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ON FRAMED QUIVERS, BPS INVARIANTS AND DEFECTS

MICHELE CIRAFICI

Abstract. In this note we review some of the uses of framed quivers to study BPS
invariants of Donaldson-Thomas type. We will mostly focus on non-compact Calabi-Yau
threefolds. In certain cases the study of these invariants can be approached as a generalized
instanton problem in a six dimensional cohomological Yang-Mills theory. One can construct
a quantum mechanics model based on a certain framed quiver which locally describes the
theory around a generalized instanton solution. The problem is then reduced to the study
of the moduli spaces of representations of these quivers. Examples include the affine space
and noncommutative crepant resolutions of orbifold singularities. In the second part of the
survey we introduce the concepts of defects in physics and argue with a few examples that
they give rise to a modified Donaldson-Thomas problem. We mostly focus on divisor defects
in six dimensional Yang-Mills theory and their relation with the moduli spaces of parabolic
sheaves. In certain cases also this problem can be reformulated in terms of framed quivers.

Introduction

In this survey we will discuss various connections between several topics in math-
ematical physics. The underlying theme is the structure of BPS states on a local
Calabi-Yau threefold. The BPS sector of supersymmetric field and string theories
consists in quantities which are protected from quantum corrections and can some-
time be studied exactly. Objects of this type are extremely important in physics,
as they often provide a window into the non-perturbative aspects of these theories,
which are usually out of reach with conventional techniques. On the other hand
BPS quantities have a mathematical description, often directly in terms of geo-
metrical or algebraic quantities. The interplay between these two perspective has
offered beautiful insights in mathematics and in physics.

Donaldson-Thomas theory [45, 32] is, broadly speaking, concerned with BPS
states in field of string theories with N = 2 supersymmetry in four dimensions.
Within this class we have, for example, the four dimensional supersymmetric field
theories of class S, which arise from compactification of the six dimensional N =
(2, 0) theory, or string compactifications on compact or non-compact Calabi-Yau
threefolds. We will mostly focus on string compactifications on non-compact Calabi-
Yau and use techniques rooted in topological quantum field theory to set up the
relevant enumerative problems. The latter have the form of certain quantities,
roughly speaking the “volumes” of specific moduli spaces which arise in the physical
problems. We will generically call these quantities Donaldson-Thomas invariants,
or BPS invariants of Donaldson-Thomas type, without any pretense of being ex-
haustive (especially ignoring altogether the motivic roots of the problem). General
aspects of Donaldson-Thomas theory are reviewed in Section 1.

Among the deepest traits of Donaldson-Thomas theory is the wall-crossing be-
havior of the enumerative invariants. It originates from the property of BPS states
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to decay or form bound states whose constituents are themselves BPS. The loci
where this happens are called walls of marginal stability. This property conjec-
turally determines an algebraic structure on the space of BPS states. What this
algebra precisely is supposed to be is actively debated; a strong candidate is the
cohomological Hall algebra of [31]. The wall-crossing property of the BPS invari-
ants is captured by the wall-crossing formulae [32, 29, 34]. In the recent years the
uses of the wall-crossing formulae and more in general the associated structure have
vastly enhanced our understanding of the BPS sector of field and string theories.

The relevant moduli spaces of vacua are therefore divided into chambers by the
walls of marginal stability. Each chamber contains an usually challenging enumer-
ative problem associated with the stable BPS invariants. A general, perhaps naive,
strategy to attack the problem is to start from “easier” chambers and then move
along using the wall-crossing formulae. In this survey we will mainly discuss two of
these chambers, within the context of non-compact Calabi-Yaus.

One of these chambers will be at “large radius”, where string theory corrections
to ordinary algebraic geometry are negligible. The BPS states we will consider
are parametrized by torsion free or ideal sheaves. Thus the problem reduces to
construct an appropriate moduli space of sheaves and define appropriate BPS in-
variants. These issues will be discussed in Sections 2-5. The second chamber will
be the “noncommutative resolution chamber”, where the local threefold develops a
singularity and the manifold structure breaks down. Nevertheless physics can be
formulated in terms of certain noncommutative algebras and the relevant moduli
problems are problems in representation theory. We will introduce and develop
these concepts in Sections 6-7. In both of these chambers one can make some
progress by using field and string theory concepts. In particular all of these prob-
lems can be approached from the point of view of a certain six dimensional topo-
logical Yang-Mills theory [26, 12], where the relevant moduli spaces arise as moduli
spaces of generalized instanton configurations. In this survey we will highlight those
concepts which originate from quivers and their representations, in accordance with
the theme of this volume. In both chambers the relevant BPS invariants can be
understood from the point of view of a supersymmetric quiver quantum mechanics
which localizes onto the moduli spaces of BPS configurations. This quiver quan-
tum mechanics is a physical counterpart of studying the intersection theory of the
generalized instanton moduli spaces via equivariant localization [12, 13, 15, 14, 16].

In the second part of this survey, Sections 8-13, we will introduce and study
defects. A defect can be understood as imposing certain boundary conditions on
the physical fields, for example along a line or a surface. In this case we talk
about a line or surface defect. It is natural to wonder if given a certain moduli
problem associated with a physical theory and its BPS invariants, one can introduce
new enumerative invariants by introducing defects [21, 22, 6, 7]. The idea is that
the presence of a defect modifies the relevant moduli spaces by imposing certain
conditions, or restricting one’s attention only to certain configurations. We will do
so in certain particular cases and argue that indeed one can try to define Donaldson-
Thomas type of invariants out of these moduli spaces. Our prime example will be
the case of divisor defects in a six dimensional field theory [7]. We will argue
that such a defect requires the physical configurations to correspond to parabolic
sheaves. In particular we will see that in a particularly simple case, the conjectured
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new invariants can be studied in great detail, via certain classes of quivers. We will
furthermore discuss how these ideas also apply to other cases, such as in higher
dimensions or in the context of line defects in four dimensional field theories [8, 9].

In this survey we take an expository tone, often referring the reader to the original
literature for explicit details and focusing more on the general concepts and ideas.
In particular we will stress the role played by quivers and their representations,
often neglecting other (important) issues. The purpose of this survey is not to
present the material in a self-contained manner, but rather provide an entry point
to the (by now rather vast) literature.

1. BPS states and Donaldson-Thomas theory

We begin with a brief discussion of BPS states on Calabi-Yau threefolds and
its relation with Donaldson-Thomas theory. Fix a threefold X and consider the
type IIA string compactified over X. The effective theory in four dimensions has
N = 2 supersymmetry. A BPS state preserves half of these supersymmetries. Their
descriptions depends sensitively on the moduli of the Calabi-Yau X. We start by
considering the large radius approximation. The BPS states are labelled by a charge
vector γ ∈ Γg and in this case the charge lattice is given by the cohomology groups
of the threefold
γ ∈ Γg = Γm

g ⊕ Γe
g =

(
H0(X,Z)⊕H2(X,Z)

)
⊕
(
H4(X,Z)⊕H6(X,Z)

)
, (1.1)

which can be separated into the electric and magnetic charge sublattices Γe
g and Γm

g .
Physically these lattices correspond to the charges of D-branes wrapping p-cycles
of X

Dp ←→ H6−p(X,Z) = Hp(X,Z) , p = 0, 2, 4, 6 , (1.2)
where we have used Poincaré duality (when the Calabi-Yau X is non-compact, as
will be the case in most of this survey, this discussion can be rephrased in terms
of cohomology with compact support). In this class of compactification the central
charge of the supersymmetry algebra has an explicit form dictated by the geometry
of the threefold. At large radius

ZX(γ; t) = −
∫
X

γ ∧ e−t (1.3)

gives the central charge of the state γ. Here t = B+ i J is the complexified Kähler
modulus consisting of the background supergravity Kalb-Ramond two-form B-field
and the Kähler (1, 1)-form J of X.

A measure of the degeneracy of BPS states is given by the Witten index
ΩX (γ) = TrHX

γ,BPS
(−1)F (1.4)

given in terms of a trace over the fixed charge sectors of the single-particle Hilbert
space, defined as

HXBPS =
⊕
γ∈Γ
HXγ,BPS . (1.5)

F is a certain operator acting on one-particle states with charge γ, which originates
from the isometry group of the four dimensional effective supersymmetric theory.

Note that the definition of a BPS state as well as the definition of the Witten
index are rather straightforward and purely based on representation theory argu-
ments. The BPS Hilbert spaces are finite dimensional and decompose according
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to the representation theory of the symmetry group of the four dimensional effec-
tive N = 2 theory and, somewhat oversimplifying, the Witten index just counts
with signs the multiplicities of these representations. On the other hand thanks to
the string compactifications these quantities are related to geometrical structures
within the Calabi-Yau X. This correspondence is at the core of many beautiful con-
nections between mathematics and physics. Roughly speaking Donaldson-Thomas
theory is the mathematical counterpart of these physical facts.

We can consider for example a particular situation where X is a non-compact
threefold and the charge vector is γ = (1, 0,−β, n). Physically these configurations
corresponds to bound states of a gas of D0 and D2 branes with a single D6 brane
wrapping the whole threefold. Mathematically the relevant geometrical configura-
tions on X are ideal sheaves.

An ideal sheaf I is a torsion free sheaf of rank one with trivial determinant.
Since the determinant is trivial, the double dual I∨∨ is isomorphic to the trivial
bundle and in particular c1(I) = 0. The condition that the sheaf is torsion free
means that it can be embedded in a bundle; roughly speaking an ideal sheaf can
be thought of as an object which fails to be a line bundle only on a finite set of
singularities. There is a correspondence between ideal sheaves and schemes given
by the short exact sequence

0 // I // OX // OY // 0 . (1.6)

Here Y is a subscheme of X and the sequence implies that we can think of an
ideal sheaf as the kernel of the restriction map OX → OY of structure sheaves.
To define Donaldson-Thomas invariants, we look atMBPS

n,β (X) the moduli space of
ideal sheaves such that

χ(I) = n and ch2(I) = −β . (1.7)

Due to (1.6) we can identify this moduli space with the Hilbert scheme Hilbn,β(X) of
points and curves on X, which parametrizes subschemes Y ⊂ X with no component
of codimension one and such that

n = χ(OY ) and β = [Y ] ∈ H2(X,Z) , (1.8)

where χ denotes the holomorphic Euler characteristic. Donaldson-Thomas invari-
ants are defined via integration over these moduli spaces as

ΩX(n, β) = DTn,β(X) :=
∫

[MBPS
n,β

(X)]vir
1 . (1.9)

To properly define integration over this, and other, moduli schemes, one needs to
define a virtual fundamental cycle. Roughly speaking while these moduli spaces
are in general not manifolds, they behave as if they were, at least generically. In
these cases one can define a virtual fundamental class, which depends on the de-
formation and obstruction theory of the moduli spaces [4] . In our cases of interest
the deformation complex of the moduli space contains two terms, parametrizing
obstructions and deformations, and plays the role of a cotangent complex to the
moduli space, therefore providing a notion of integration (much as it happens for
the ordinary cotangent space to a smooth manifold, out of which the integration
measure is constructed). Furthermore in our cases the obstruction space and the
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deformation space are dual to each other in a suitable sense, and the virtual fun-
damental class has degree zero. This means that integrating 1 provides a virtual
counting of points inMBPS

n,β (X). A more thorough discussion can be found in [45, 4]
(and [43, 42] within the present context).

An alternative formulation is due to Behrend [3] and regards Donaldson-Thomas
invariants as the weighted topological Euler characteristics

DTn,β(X) = χ
(
MBPS

n,β (X) , νX
)

=
∑
n∈Z

n χ
(
ν−1
X (n)

)
, (1.10)

where νX :MBPS
n,β (X)→ Z is a canonical constructible function.

This enumerative problem is very rich and interesting. However it is only the
tip of the iceberg, as it is only one of the many enumerative problems predicted by
physics. As the physical parameters are varied, some physical states may become
unstable and decay, or form stable bound states with other states. When this hap-
pens the Hilbert space HXγ over which the Witten index is defined, will gain or lose
a factor. As a consequence the degeneracies of BPS states will jump, a phenomenon
known as wall-crossing. Such jumps occur at walls of marginal stability, loci where
Arg(ZX(γ1, t)) = Arg(ZX(γ2, t)), and the jump in the indices is governed by a wall
crossing formula.

As a consequence the Kähler moduli space of the threefold X is divided into
chambers, each one with its BPS spectrum of states, and therefore each one asso-
ciated with an enumerative problem. The full mathematical theory of Donaldson-
Thomas invariants need rather sophisticated tools [32, 31], while in this survey we
will limit ourselves to give a simplified treatment. Roughly speaking BPS states
on a Calabi-Yau threefold are properly described in terms of the derived category
of coherent sheaves Db(X), with stability conditions given by an ordering of the
central charge phases of the BPS states. In many cases however a description in
terms of an abelian subcategory A is sufficient.

In this survey we will focus only on two chambers where simpler tools can be
used, grounded in quantum field theory. The reason is that in these two chambers
one can make very concrete computational progress. The chambers in question are
that called “at large radius” and the “noncommutative crepant resolution chamber”.
In the first one the relevant abelian subcategory is the category of coherent sheaves
and one can make use of geometrical concepts such as sheaves or bundles defined on
a smooth Calabi-Yau. The second chamber corresponds to the situation where the
Calabi-Yau develops a singularity, for example an orbifold or a conifold singularity;
the relevant abelian subcategory is the category of representations of a certain
quiver, and one has at disposal many tools based on algebra or representation
theory.

2. Cohomological gauge theory

At large radius the problem of studying Donaldson-Thomas invariants on a
Calabi-Yau manifold X can be approached via a cohomological gauge theory [26,
12]. This is a particular version of a topological quantum field theory obtained
by the topological twist of six dimensional Yang-Mills theory. We can introduce
this theory as follows: the bosonic sector consists of a connection A on a G-bundle
E −→ X, the complex one form Higgs field Φ taking values in the adjoint bundle



76 M. Cirafici

ad E , and the 3-form fields ρ(3,0) and ρ(0,3). The fermionic sector is twisted, by
which we mean that the fermions can be identified with differential forms thanks
to the isomorphism between the spin bundle and the bundle of differential forms
S(X) ' Ω0,•(X), which in particular holds for Calabi-Yau manifolds. The overall
fermionic content is (η, ψ(1,0), ψ(0,1), χ(2,0), χ(0,2), ψ(3,0), ψ(0,3)), where η is a com-
plex scalar and we have written down explicitly the form degree. The bosonic part
of the action is

S = 1
2

∫
X

Tr
(

dAΦ ∧ ∗dAΦ +
[
Φ,Φ

]2 + |F (0,2)
A + ∂

†
Aρ|2 + |F (1,1)

A |2
)

(2.1)

+ 1
2

1
(2π)2

∫
X

Tr
(
FA ∧ FA ∧ t+ λ

6πFA ∧ FA ∧ FA
)
.

Here FA = dA + A ∧ A is the gauge field strength, dA = d + A the covariant
derivative, and the Hodge star operator ∗ is taken with respect to the Kähler
metric of X. The parameter λ is a coupling constant which from a string theory
perspective should be thought of as the topological string coupling.

The gauge theory localizes onto the moduli space of solutions of the “generalized
instanton” equations

F
(0,2)
A = ∂ †Aρ ,

F
(1,1)
A ∧ t ∧ t+

[
ρ , ρ

]
= l t ∧ t ∧ t ,

dAΦ = 0 . (2.2)

On a Calabi-Yau variety we can set ρ = 0 without loss of generality. In this case the
first two equations of (2.2) become the Donaldson-Uhlenbeck-Yau equations which
parametrize holomorphic vector bundles E on X. The parameter l is proportional
to the degree of the bundle E ; unless stated otherwise we will for simplicity set it
to zero.

We want to use gauge theory techniques to study the moduli space of holomor-
phic bundles, following the approach of [39]. However to obtain a better behaved
moduli space it is customary to enlarge the set of allowed configurations to include
torsion free sheaves. In the following we will denote byMinst

n,β;r the moduli space of
torsion free coherent sheaves E with characteristic classes (ch3(E), ch2(E)) = (n,−β)
and rank r. To understand the local geometry of these moduli spaces, we consider
the instanton deformation complex

0 // Ω0,0(X, ad E) C // Ω0,1(X, ad E)⊕ Ω0,3(X, ad E) DA // Ω0,2(X, ad E) // 0 .

(2.3)
Here C represents a linearized complexified gauge transformation, while DA the
linearization of the first equation of (2.2). The cohomology of the complex in de-
gree zero corresponds to reducible connections, and we will assume it vanishes. The
cohomology in degree one is the Zarinski tangent space toMinst

n,β;r at a point corre-
sponding to a sheaf E , and the cohomology at degree two represent the obstruction
bundle (or normal bundle) Nn,β;r. The gauge theory partition function can be writ-
ten as a sum over topological sectors; each sector contributes with an integral over
the moduli space of holomorphic bundles where the integration measure is given
by the Euler class of the obstruction bundle eul(Nn,β;r). To write this partition
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function, we pick a basis of H2(X,Z) and expand the class β =
∑
i ni Si, where

i = 1, . . . , b2(X). Then we set Qi = e−ti with ti =
∫
Si
t and define Qβ :=

∏
i Q

ni
i .

Therefore we can write

ZXgauge(q,Q; r) =
∑
k β

qkQβ
∫
Minst

n,β;r

eul(Nn,β;r) . (2.4)

Due to the expository tone of this survey, we will refrain to properly define the
integrals over the moduli spaces, except in special cases. These integrals represents
Donaldson-Thomas invariants; although they can be defined in full generality, we
will see that computational progress can be made only in special occasions, such
as toric varieties and U(1)r gauge theories, where equivariant localization formulae
can be applied.

3. Quivers

Several aspects of Donaldson-Thomas theory on local threefolds can be under-
stood from an algebraic perspective using quivers [44, 15, 14]. A quiver is a finite
directed graph, consisiting in a quadrupole (Q0,Q1, t, s); here Q0 and Q1 are two
finite sets, representing the nodes and the arrows respectively, while the maps
s, t : Q1 −→ Q0 associate to each arrow a ∈ Q1 its starting vertex s(a) ∈ Q0 or
its terminal vertex t(a) ∈ Q0. To the set of arrows one can associate a set of rela-
tions R. To a quiver we can associate its path algebra A = CQ/〈R〉, defined as the
algebra of paths modulo the ideal generated by the relations. A path is defined as
a set of arrows which compose; the product in the algebra is the concatenation of
paths where possible, or zero otherwise. A relation in the path algebra is a C-linear
combination of paths.

In most physical applications, the relations R are derived from a superpotential
W. This is a function W : Q1 −→ CQ given by a sum of cyclic monomials.
We define a differential ∂a respect to the arrow a ∈ Q1 by cyclically permuting
the elements of each monomial until the arrow a is in the first position, and then
deleting it; differentiation by ∂a gives zero if the arrow a is not part of a monomial.
If the quiver is equipped with a superpotential, the ideal of relations is given by
R = 〈∂aW | a ∈ Q1〉.

A representation of a quiver is defined by the assignement of a complex vector
space to each node and a collection of maps between the vector spaces associated
with the set of arrows, compatible with the relations R. More precisely to each
node i ∈ Q0 we associate the vector space Vi of dimension dimVi = ni, and to
each arrow a ∈ Q1 a morphism Ba ∈ Hom(Vs(a), Vt(a)), compatible with R. We will
denote by Rep(Q,R) the category of representations of the quiver Q with relations
R; it can be shown that this category is equivalent to the category A − mod of
left A-modules. In most physical applications, the objects of interest are actually
isomorphism class of representations, which are defined as orbits with respect to
the action of the gauge group

∏
i∈Q0

GL(Vi,C).
To obtain better behaved moduli spaces, one can modify this construction by

framing the quiver. A way of doing so consists in adding to the quiver Q an extra
vertex {•} together with an additional arrow a• such that s(a•) = • and t(a•) = i0,
where i0 ∈ Q0 is a reference node of Q. This procedure gives a new quiver Q̂,
defined by Q̂0 = Q0 ∪ {•} and Q̂1 = Q1 ∪ {•

a•−→ i0}. Similarly we can define the
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path algebra Â of the framed quiver and framed quiver representations. The notion
of framing generalizes immediately to more framing nodes. We will denote framed
quivers by Q̂, no matter the number of framed nodes.

4. Donaldson-Thomas invariants, Quiver Quantum Mechanics and
Localization

We will begin the discussion of (2.4) in the simplest possible case: when X = C3

and the gauge symmetry is broken down to its maximal torus U(1)r. In this case
we can give an explicit definition of the integrals which appear in (2.4), following
what we have explained in Section 1. Furthermore this case allows for explicit
computations using techniques of equivariant localization. Indeed there is a natural
toric action on C3 which can be used to localize the integrals in (2.4) onto a finite set
of fixed points. In this Section we will discuss the essential points of this procedure.

The main idea is to study the theory around a BPS configuration. This is a stan-
dard procedure in physics and mathematics and consists in the construction of an
appropriate parametrization of the relevant moduli space of solutions of (2.2) with
fixed characteristic classes. In this case one can construct an explicit parametriza-
tion of the moduli space via a generalization of the ADHM construction [12]. This
consists of a collection of matrices obeying a set of generalized ADHM equations.
Therefore the local parametrization of the moduli space has the form of a matrix
model; since this parametrization is explicit this matrix model can be used to com-
pute geometric quantities within the moduli space. It turns out that this matrix
model has a very specific form and is given in terms of a topological quiver quantum
mechanics. This means that the collection of fields and equations which parame-
trize the moduli space can be encoded in a representation of a quiver, which we
have introduced in Section 3.

Based on a set of generalized ADHM equations, one can construct a topological
quiver quantum mechanics which provides a concrete tool to compute the integrals
in (2.4). The homological data of the generalized ADHM construction are encoded
in the framed quiver

V •B2 88

B1

��

B3

DD ϕff • WIoo . (4.1)

We will set dimC V = n and dimCW = r. It is sometimes useful to keep in
mind a string theory perspective, where this quiver describes a possible bound
state of n D0 branes with r D6 branes; equivalently from the point of view of the
effective topological action on the D6 brane worldvolume, r is the rank of the gauge
theory and n the instanton number of a gauge field configuration. In (4.1) we have
introduced the maps

(B1, B2, B3, ϕ) ∈ HomC(V, V ) and I ∈ HomC(W,V ) . (4.2)

We will be interested in configurations of maps where ϕ is trivial; in the quiver
quantum mechanics the field ϕ corresponds to degrees of freedom which originate
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from the six dimensional field ρ(3,0) in (2.2). The fields in (4.2) have natural trans-
formations under U(n) and U(r).

Since the topological quiver quantum mechanics is built out of a parametrization
of the instanton moduli space any geometrical quantity within the moduli space is
realized as an observable. In particular the partition function of the quantum
mechanics computes the volumes of the moduli spaces given by the integrals in
(2.4). We will now see this in some detail.

Since the quiver quantum mechanics is topological, it localizes onto the fixed
loci of the BRST charge Q. Therefore the computation of the partition function
amounts in classifying the fixed loci of the BRST charge Q and then computing
the contribution around each locus, as a ratio of functional determinants. This
approach was discussed in generality in [36, 35]. However we will follow a slightly
different route: we modify the BRST charge Q in an appropriate way, so that
its fixed loci consist in isolated fixed points. Once can show that the results are
independent of this modification [12]. Mathematically this procedure is equivalent
to using an equivariant (virtual) localization formula to compute the Donaldson-
Thomas invariants directly, as we will see momentarily.

As we have just explained, we will work equivariantly with respect to a certain
toric action. To this end, it is useful to lift the natural toric action of C3 to the
instanton moduli space. Explicitly on the coordinates of C[z1, z2, z3], the natural
torus T3 acts as zα −→ eiεαzα. We define the following transformation rules under
the full group U(n)× U(r)× T3

Bα 7−→ e− i εα gU(n)Bα g
†
U(n) ,

ϕ 7−→ e− i (ε1+ε2+ε3) gU(n) ϕg
†
U(n) ,

I 7−→ gU(n) I g
†
U(r) . (4.3)

The above field content is constrained by the quiver quantum mechanics bosonic
field equations

Eα : [Bα, Bβ ] +
3∑

γ=1
εαβγ

[
B†γ , ϕ

]
= 0 ,

Eλ :
3∑

α=1

[
Bα , B

†
α

]
+
[
ϕ , ϕ†

]
+ I I† = ς ,

EI : I† ϕ = 0 . (4.4)
Here ς is a Fayet-Iliopoulos parameter.

The topological quiver quantum mechanics is constructed out of these equations.
To this end one defines a BRST operator Q which acts as

QBα = ψα and Qψα = [φ,Bα]− εαBα ,
Qϕ = ξ and Q ξ = [φ, ϕ]− (ε1 + ε2 + ε3)ϕ ,

Q I = % and Q % = φ I − I a ,

(4.5)

where a = diag(a1, . . . , ar) parametrizes the Cartan subalgebra u(1)⊕r and φ is the
generator of U(n) gauge transformations. We omit the details of the construction of
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the full quiver quantum mechanics: one proceeds by introducing Fermi multiplets
corresponding to the anti-ghosts and auxiliary fields with the same transformation
properties as the equations (4.4), as well as the gauge multiplet necessary to close
the BRST algebra. The construction is such that the partition function of the
quiver quantum mechanics localizes onto the fixed points of the BRST-charge.

These fixed points can be classified explicitly in terms of certain combinatorial
arrangements, called plane partitions [12]. A plane partition is a three dimensional
Young diagram, which can be obtained by an ordinary Young diagram λ, by defining
a “box piling function” π : λ −→ Z+, with the condition that πi,j > πi+m,j+n with
n,m ∈ Z>0. Equivalently a plane partition can be defined as the complement of a
certain ideal. Define the monomial ideal in the polynomial ring C[z1, z2, z3]

Im(z1, z2, z3) = C〈zm1
1 zm2

2 zm3
3 | m1 +m2 +m3 > m〉 . (4.6)

It can be shown that this ideal has codimension n = 1
6m(m + 1)(m + 2). The

associated plane partition

πm = {(m1,m2,m3) ∈ Z3
>0 | z

m1
1 zm2

2 zm3
3 /∈ Im} (4.7)

has |πm| = n boxes.
More precisely a fixed point of the BRST charge Q correspond to a vector

~π = (π1, · · · , πr) of plane partitions, with |~π| =
∑
l |πl| = k boxes. From the

above correspondence between plane partitions and ideals, each plane partition
πi describes geometrically a T3-fixed ideal sheaf Iπi with support on a T3 invari-
ant zero dimensional subscheme in C3. A fixed point ~π corresponds to the sheaf
E~π = Iπ1 ⊕ · · · ⊕ Iπr .

The contribution of each fixed point is obtained by linearizing the equations
(4.4) and performing the resulting gaussian integrals; the result has the form of a
ratio of determinants. This is equivalent to compute the integrals over the moduli
spaces directly using virtual localization. Virtual localization is a generalization of
the usual localization formulae to the case where the integration domain is not a
manifold but has a virtual fundamental class (which is typically the case for moduli
spaces which arise in physics). The virtual localization formula has the form of a
sum over fixed points, each one weighted by the Euler class of the virtual tangent
space

DTn,r
(
C3) =

∫
[Minst

n,0;r(C3)]vir
1 =

∑
[E~π ]∈Minst

n,0;r(C3)T3×U(1)r

1
eul
(
T vir
~π Minst

n,0;r(C3)
) .
(4.8)

The virtual tangent space is defined as

T vir
~π Minst

n,0;r(C3) = T~πMinst
n,0;r(C3)	(Nn,0;r)~π = Ext1 (E~π, E~π)	Ext2 (E~π, E~π) . (4.9)

Note that (4.8) has precisely the form of the naive integrals in (2.4): the Euler class
of the virtual tangent space is by definition the ration between the Euler classes
of the tangent and obstruction bundles. This is what one would get evaluating
(2.4) using naive localization over smooth manifolds with the specific integration
measure dictated by topological six dimensional Yang-Mills! As we have promised,
the partition function of the quiver quantum mechanics compute directly the BPS
invariants.
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The Euler class of the virtual tangent space can be computed from a quiver
quantum mechanics version of the instanton deformation complex (2.3). To this
end, we decompose the vector spaces V and W in the representation ring of T3 ×
U(1)r as

V~π =
r∑
l=1

el
∑

(n1,n2,n3)∈πl

tn1−1
1 tn2−1

2 tn3−1
3 and W~π =

r∑
l=1

el . (4.10)

Here we have introduced el = e i al and tα = e i εα for α = 1, 2, 3. To keep track
of the toric action it is useful to introduce the T3 module Q ' C3 generated by
t−1
α = e− i εα . From (4.3) we see that for given a fixed point ~π, (B1, B2, B3) ∈

EndC(V~π)⊗Q and I ∈ HomC(W~π, V~π). To study the local geometry of the moduli
space around this fixed point, we define the instanton deformation complex

HomC(V~π, V~π) σ //

HomC(V~π, V~π ⊗Q)
⊕

HomC(W~π, V~π)
⊕

HomC(V~π, V~π ⊗
∧3

Q)

τ //
HomC(V~π, V~π ⊗

∧2
Q)

⊕
HomC(V~π,W~π ⊗

∧3
Q)

,

(4.11)
Here τ is the linearization of the equations Eα and EI , while σ is an infinitesimal
complex gauge transformation. The first cohomology of this complex is a model
for the tangent space to the moduli space at the fixed point ~π and its second
cohomology is a model for the normal bundle. We assume that the cohomology
at order zero, which corresponds to reducible connections, vanishes. Therefore the
equivariant index of the complex (4.11) computes the virtual sum Ext1	Ext2. The
equivariant index can be written down explicitly at a fixed point ~π in terms of the
characters of the representations as

chT3×U(1)r
(
T vir
~π Minst

n,0;r(C3)
)

= W∨~π ⊗V~π−V ∨~π ⊗W~π+(1−t1) (1−t2) (1−t3) V ∨~π ⊗V~π ,
(4.12)

where we have used the fact that C3 is (trivially) Calabi-Yau to set ε1 + ε2 + ε3 = 0.
From the equivariant character it is straightforward to obtain the equivariant Euler
class of (4.8) as the equivariant top Chern class. It turns out that the result is
just a sign, and in particular is independent on the equivariant parameters εi and
al (although this dependence would be reintroduced were we to drop the condition
ε1 + ε2 + ε3 = 0). In this way we obtain an explicit presentation of the formal
partition function (2.4):

ZC3

gauge(q; r) =
∑
|~π|

q|~π|
eul(Nn,0;r)~π

eul
(
T~πMinst

n,0;r(C3)
) =

∑
~π

(−1)r|~π| q|~π| . (4.13)

Note that this partition function is explicitly defined only in the Coulomb branch;
to compute truly nonabelian invariants one would have to impose an appropriate
stability condition on the moduli space of coherent sheaves and then only retain
the relevant fixed points.
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5. Localization on toric varieties

The construction we have just presented was explicitly based on the properties of
C3 and one could wonder how general it is. It turns out that the same construction
can be extended to a broad class of varieties called toric varieties. The construction
is straightforward but somewhat aside from the main themes of this survey and
therefore we will only sketch the main points.

The geometry of a toric Calabi-Yau threefold X can be combinatorially encoded
in a trivalent graph ∆(X), known as a toric graph. Roughly speaking a toric
threefold is a variety which contains an algebraic torus T3 as an open set. This
torus naturally acts on the whole variety. The toric action is Hamiltonian and
the graph ∆(X) is the image of X under its moment map. The geometry of X is
encoded in ∆(X) as follows: the trivalent vertices f of ∆(X) are in correspondence
with the fixed points of the toric action on X and each fixed point is at the origin
of a toric invariant open C3 chart. The edges of the graph ∆(X) correspond to T3-
invariant projective lines P1, such that two fixed points fN and fS can be identified
respectively with the north and south pole of a P1.

A gauge theory on a toric threefold localizes onto contribution coming from toric
invariant configurations [26, 12]. These are point-like instantons located at the ver-
tices of f and extended instantons spread over the toric lines P1. Combinatorically
these are represented by three-dimensional Young diagrams π associated with the
vertices of ∆(X) and ordinary two-dimensional Young diagrams λ associated with
the each edge e of ∆(X) and represent four-dimensional instantons fibered over the
P1.

The result is that the partition function of a rank r gauge theory in the Coulomb
branch is given by [12]

ZXgauge(q,Q; r) =
∑
~πv,~λe

(−1)r D{~πv,~λe} qD{~πv,~λe}

×
∏

edges e
(−1)

∑r

l,l′=1
|λe,l| |λe,l′ |me,1 Q

∑r

l=1
|λl,e|

e , (5.1)

where

D{~πv, ~λe} =
∑

vertices v

r∑
l=1
|πv,l|+

∑
edges e

r∑
l=1

∑
(i,j)∈λe,l

(
me,1 (i−1)+me,2 (j−1)+1

)
.

(5.2)
Here the pair of integers (me,1,me,2) specify the normal bundles over the projective
lines associated with the edges e of the graph ∆.

Similar formulas exists for four-dimensional gauge theories on toric surfaces [40,
23, 11, 16].

6. Noncommutative Crepant Resolutions

Now we will address Donaldson-Thomas theory in another chamber, sometimes
called the noncommutative crepant resolution chamber. This chamber is in a sense
“non-geometric", the target space description cannot be understood in terms of geo-
metrical terms but requires a more algebraic perspective. Geometrically this cham-
ber is associated with a singular threefold, where the manifolds structure breaks
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down at the singularity. In many cases a smooth local Calabi-Yau threefold can be
described as the moduli space of representations of a certain quiver Q, where all the
vector spaces are one dimensional. Indeed this is precisely the crepant resolution of
an abelian orbifold singularity C3/Γ, with Γ a subgroup of SL(3,C), given by the
Γ-Hilbert scheme HilbΓ(C3) which parametrizes Γ-invariants schemes [27].

However under certain circumstances, the path algebra A itself of the quiver, can
be understood as a resolution of the singularity [46]. This is a particular instance
of a broader program, known as Noncommutative Algebraic Geometry, where the
usual local models of Algebraic Geometry, consisting in commutative rings or alge-
bras, are replaced by noncommutative structures, algebraic or categorical. We will
not discuss the general theory, but proceed by examples.

Consider for example the conifold singularity. It can be described as the locus
z1z2 − z3z4 = 0 in C4. Its crepant resolution is called the resolved conifold and is
the total space of the holomorphic bundle OP1(−1)⊕OP1(−1) −→ P1. Equivalently
the deformation can be described as the locus z1z2 − z3z4 = t, with t representing
the area of the P1 replacing the singularity at the origin.

To discuss the noncommutative crepant resolution, the relevant quiver is the
Klebanov-Witten quiver [30]

◦
a1

55

a2

<< •
b1

vv

b2

||
(6.1)

with superpotential
W = a1 b1 a2 b2 − a1 b2 a2 b1 . (6.2)

We can describe the path algebra explicitly as
A = C[e◦, e•]〈a1, a2, b1, b2〉

/
〈b1 ai b2 − b2 ai b1 , a1 bi a2 − a2 bi a1 | i = 1, 2〉 . (6.3)

where e◦ and e• are the trivial paths of length zero at the nodes ◦ and •.
The centre Z(A) of this algebra is generated by the elements

z1 = a1 b1 + b1 a1 ,

z2 = a2 b2 + b2 a2 ,

z3 = a1 b2 + b2 a1 ,

z4 = a2 b1 + b1 a2 , (6.4)
and hence

Z(A) = C[z1, z2, z3, z4]
/

(z1 z2 − z3 z4) . (6.5)
In other words the path algebra of the conifold quivers contains the nodal singularity
of the conifold as its center. This is our first example of noncommutative resolution.

Noncommutative crepant resolutions admit BPS invariants which corresponds
to bound states of D-branes, the noncommutative Donaldson-Thomas invariants
[44, 37, 41, 15, 14]. Roughly speaking one can construct a supersymmetric quiver
quantum mechanics with superpotential out of the data of the conifold quiver; this
quantum mechanics describes the effective field theory of a system of D2 − D0
branes on the conifold. To properly have Donaldson-Thomas type invariants, we
also need a magnetic charge; in this case we can add a single noncompact D6 brane
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wrapping the whole of the conifold geometry. The effect of this modification is that
now the conifold quiver is framed as

?

a?

** ◦
a1

55

a2

<< •
b1uu

b2

||

(6.6)

Noncommutative Donaldson-Thomas invariants are defined as enumerative invari-
ants associated with the moduli space of framed representations of this quiver. To
define this moduli space, we start from the representation space

Rep(Q̂, ◦) =
⊕

(v−→w)∈Q1

HomC(Vv, Vw) ⊕ HomC(V◦,C) , (6.7)

which explicitly depends on the choice of node ◦ of the quiver, which is framed. Let
Rep(Q̂, ◦; W) be the subscheme of Rep(Q̂, ◦) cut out by the superpotential equations
∂aW = 0. The relevant moduli space is the smooth Artin stack1

Mn0,n1(Q̂) =
[
Rep(Q̂, ◦; W)

/
GL(n0,C)×GL(n1,C)

]
. (6.8)

Noncommutative Donaldson-Thomas invariants can now be defined as (weighted)
Euler characteristics of the moduli spacesMn0,n1(Q̂) and studied explicitly. Indeed
the invariants were computed using equivariant localization and the problem admits
a purely combinatorial solution [44]. In the following we will discuss these issues
from a slightly different perspective for more general singularities. We refer the
reader to [28] for a more in-depth discussion of BPS states on the conifold.

7. Instantons on [C3/Γ] and McKay quivers

We will now consider singularities of the form C3/Γ where Γ is a finite subgroup
of SL(3,C). In this case the relevant quiver is the so-called McKay quiver QΓ,
which is constructed out of the representation data of the finite group Γ. This
quiver has a node for each irreducible one-dimensional representation ρa of Γ. We
will denote by Γ̂ the group of such representations. The arrow structure and the
relations are determined by the tensor product decomposition∧i

Q⊗ ρa =
⊕
b∈Γ̂

a
(i)
ba ρb with a

(i)
ba = dimC HomΓ

(
ρb ,

∧i
Q⊗ ρa

)
. (7.1)

Here Q = ρa1 ⊕ ρa2 ⊕ ρa3 is the fundamental three-dimensional representation of
Γ, corresponding to the action of Γ on C3 with weights aα, α = 1, 2, 3 (such that
a1 + a2 + a3 = 0 since Γ is a subgroup of SL(3,C3)). In particular one can show
that for a Calabi-Yau singularity a(1)

ba = a
(2)
ab and a(3)

ab = δab. The McKay quiver has
a

(1)
ab arrows going from node ρb to node ρa.

1In this note we will refrain to discuss stacks; the only examples of algebraic or Artin stacks
we will encounter are those obtained from the quotient of a scheme S (which is an algebraic stack
on its own right) by an algebraic group. In general algebraic stacks do not have a well defined
notion of integration; our case is an exception since it is defined as the vanishing locus ∂aW = 0
where W is gauge invariant. These conditions essentially define a symmetric perfect obstruction
theory and therefore a virtual fundamental cycle.
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As an example, consider for example the orbifold C3/Z3. We let the generator
g of Z3 act on C3 as g(z1, z2, z3) = ( e 2π i /3z1, e 2π i /3z2, e 2π i /3z3). The relevant
quiver is

v0 •

||�� ��
v1 • // ,,22 • v2

VV aa\\ (7.2)

with weights aα = 1 for α = 1, 2, 3, i.e. in this case Q = ρ1 ⊕ ρ1 ⊕ ρ1. In particular
we see from (7.1) that

a
(1)
ab =

0 0 3
3 0 0
0 3 0

 and a
(2)
ab =

0 3 0
0 0 3
3 0 0

 . (7.3)

A representation of the McKay quiver QΓ has a natural Γ-module structure.
From the individual vector spaces based at the nodes we construct V =

⊕
a∈Γ̂ Va⊗

ρ∨a (here ρ∨ is the conjugate representation). The linear maps between the nodes
can be encoded in B ∈ HomΓ(V,Q ⊗ V ), or equivalently they decompose as B =⊕

a∈Γ̂
(
B

(a)
1 , B

(a)
2 , B

(a)
3
)
where B(a)

α ∈ HomC(Va, Va+aα). With this notation, the
ideal of relations 〈RΓ〉 of the McKay quiver corresponds to the following matrix
equations

B
(a+aα)
β B(a)

α = B
(a+aβ)
α B

(a)
β for α, β = 1, 2, 3 . (7.4)

The path algebra AΓ = CQΓ/〈RΓ〉 is a noncommutative crepant resolution of the
singularity C/Γ.

Noncommutative Donaldson-Thomas invariants in the noncommutative crepant
resolution chamber can still be understood from a gauge theory perspective. The
gauge theory at hand is similar to the one discussed above, but it has to be suitably
deformed. In particular the model is topologically twisted version of a noncommu-
tative field theory defined on the algebraic stack [C3/Γ]. This class of theories
were dubbed “stacky” gauge theories, and can be simply thought of as field the-
ories on C3 whose observables are Γ-equivariant quantities [15, 14]. In particular
these theories admit generalized instanton solutions whose moduli spaces can be
constructed rather explicitly via the McKay correspondence, generalizing the cele-
brated Kronheimer-Nakajima constructions of instantons on ALE spaces [33] (and
the D-brane description of [18]).

The relevant instanton moduli spaces can be described in terms of the representa-
tions of the framed McKay quiver associated with the singularity C3/Γ. The vector
spaces associated to each node of QΓ are those which enter in the isotypical decom-
position V =

⊕
a∈Γ̂ Va ⊗ ρ∨a , where dimV = k represents the instanton number,

while the individual dimensions dimVa = ka correspond to instanton configurations
which transform in the irreducible representation ρa. Similarly the information
about the framing nodes can be encoded in the decompositionW =

⊕
a∈Γ̂ Wa⊗ρ∨a :

physically the framing nodes label boundary conditions at infinity. At infinity the
gauge field is a flat connection labelled by a representation ρ of Γ, and the di-
mensions dimCWa = ra label the multiplicities of the decomposition of ρ into the
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irreducible representations ρa, provided that
∑
a∈Γ̂ ra = r. Finally the framing

nodes are connected with the quiver QΓ by linear maps I ∈ HomΓ(W,V ), which
decompose as I =

⊕
a∈Γ̂ I(a) with I(a) ∈ HomC(Wa, Va).

Overall this construction give a correspondence between a gauge field sheaf E
with prescribed boundary conditions at infinity and a representation of the framed
McKay quiver. This relation can be regarded more geometrically using the McKay
correspondence. Simply put the McKay correspondence connects smooth geometry
of the canonical crepant resolution of C3/Γ given by X = HilbΓ(C3) with repre-
sentation theory data associated with Γ. On the resolution X there is a canonical
integral basis for the Grothendieck group K(X) of vector bundles, given by the
tautological bundles. To define these, consider the universal scheme Z ⊂ X × C3,
with correspondence diagram

Z
p1

��

p2

  
X C3

(7.5)

Then we set R := p1∗OZ and define the tautological bundles via the decomposition
R =

⊕
a∈Γ̂ Ra ⊗ ρa. To this basis we associate the dual basis Sa of Kc(X) of

compactly supported coherent sheaves. Via the McKay correspondence these basis
correspond to the basis {ρa ⊗ OC3}a∈Γ̂ and {ρa ⊗ O0}a∈Γ̂ of KΓ(C3) and Kc

Γ(C3)
the Grothendieck groups of Γ-equivariant sheaves and Γ-equivariant sheaves with
compact support on C3 respectively (here O0 is the skyscraper sheaf at the origin).
We refer the reader to [16] for a much more detailed account of the uses of the
McKay correspondence and its generalization within the present context. Using
these data, the Chern character of the gauge field sheaf E can be written as

ch(E) = −ch
((
V ⊗R(−2)

)Γ)+ ch
((
V ⊗

∧2
Q∨ ⊗R(−1)

)Γ)
− ch

((
(V ⊗Q∨ ⊕W )⊗R

)Γ)+ ch
((
V ⊗R(1)

)Γ)
. (7.6)

The McKay correspondence allows us to extend the formalism we have described
to study BPS invariants on C3 to the case at hand. Indeed thanks to the fact that
Γ is a subgroup of the torus group T3 the formalism extends almost verbatim. The
relevant quiver quantum mechanics has superpotential

WΓ =
∑
a∈Γ̂

B
(a+a2+a3)
1

(
B

(a+a3)
2 B

(a)
3 −B(a+a2)

3 B
(a)
2

)
. (7.7)

As before the quiver quantum mechanics localizes onto fixed points of its BRST
operator. In particular, since the Γ action and the T3 action commute, the fixed
point set is the same as in the C3 case, r-vectors of plane partitions ~π = (π1, · · · , πr),
the only difference being that one has to carefully take into account the Γ action.

The moduli space associated with the quiver quantum mechanics is the quotient
stack

MΓ
k,N = [Rep(Q̂Γ; WΓ)/

∏
r∈Γ̂

GL(kr,C)] (7.8)

where Rep(Q̂Γ; W) is the subset of

HomΓ(V,Q⊗ V ) ⊕ HomΓ(V,
∧3
Q⊗ V ) ⊕ HomΓ(W,V ) (7.9)
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cut out by the equations derived from the superpotential WΓ. A local model of the
moduli space around a fixed point is given by the deformation complex

HomΓ(V~π, V~π) //

HomΓ(V~π, V~π ⊗Q)
⊕

HomΓ(W~π, V~π)
⊕

HomΓ(V~π, V~π ⊗
∧3

Q)

//
HomΓ(V~π, V~π ⊗

∧2
Q)

⊕
HomΓ(V~π,W~π ⊗

∧3
Q)

(7.10)
from which we can extract the character at the fixed points

ChΓ
~π(t1, t2, t3) =

(
W∨~π ⊗V~π−V ∨~π ⊗W~π+(1− t1) (1− t2) (1− t3) V ∨~π ⊗V~π

)Γ
. (7.11)

The vector spaces V and W once again can be decomposed at a fixed point ~π
as in (4.10). However now each partition carries an action of the group Γ: the
fundamental orbifold representation Q = ρa1 ⊕ ρa2 ⊕ ρa3 induces an action with
weight ai on each module generator ti, i = 1, 2, 3. Therefore each box of the plane
partition is associated with a character of Γ. This action is however “offset" by the
transformation of el = e i al under Γ. This transformation encodes the boundary
conditions and specifying which eigenvalue al transforms in a particular irreducible
representations of Γ uniquely identifies a superselection sector. This information
can be compactly encoded by defining the boundary function b : {1, . . . , r} −→ Γ̂
which to each sector l with module generator el = e i al associates the weight b(l)
of the corresponding representation of Γ. Using this notation we can write

V~π =
r⊕
l=1

⊕
a∈Γ̂

(
El ⊗ ρ∨b(l)

)
⊗ (Pl,a ⊗ ρ∨a ) =

r⊕
l=1

⊕
a∈Γ̂

(
El ⊗ Pl,a

)
⊗ ρ∨a+b(l) . (7.12)

The modules Pl,a correspond to the decomposition of

∑
(n1,n2,n3)∈πl

tn1−1
1 tn2−1

2 tn3−1
3

as a Γ-module. In practice this means that |πl,a| = dimPl,a is the number of boxes
in the l-th plane partition in the vector ~π = (π1, · · · , πr) which transforms in the
representation ρ∨r . In particular the instanton numbers are related with the number
of boxes in a partition which transform in a given irreducible representation of Γ
as

kr =
r∑
l=1
|πl,a−b(l)| . (7.13)

From the character (7.11) it is straightforward, if somewhat involved, to derive
the contribution of an instanton to the gauge theory fluctuation determinant: it is
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simply given by a sign (−1)K(~π;r), with

K(~π; r) =
r∑
l=1

∑
a∈Γ̂

|πl,a| ra+b(l)

−
r∑

l,l′=1

∑
a∈Γ̂

|πl,a|
(
|πl′,a+b(l)−b(l′ )−a1−a2 | − |πl′,a+b(l)−b(l′ )−a1 |

− |πl′,a+b(l)−b(l′ )−a2 |+ |πl′,a+b(l)−b(l′ )|
)
. (7.14)

Finally by collecting all the results, the gauge theory partition function on the stack
[C3/Γ] has the form

Z [C3/Γ]
gauge (q,Q; r) =

∑
~π

(−1)KG(~π;r) qch3(E~π)Qch2(E~π) , (7.15)

where the Chern characters can be computed explicitly from (7.6) using the McKay
correspondence, in terms of the characters of the tautological bundles.

8. Divisor defects

We have argued that using intuition from physics and framed quivers we can
get informations about certain enumerative invariants of certain geometries. One
could wonder how far can we push this picture; for example if one can conjecturally
construct new enumerative invariants. We would like to argue that this seems in
principle possible and propose a version of our arguments related to moduli spaces
of sheaves with a parabolic structure along a divisor.

The main idea comes from considering our six dimensional cohomological gauge
theory in the presence of defects. Defects have been widely studied in four dimen-
sional field theories, where they are natural order parameters and play a prominent
role in the classification of phases of gauge theories. In many cases they can be
understood as imposing certain conditions on the fields in the path integral. The
six dimensional cohomological gauge theory we have been considering so far is less
rich dynamically, but allows the possibility of studying BPS invariants on arbitrary
Calabi-Yau threefolds.

The defects we have in mind are higher dimensional generalization of the surface
operators of [24, 25, 22], and were called divisor defects in [7]. As before our
gauge theory is defined via a G-bundle E (although in this survey we only consider
G = U(r)). Let D be a divisor on a Calabi-Yau threefold X. Note that D has real
co-dimension two in X. Defining a divisor defect consists in prescribing a certain
singular behavior for the gauge field around D. More precisely, locally our space
has the form D × C, with C the local fiber of the normal bundle of D in X. We
pick coordinates on C as z = r e i θ. We require that the gauge field near the defect,
that is restricted to C, has the form

A = α dθ + · · · , (8.1)

where the dots refer to less singular terms. The gauge field has therefore a singu-
larity at the origin of C. We extend these arguments globally by requiring that the
gauge field has this form at each point of the normal plane to the divisor D. The
parameter α specifies the type of divisor defect and takes values in the maximal
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torus TG of G. Indeed while α naturally takes values in the Cartan sub algebra
t = LieTG, the correct gauge invariant quantity is the monodromy e−2πα valued in
TG. If we introduce the two form δD which is Poincaré dual to D, the field strength
has the form

FA = 2πα δD + · · · . (8.2)
Because of the singularity, the field theory is naturally defined only on X \ D.
However the bundle E can be extended on the whole of X albeit in a non unique
fashion; indeed extensions of E over X are in correspondence with lifts of α from TG
to t = LieTG. Extensions are mapped into each other by gauge transformations
(r, θ) −→ e θ u, with u ∈ t with the property e 2πu = 1. Note that these gauge
transformations are trivial in TG. In other words, while E cannot be extended over
D as a G-bundle, there is a natural extension as a TG-bundle.

Therefore we have an alternative description of a gauge theory with a divisor
defect: it is a theory based on a G-bundle E whose structure group is reduced to
TG along a divisor D. Note that this implies that in the Feynman path integral we
must divide by gauge transformations which are TG valued over D.

Just as in the case of surface operator, the defect we have described is not the
most general but corresponds to the case where the parameters α are generic in
TG. The more general case is parametrized by the pair (α,L), where L is a Levi
subgroup, defined as a subgroup of G whose elements commute with α. Clearly
any Levi subgroup contains TG, which is indeed a minimal Levi subgroup. When
a divisor defect is parametrized by (α,L), the only allowed gauge transformations
are those which take values in L when restricted to the divisor D.

In the following we will use an equivalent description using the correspondence
between Levi subgroups of G and parabolic subgroups of GC. Given the parameter
α one can define the parabolic sub-algebra p of gC as the sub-algebra spanned by
elements x which obey

[α, x] = iλx , with λ > 0 . (8.3)
The associated group P ⊂ GC is called a parabolic subgroup; specifying a parabolic
subgroup P is equivalent to specifying the data (α,L). For example when L =
TG, the corresponding parabolic group is a so called Borel subgroup and consists
of upper triangular matrices of appropriate rank. An equivalent definition of a
parabolic subgroup of G is as stabilizers of flags in Cn. Recall that a flag is a
sequence of subspaces

0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un = Cr . (8.4)
The action of G on the flag is given by

g (U1, . . . , Un) = (g U1, . . . , g Un) . (8.5)
A complete flag is characterized by n = r and dimUi = i. In particular complete
flags are stabilized by Borel subgroups. For example the standard complete flag is
defined by the choice

Ui = C e1 ⊕ C e2 ⊕ · · · ⊕ C ei , (8.6)
and it corresponds to the span of the first i elements of the natural basis of Cr.

Therefore we can regard the gauge theory defined in the presence of a divisor
defect, either as consisting of a G-bundle whose structure group is reduced to a
Levi subgroup L along the divisor D, or as consisting of an holomorphic GC-bundle
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whose structure group is reduced to a parabolic subgroup P along D (and of course
similar definition hold for all the other fields). The latter perspective will be more
useful to discuss BPS invariants.

9. Donaldson-Thomas theory with divisor defects

We will define Donaldson-Thomas theory with divisor defects as the study of the
intersection theory of the moduli spaces of sheaves with a prescribed behavior along
the divisor. Recall that in ordinary Donaldson-Thomas theory we are interested in
solutions of the Donaldson-Uhlenbeck-Yau equations in (2.2), or more generally in
stable torsion free coherent sheaves.

As we have discussed we can think of gauge theory in the presence of a divisor
defect as the theory of G-bundles on X with structure group reduced to the Levi
subgroup L alongD. Therefore is natural to consider the moduli problem associated
with the equations

(FA − 2πα δD)(0,2) = ∂ †Aρ ,

(FA − 2πα δD)(1,1) ∧ t ∧ t+
[
ρ , ρ

]
= l t ∧ t ∧ t , (9.1)

where once again we are only interested in solutions with ρ = 0 (and for simplicity
we set l = 0). Note that the source δD forces the gauge field to obey the required
boundary conditions along D. Therefore we consider the moduli space

M(α) (L;X) =
{
A ∈ A(X)

∣∣∣ (FA − 2πα δD)(0,2) = 0,
(FA − 2πα δD)(1,1) ∧ t ∧ t = 0

}/
GD . (9.2)

As we have explained we only consider the group GD of gauge transformations
valued in L along D. Here A(X) is the space of connections, which is an affine
space modeled on Ω0,1 (X; ad E). We will sometimes use the notation M(α)

n,β,u;r,
where (n,−β, u) = (ch3(E), ch2(E), c1(E)), when we want to stress the topological
numbers of E .

The gauge theory perspective provides a natural integrand over this moduli
space: the Euler class of the normal bundle eul(N (α)

n,β,u;r) which arises when re-
stricting the instanton deformation complex (2.3) to field configurations which obey
(9.1). The gauge theory partition function has the form of a generating function of
BPS invariants

Z(X,D)
gauge (q,Q; r) =

∑
n, β, u

∑
m,h,o

qk Qβ vu e 2π i (ηimi+tDa γi oai+σi ni)

×
∫
M(α)

n,β,u;r(L;X|{m,h,o})
eul(N (α)

n,β,u;r) . (9.3)

For completeness we have written down a slightly more general partition function,
which include a set of “theta-angles” which further characterize the divisor defect.
We will not discuss their origin in this survey, but refer the reader to [7]. These
extra parameters are associated with the geometry ofD: for example if TG ' U(1)r,
each rank one factor gives rise to a line bundle L on D, and for each factor L the
above phase is

exp 2π i
(
η

∫
D

ch2(L) + γ

∫
D

c1(L) ∧ k + σ

∫
D∩D

c1(L)
)
. (9.4)
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It is however useful to adopt a different perspective. In the case without defects,
instead of looking directly at the Donaldson-Uhlenbeck-Yau equations, one typically
studies holomorphic bundles, trading the second equation for a stability condition.
Furthermore relaxing the bundle condition leads to the moduli space of stable
torsion free coherent sheaves. In line with these ideas we will propose that an
alternative way of looking at solutions of (9.1) is by studying the moduli space
of parabolic sheaves. This moduli space arises naturally when thinking of the
relevant configurations in the presence of a defect as holomorphic bundles whose
structure group is reduced to a parabolic group along D. Ideally one could hope
that the moduli space of parabolic sheaves is a better behaved version (and perhaps
a compactification) of (9.2). Regrettable these conjectures have not beed studied in
the literature. We will therefore take a more practical approach and define directly
Donaldson-Thomas type invariants associated with these moduli spaces; a more
detailed discussion is in [7].

A torsion free parabolic sheaf E is a torsion free sheaf on X with a parabolic
structure on D. The latter is the filtration

F• : E = F1(E) ⊃ F2(E) ⊃ · · · ⊃ Fl(E) ⊃ Fl+1 = E(−D) , (9.5)

together with the ordered set of weights 0 6 a1 < a2 < · · · < al 6 1, which
coincide with the parameters α up to a conventional normalization. Specifying the
parabolic structure via a filtration is akin to the description of a parabolic group as
the stabilizer of a certain flag. We will denote the moduli space of parabolic sheaves
with P(α)

n,β,u;r(X,D|{ch(Fi(E))}), or P(α)
n,β,u;r for simplicity; note that F1(E) = E and

by definition (ch3(E), ch2(E), c1(E) = n,−β, u). A proper definition of these moduli
spaces would require a notion of parabolic stability to select physical configurations;
this can be done but we refer the reader to [7] for more details. All the parabolic
sheaves considered in this note are assumed to be stable. We define Donaldson-
Thomas invariants in the presence of a divisor defect as

DT(α)
n,β,u;r(X,D) =

∫
P(α)
β,n,u;r

eul(N (α)
n,β,u;r) , (9.6)

and similarly for the gauge theory partition function (9.3). In the following we
will see that these definitions can be made very concrete in certain cases, and the
enumerative invariants computed explicitly.

10. Parabolic sheaves and orbifold sheaves

We will now consider the simplest possible case, of a divisor defect on C3. For
technical reasons it is easier to compactify C3 to P1×P1×P1 and define the defect
on the divisor D = P1

z1 × P1
z2 × 0z3 while denoting with D∞ = P1

z1 × P1
z2 ×∞z3 t

P1
z1 ×∞z2 × P1

z3 t ∞z1 × P1
z2 × P1

z3 the divisor at infinity. We will discuss moduli
spaces of objects on P1 × P1 × P1 which are trivialized on the divisor at infinity
D∞, corresponding to gauge fields on C3 which are flat at infinity.

To define the moduli space of parabolic sheaves we fix an r-tuple of integers
d = (d0, · · · , dr−1) which we will identify with the instanton numbers. A parabolic
sheaf F• is defined by the flag of rank r torsion free sheaves

F0(−D) ⊂ F−r+1 ⊂ · · · ⊂ F−1 ⊂ F0 , (10.1)
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such that c2(Fi) = 0 and c3(Fi) = −di. The first Chern classes are fixed by the
framing condition, that the sheaves are locally free at infinity:

F0(−D)|D∞ //

'
��

F−r+1|D∞ //

'
��

· · · //

'

��

F0|D∞

'
��

O⊕rD∞(−D) // W (1) ⊗OD∞ ⊕O⊕r−1
D∞ (−D) // · · · // W (r) ⊗OD∞

(10.2)
This condition simply means that the parabolic structure and the boundary condi-
tions at infinity should be compatible since the divisor at infinity D∞ and D have
a non trivial intersection. Note that at infinity F0 is isomorphic to the rank r
locally free sheaf O⊕r. By picking a basis we identify O⊕r with the vector space
W r = 〈w1, . . . , wr〉. SimilarlyW (i) = 〈w1, . . . , wi〉 for i = 1, . . . , r are i-dimensional
vector spaces. In this notation the parabolic group stabilizes the flag

W (1) ⊂W (2) ⊂ · · · ⊂W (r) = W . (10.3)

Note that in the case of a Borel subgroup this would be the standard complete
flag. For simplicity we will assume that this is the case in the remaining of this
note. The most general case is discussed in [7], where it is shown how equation
(10.2) can be modified to allow for more general flags, and how the correspondence
with orbifold sheaves, to be discussed momentarily, can be generalized accordingly.
The construction outlined above is an higher dimensional generalization of the
construction of [19, 20, 38].

The moduli space Pd can be constructed very explicitly as the fixed component
of Minst

n,0;r(C3) under the action of a discrete group Γ. This is an higher dimen-
sional generalization of the correspondence between parabolic sheaves and orbifold
sheaves, or sheaves which are Γ-equivariant, used in [19, 20, 38]. This correspon-
dence will allow us to use the formalism introduced in Section 7 to study the new
enumerative invariants. We will now sketch this correspondence.

Let the group Γ = Zr act on C3 as

(z1, z2, z3) −→ (z1, z2, ω z3) , (10.4)

where r ∈ Z and ω = e 2π i
r . This action is chosen in such a way that D is invariant.

Construct an analog of the flag (10.3) we let Γ act also on W = 〈w1, . . . , wr〉 as
γ(wl) = e 2π i l

r wl. The isotypical decomposition of W is obtained by summing over
all the irreducible representations of Γ̂

W =
⊕
a∈Γ̂

Wa ⊗ ρ∨a . (10.5)

Since we are limiting ourselves to the case where the flag stabilized is the standard
complete flag, or equivalently the parabolic group is a Borel group, each factor has
dimWa = 1. The identification between the isotypical decomposition under Γ and
the flag (10.3) is given by

W (i) =
i−1⊕
a=0

Wa . (10.6)
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The framing condition can be now equivalently expressed in terms of the vector
spaces Wa, a = 0, . . . , r − 1. Define the covering map

σ : P1
z1 × P1

z2 × P1
z3 −→ P1

z1 × P1
z2 × P1

z3
(z1, z2, z3) −→ (z1, z2, z

r
3) . (10.7)

As in [19, 20] this map gives an isomorphism which identifies a parabolic sheaf F•
in P with a Γ-equivariant sheaf F̃ inMinst

d,0;r(C3)Γ. Roughly speaking the dictionary
is given by

Fk = σ∗
(
F̃ ⊗ OX(kD)

)Γ
. (10.8)

see [7] for a more detailed discussion. In plain words given a Γ-equivariant sheaf
F̃ , we construct a flag from the isotypical components; viceversa given a parabolic
sheaf F• we construct a Γ-equivariant sheaf by pulling back each element of the
flag via σ and interpreting the result as an element of an isotypical decomposition.
The correspondence is rather simple, although one has to be rather careful in the
precise details in order to obtain the correct Chern classes. The precise identification
between the moduli spaces is

Minst
n,0;r(C3)Γ =

⋃
|d|=n

Pd . (10.9)

11. Quivers and divisor defects

We have reduced the case of studying divisor defects on C3 to an equivariant
problem. Therefore we can simply apply verbatim the formalism we have discussed
in Section 7 with the orbifold action Γ given by (10.4). We stress that this is just
a property of the formalism and no orbifold singularity is present in the physical
theory.

The relevant quiver quantum mechanics model arises from the ADHM formalism
by decomposing the ADHM data according to the action of Γ. The vector spaces
V and W decompose as

V =
⊕
a∈Γ̂

Va ⊗ ρ∨a , W =
⊕
a∈Γ̂

Wa ⊗ ρ∨a . (11.1)

Recall that we are considering the simplest divisor defect, corresponding to a Borel
group; the generalization to an arbitrary parabolic group simply amounts in defining
the vector spaces Wa in such a way that the appropriate flag is recovered using the
dictionary (10.6), as discussed in greater details in [7]. The bosonic field content of
the quiver quantum mechanics is again

(B1, B2, B3, ϕ) ∈ HomΓ(V, V ) and I ∈ HomΓ(W,V ) . (11.2)

In this case the only non trivial maps are

Ba1,2 : Va −→ Va ,

Ba3 : Va −→ Va+1 ,

ϕa : Va −→ Va+1 ,

Ia : Wa −→ Va . (11.3)
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The BRST transformations read
QBaα = ψrα and Qψaα = [φ,Baα]− εαBaα ,
Qϕr = ξr and Q ξa = [φ, ϕa]− (ε1 + ε2 + ε3)ϕa ,
Q Ia = %a and Q %a = φ Ia − Ia aa ,

(11.4)

where aa is a vector whose components are the Higgs field eigenvalues al; these are
associated via (11.1) with the irreducible representation ρa. Note that we do not
impose any condition on ε1 + ε2 + ε3 since Γ is not a subgroup of SL(3,C3). These
data correspond to the quiver

· · ·
Ba−2

3 //

ϕa−2
11 Va−1 •

Ba−1
2

��

Ba−1
1

�� Ba−1
3 //

ϕa−1
22 Va •

Ba2

��

Ba1

�� Ba3 //

ϕa
11 Va+1 •

Ba+1
2

��

Ba+1
1

�� Ba+1
3 //

ϕa+1

33 · · ·

Wa−1 •

Ia−1

OO

Wa •

Ia

OO

Wa+1 •

Ia+1

OO (11.5)

The moduli space of BPS configurations in the presence of the defect is now the
moduli stack

MΓ(n, r) =
[
RepΓ(n, r;B)

/ ∏
a∈Γ̂

GL(na,C)
]
, (11.6)

where RepΓ(n, r;B) is the sub variety of the representation space

RepΓ(n, r) = HomΓ(V,Q⊗ V ) ⊕ HomΓ(V,
∧3
Q⊗ V ) ⊕ HomΓ(W,V ) (11.7)

cut out by the equations

Ba1 B
a
2 − Ba2 B

a
1 = 0 ,

Ba+1
1 Ba3 − Ba3 B

a
1 = 0 ,

Ba+1
2 Ba3 − Ba3 B

a
2 = 0 .

(11.8)

The form of the regular representation Q = ρ0⊕ ρ0⊕ ρ1 follows from the definition
of the Γ-action in (10.4). Now the enumerative invariants can be defined and
computed via virtual localization as

DTDn,r
(
C3 | ε1, ε2, ε3, al

)
=
∫

[MΓ(n,r)]vir
1 (11.9)

=
∑

[E~π ]∈MΓ(n,r)T3×U(1)r

1
eulT3×U(1)r

(
T vir

[E~π ]MΓ(n, r)
) .

where the fixed point set of the toric action T3×U(1)r is given by vectors of plane
partitions which carry a Γ-action. The only difference from the orbifold case is that
the new invariants depend explicitly on the parameters in the Cartan sub algebra of
T3×U(1)r. In other words in the case of C3 we are defining an equivariant version of
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Donaldson-Thomas theory. The right hand side of (11.9) can be computed explicitly
from the character at a fixed point

chT3×U(1)r
(
T vir
~π MΓ(n, r)

)
(11.10)

=
(
W∨~π ⊗ V~π −

V ∨~π ⊗W~π

t1 t2 t3
+ (1− t1) (1− t2) (1− t3)

t1 t2 t3
V ∨~π ⊗ V~π

)Γ
.

we refer the reader to [7] for explicit formulae.

12. Higher dimensional theories

The ideas we have discussed so far have a broad range of applications. In par-
ticular one could take a generic quantum field theory, topological or not, introduce
a class of defects and investigate if they are associated with new BPS invariants.
For example, BPS states in supersymmetric field theories are typically associated
with certain moduli spaces of field configurations. Since defects can be thought of
as particular boundary conditions, it can happen that when the theory is modified
by the presence of the defect, the moduli spaces of BPS configurations are modi-
fied as well. The intersection theory of these new moduli spaces is an interesting
mathematical problem and can in principle provide new BPS invariants.

Typically one begins with a certain manifold Md of real dimension d, with cer-
tain structures related to its holonomy, or its reduction. The relevant instanton
equations have the form

λFµν = 1
2Tµνρσ F

ρσ (12.1)

for a field strength F , where λ is a constant and the antisymmetric tensor Tµνρσ is
responsible for the reduction of the holonomy of Md. To be more concrete, we set
d = 8 and pick as tensor T the holomorphic (4, 0) form Ω so that the holonomy is
reduced to SU(4).

We use Ω to define the operator ∗ on M8 as

∗ : Ω0,p(M8) −→ Ω0,4−p(M8) (12.2)

via the pairing

〈α, β〉 =
∫
M8

Ω ∧ α ∧ ∗β . (12.3)

Let Ω0,2
± (M8) be the eigenspaces of ∗ and P± be the natural projection. Given an

holomorphic bundle E , we say that a connection ∂A with F 0,2
A = ∂

2
A is holomorphic

anti-self-dual if P+F
0,2
A = 0. With these data we construct the following elliptic

complex of adjoint valued differential forms

0 //Ω0,0(M8, ad E) ∂A // Ω0,1(M8, ad E)
P+∂A//Ω0,2(M8, ad E) //0 . (12.4)

One can construct a cohomological theory by gauge fixing the topological invariant
[2]

S8 =
∫
M8

Ω ∧ Tr(F 0,2
A ∧ F 0,2

A ) . (12.5)

This theory localizes onto the moduli space of holomorphic anti-self-dual connec-
tions in the topological sector with S8 fixed. The intersection theory of this moduli
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space has not been rigorously defined, yet this theory is believed to give a higher
dimensional generalization of Donaldson theory [2].

We can now apply the formalism we have introduced almost verbatim, to define a
divisor defect on a co-dimension two divisor D6, and study the associated modified
moduli space

Mα(L;M8) =
{
A ∈ Ω(0,1) (M8; ad E)

∣∣∣ P+ (FA − 2παδD6)(0,2) = 0, stable
}/
GD6

(12.6)
which parametrizes holomorphic anti-self-dual connections whose structure group
is reduced to a Levi group L along D6, modulo gauge transformations which take
values in L on D6, with an appropriate stability condition. Similarly we can intro-
duce the moduli spaces Pα(M8;D6) of stable torsion free sheaves with a parabolic
structure over D6. These moduli spaces have not so far been studied due to chal-
lenging technical difficulties; we believe that some progress in this direction can be
made using quantum field theory techniques, possibly by defining new BPS invari-
ants. A proposal to solve many difficulties concerning Donaldson-Thomas theory
on Calabi-Yau 4-fold was recently put forward in [5]. It is possible that a modifica-
tion of the construction of [5] could lead to a proper definition of defects in higher
dimensional theories.

13. Line defects in N = 2 4d QFT

We shall now discuss another example: BPS invariants which arise in the case of
a four dimensional quantum field theory with N = 2, where we modify the theory
by introducing a line defect [21, 6, 17, 47, 8, 9, 10]. These theories have moduli
spaces of vacua, and we will consider a generic point u in the Coulomb branch B
where the gauge symmetry is spontaneously broken down to its maximal torus. The
Coulomb branch is divided into chambers and the counting of stable BPS states
in each chamber differs by the application of the wall-crossing formula. We will
denote by Γg the lattice of electric and magnetic charges. The lattice of charges is
endowed with an antisymmetric integral pairing 〈 , 〉 : Γg × Γg −→ Z.

We think of a line defect as a point defect located at the origin of R3 which ex-
tends in the time direction. Physically it can be modeled on a non-dynamical heavy
particle of charge γf . This defect can be chosen to be supersymmetric. The Hilbert
space of the theory is modified by the presence of the defect. Roughly speaking it
can be identified with the cohomology of a moduli space of BPS configuration in
the presence of the line defect

HL,u =
⊕
γ∈Γ
HL,γ,u =

⊕
γ∈Γ

⊕
p,q

Hp,q(MBPS(L, γ, u)) . (13.1)

Here we have used the fact that Hilbert spaces in quantum field theories are natu-
rally graded by the electromagnetic charge γ as measured at infinity.

It turns out that the relevant moduli space of BPS configuration can be once
again identified with the moduli space of stable framed quiver representations.
This quiver is constructed by taking a positive basis of charges of Γg, say {γi} and
associating each element with a node of the quiver [1]. The numbers of arrows
from node γi to node γj is given by 〈γi, γj〉. The framing node is associated with
the charge γf of the defect, and connected with the rest of the quiver by 〈γf , γi〉
arrows for i ∈ Q0. Now one can define BPS invariants by integration over the



ON FRAMED QUIVERS, BPS INVARIANTS AND DEFECTS 97

moduli spaces of framed representations with a suitable stability condition. These
integrals can be defined via virtual localization as we have done previously, with
respect to a natural torus T which acts on the maps of a quiver representation
by rescaling. If we denote the relevant moduli space of quiver representations as
Md(Q̂), we have

DTd =
∫

[Md(Q̂)]vir
1 =

∑
π∈Md(Q̂)T

(−1)dimTπMd(Q̂) . (13.2)

In the above formula the dimension of a representation d = (d1, · · · , dk) is related
to the charge of a BPS state by γ = γf +

∑
i∈Q0

diγi. The fixed points π can be
given an explicit combinatorial classification. A full treatment of this construction,
as well as its relation with the theory of cluster algebras, is given in [9].

14. Discussion

In this note we have provided a brief survey on certain enumerative invariants
of Donaldson-Thomas type which can be computed via framed quivers. The main
theme is that in certain chambers, at large radius and on the noncommutative
crepant resolution, these invariants can be understood as generalized instanton
configurations in a topological quantum field theory. The instanton computation
reduces to the study of an effective quantum mechanics which is based on a framed
quiver. The problem becomes completely algebraic and is reduced to the study of
the representation theory of the framed quiver.

We have argued that this construction is modified by the presence of defects in
the topological field theory. We have discussed in some detail the case of a divisor
defect, which corresponds geometrically to studying torsion free coherent sheaves
with a parabolic structure along a divisor. In certain simple cases, the formalism
based on quivers can be adapted and used efficiently. In the more general case, the
existence of a consistent enumerative problem is still conjectural.

More in general, one can advocate a broader program which consists in under-
standing how Donaldson-Thomas theory is modified by the presence of defects in
the physical theories. We have given few examples of how this program can be
carried on. We expect that this line of investigation will lead to interesting mathe-
matical structures as well as physical applications.
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