particular, the pairing of section 4.2.1,

(=, =) :NormE (V) x F(V) = R, (a,f) = Z’y deg Gr(a)
is related to the Busemann scalar product by the formula

(. f) = (@vgod, fx) -

5.2.14. The previous formula yields another proof of corollary 5.7, which now
works without any assumption on the extension ¢ of k: for every x € B¢(G, K),
the function F <ﬂ,]—">T is concave on F(G, k) since for « := a(z) € B(wg, K),

(3, F), = (o(r)a(r), F(1)) = {a(r), F())

and f +— (a(7), f) is a degree function on F(wg k(7)). If £ is a separable extension
of k, proposition 5.6 implies that every a € B(wg, K) is good. On the other hand
for every pair of objects (V1, a) and (Va, ap) in Normy and G := GL(V;) x GL(Va),

B¢(G,K) ~ B(wg, K) ~B(V1 k) x B(V2 k)

contains (ay, o), therefore (Normi, deg) is then also good. We obtain:



ON HARDER-NARASIMHAN FILTRATIONS 43

THEOREM 5.8. — Suppose that ¢ is a separable extension of k. Then
Fun: Norka — Fil, is a ®-functor.
For every a € B(wg, K), Fan(a) := Frn o a belongs to F(G, k), i.e.
Fun(a) : Rep(G) — Filg is an exact ®-functor.
For any faithful representation 7 of G and x € B*(G, K), ng(z) := Fun(a(x)) is
the unique element F of F(G, k) which satisfies the following equivalent conditions:
(1) For every f € F(G, k), | FI? —2 (3%, F)_ <||fI? —2(5, f)..
(2) For every f € F(G,k), <<ﬂ,f>T < (F, f), with equality for f = F.
(3) For every v € R, Grk(a(z))(r) is semi-stable of slope 7.
The function x — 7 (x) is non-expanding for d, and defines a retraction
m:B(—, K) - F(—,k)
of the embedding F(—, k) — B¢(—, K) of functors from Red(k) to Top.
Proof. — Everything follows from proposition 4.3 except the last sentence, which
still requires a proof. For z,y € B¢(G, K), set F := ng(x) and G := wg(y). Then
g <(ﬁ,f>7_ + <@7g>7 - <(ﬂ’ g>7’ - <@’f>7'
= <@,g>7. - <@a~/—_.>7—
< d-,—(-T,y) : dT(]:7g)
thus d.(F,G) < d-(z,y), i.e. 7¢ : B¢(G,K) — F(G, k) is indeed non-expanding
for d,. It is plainly functorial in G. For F, f € F(G, k) and z := o + F, we have
(o, 1), = (F. ).
thus mg(x) = F, i.e. w is indeed a retraction of F(—, k) — B¢(—, K). O

Once we know that the projection n¢ : B¢(G, K) — F(G, k) computes the Harder-
Narasimhan filtrations, the compatibility of the latter with tensor product con-
structions again directly follows from the functoriality of G — mg:

PROPOSITION 5.9. — The Harder-Narasimhan functor Fyn : Normf — Fily, is
compatible with tensor products, symmetric and exterior powers, and duals.

Proof. — Apply the functoriality of G +— 7g to GL(V1)xGL(Vs) — GL(V1®Vs),
GL(V) — GL(Sym"V), GL(V) — GL(A"V) and GL(V) — GL(V*). O

Remark 5.10. — We now have three non-expanding retractions of F(—, k) —
B¢(—, K): (1) the composition 7 o loc where 7 : F(—,¢) — F(—, k) is the convex
projection from theorem 5.1, which computes the Harder-Narasimhan filtration on
Filt; (2) the convex projection w : B¢(—, K) — F(—, k) from theorem 5.5; (3) the
retraction 7 : B¢(—, K') — F(—, k) that we have just defined, which computes the
Harder-Narasimhan filtration on Norm f . We leave it to the reader to verify that
already for G = PGL(2), these three retractions are pairwise distinct.
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5.3. Normed p-modules.

5.3.1. Let k = F, be a finite field, K an extension of k, |—| : K — R4 a non-
archimedean absolute value such that the local k-algebra O = {x € K : |z| < 1}
is Henselian with residue field ¢, K° a fixed separable closure of K with Galois
group Galx = Gal(K?®/K). The category Rep,(Galg) of continuous (i.e. with
open kernels) representations (V) p) of Galk on finite dimensional k-vector spaces
is a k-linear neutral tannakian category which is equivalent to the category Vect?,
of étale p-modules (V, ¢y) over K. Here ¢(x) = x? is the Frobenius of K, V is a
finite dimensional K-vector space and ¢y : ¢*V — V is a K-linear isomorphism
where ¢*V =V ®g , K. The equivalence of categories is given by

(Vip) = ((Ver K*)% 1dy ® ¢)
(Vo K97y s 1dey) « V)
.3.2. e denote by Norm. the quasi-abelian k-linear ®-category of all triples
5.3.2 We d by Norm?%. th bel k-1 f all 1

(V, oy, a) where (V, ¢y) is an étale p-module and « is a splittable K-norm on V,
with the obvious morphisms and ®-products. It comes with two exact ®-functors

Norm% — Normg, (V, ¢y, a) — (V,a) or (V,pp(a))

where ¢y («) is the splittable K-norm on V defined by
def % —
(pv())(v) = (9 a)(ey" (v))

_ . j\ def 4 N V=300 N
with (¢"a)(v') 2 mm{max{wa(vo IR Ot

for v € V and v' € p*V :=V @k, K. Note that for o, 3 € B(V),
d(pv(@),pv(8) = ¢-d(a,B) € RL  and  v(py(a), ¢v(B)) = ¢-v(a,B) € R.

5.3.3.  We may then consider the following setup:

= wV,pp,a) = (Veg K)ot
" deg(V,pv,a) = v(a,pp(a)).

These data again satisfy the assumptions of sections 4.1-4.2. For instance, if
[V era1) = (Va, 02, 00)
is a mono-epi in Norm%., then f : (Vi, p1) = (V2, ¢2) is an isomorphism and
v(ar, pi(on)) = v (fila), fulpr(a)))
=v(fulon), a2) + v(az, p2(az)) + v(pz(az), p2(fi(a1)))
= v(a2, p2(a2)) — (¢ — Dr(fi(an), a2)
where fi(a)(z) = ao f!(z), so that fi(p1(e1)) = p2(fi(a1)), thus
deg(V1, L1, al) < deg(Vh ©1, 041)

with equality if and only if f,(a1) = as. We thus obtain a HN-formalism on Norm?¥,.
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We will show that for any reductive group G over k, any faithful exact ®-functor
Rep(G) — Norm¥, is good, and the pair (Norm¥%;, deg) itself is good. In particular,
the corresponding HN-filtration on Norm¥, is a ®-functor

Fun : Norm% — F (Rep,, (Galk)).

5.3.4. Since O is Henselian, the absolute value of K has a unique extension to
K*, which we also denote by |—| : K — R,. The corresponding valuation ring
O*® .= {x € K*® : |z| < 1} is the integral closure of O in K*, and it is a strictly
Henselian local ring. There is a commutative diagram of ®-functors

A = Rep,(Galg) <— Vectf, <—— Norm¥, = C ——— Normg

lforgctp l—@KKS \L—@KKS l—(@KKS

A’ = Vectj, < Vect},, <—— Norm%., = C* ———— Normg-

in which the horizontal functors are equivalence of categories in the first square, for-
get the norms in the second square, and map (V, ¢y, ) to either (V, @) or (V, py(a))
in the third square. The last vertical functor maps (V, a) to (V*,a®) with

VSCEV@KKS and as(v)defmin{maxﬂ)\ia(v,;):i} V=2 0@ A }

v; EV, \; € K*

By [8, Lemma 132], there is an extension (K’, |—|) of (K?*,|—|) with K’ algebraically
closed (in which case O' := {x € K’ : |z| < 1} is strictly Henselian) and |K’| = R
We may then add a third row to our commutative diagram,

= Vectj, < Vecty,. <—— Norm%,, = C* ———— Norm:-

\L@KSK' i@KsK/ l@KsK,

= Vecty, Vect?,, Norm%,, = C' Norm g

5.3.5. Let now G be a reductive group over k and let z : Rep(G) — Norm¥ be a
faithful exact k-linear ®-functor, with base change

z° : Rep(G) — Norm%.. and 2’ :Rep(G) — Norm?,,
and Galois representation wg a : Rep(G) — Rep,(Galx). We denote by
woa=:(V.p), z=:(V.pp,a), a"=: (V" pps,0") and 2’ = (V',pp,d)
the components of wg a, z, ° and 2’. Let 7 be a faithful representation of G and
p: Flwga(r)) - Flwaa)(T)
the projection to the image of F(wg a) — F(wg a(7)). We want to show that
(x(7), f) < ((7),p(f))
for every f € F(wg,a(7)). As in 5.2.13, this amounts to

<a(7’)<pv(7)(a(7);,.7:> << () v (afT)), g>
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for the Busemann scalar product on B(V(7)), where F and G are the ¢y (,)-stable
filtrations on V(1) corresponding to the Galg-stable filtrations f and p(f) on V(7).
Since the CAT(0)-spaces B(V(7) ® —) are functorial on HV(k), this amounts to

(a* v (@ (1)), F) < (a*()ove () (@' (7)), 6
or (o' (T)pwrin (@' (1)), F') < (o () (0 (7)), G")

for the Busemann scalar products on B(V*(7)) or B(V'(7)), where F* and G* are
the py-«(y-stable filtrations on V*(7) := V(1) ®x K* = V(1) ®;, K* base changed
from F and G on V(7) or equivalently, from f and p(f) on V(1) (for x € {s,/}).

5.3.6. Since k is finite, it follows from Lang’s theorem and Deligne’s work on
tannakian categories that the fiber functor V' : Rep(G) — Vecty, underlying weg a is
isomorphic to the standard fiber functor wg i : Rep(G) — Vect,. Without loss of
generality, we may thus assume that V' = wg j, in which case
wea,a : Rep(G) — Rep,(Galk)
is induced by a morphism p : Galg — G(k) with open kernel. Then
WA =WeA =Wak, V= (wea® K%K and V¥ =wg g

for x € {s,/}. Moreover, the following commutative diagram in CCat(0)

F(wg,a) = F(wg (1))

F(wg k) F(we,k(1))
is G(k)-equivariant, thus also Galg-equivariant, and identifies its first row with the

Galg-invariants of its second row. It follows that the corresponding diagram of
convex projections is commutative:

F(wga)(r) <~——— F(wg.a(T))

| |

F(w 1) (1) <——— F(we (7))

It is therefore sufficient to show that for every f € F(V (7)),

(" (M) pv- (@), £ ) < (o™ (7) v (@) (7, p(F) )
for the Busemann scalar product on B(V (1) ® K*). Note that since

ey« =1d®@¢ on V"=V @, K",
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the standard O*-lattice V ®; O* is py«-stable, and so is the corresponding gauge
norm aygo+ = a(o). The additivity of the Busemann scalar product gives

(a" () pv-(@)(D)), £ ) = {a"(7 3f> + {a()(7) gy (a")(7). f)
< 3f><W*(Mﬂw¢MHJ>
=(q-1)- < 3f>

and similarly for p(f) — using the formulas of section 5.2.13 and 5.3.2. For x = /,
we also know that o/ € Norm%, (wa i) belongs to B(wg, K') by lemma 5.4, thus

by proposition 5.6, which indeed applies since k = [F is perfect.

5.3.7.  We have shown that any faithful exact ®-functor = : Rep(G) — Norm¥,
is good. Starting with a pair of objects (Vi, s, ;) in Norm¥, (for i € {1,2}),
with Galois representations p; : Galx — GL(V;), set G := GL(Vl) x GL(V3) and
p = (p1,p2). Then p: Galxy — G(k) induces an exact and faithful ®-functor

Rep(G) — Rep,(Galg)
with corresponding étale ¢p-module (V, py) : Rep(G) — Vect}, given by
V(1) = (wor(T) @ K*)9 and  py(r) = 1d @ ply(r)-

In particular, (V, ov)(7)) = (Vi,¢;) where 71 := 71 K1 and 745 := 1 X 75 for the
tautological representation 7; of GL(V;) on V;. We have to show that the splittable
K-norms o7 and «as also extend to o € NormK( ). Since V* =V @k K° ~ wg k-,
the base changed norms o on V) = V; ® ¢ K° plainly extend to a unique K*-norm

BV xB(V) ~ BYG,K®) ~ B(uwg K®)
s __ s s 1 2 ’ )

o' =(ag,03) in C Norm%.(wg.x<) =~ Norm%.(V?)
on V* : Rep(G) — Vectgs. For every 7 € Rep(G), we may then define

a(r) V(1) = Ry, alr) € ad (1)l

Plainly, a(7) is a K-norm on V(7) and «(7}) = of ; on V(7/) = V;, which
is a splittable K-norm on V;. Since 7 and 75 are ®-generators of the tannakian
category Rep(G), it follows that «(7) is a splittable K-norm for every 7 € Rep(G).
Then « : Rep(G) — Normg indeed belongs to Norm% (V), thus

(V, v, a) : Rep(G) — Norm%

is a faithful exact ®-functor with (V, oy, a)(1)) = Vi, i, i) for i € {1,2}. Since
it is good, the pair (Norm?;, deg) is indeed itself good.
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5.3.8. A variant. We may also consider the quasi-abelian k-linear ®-category Bun,
of pairs (L, ¢y) where L is a finite free O-module and ¢y : ¢*V — V is a Frobenius
on VY := L ® K, with the obvious morphisms and tensor products. The functor

Bung — Normic, (L, ¢v) = (V, ¢v, ar)

is a fully faithful exact k-linear ®-functor, whose essential image is stable under
strict subobjects and quotients. It is thus also compatible with the corresponding
HN-formalism. In particular, the HN-filtration is a ®-functor

Frn : Bund, — F(Rep,(Galk)).
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