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AN INTRODUCTION TO THE WEB-BASED FORMALISM

DAVIDE GAIOTTO, GREGORY W. MOORE, AND EDWARD WITTEN

Abstract. This paper summarizes our rather lengthy paper, “Algebra of the Infrared:
String Field Theoretic Structures in Massive N = (2, 2) Field Theory In Two Dimensions,”
and is meant to be an informal, yet detailed, introduction and summary of that larger work.

1. Background and Motivation

1.1. Introduction. This paper summarizes our rather lengthy paper, “Algebra of
the Infrared: String Field Theoretic Structures in Massive N = (2, 2) Field Theory
In Two Dimensions,” henceforth cited as [9]. The present paper is meant to be a
very informal, yet detailed, introduction and summary of that larger work. See [9]
for more references and more background. The reader who finds our presentation
to be too telegraphic at some points is encouraged to consult the main text for a
more leisurely account.

1.2. Goals and Motivation. Let X be a Kähler manifold, and W : X → C a
holomorphic Morse function. To this data physicists associate a “Landau-Ginzburg
(LG) model.” It is closely related to the Fukaya-Seidel (FS) category. The goals of
this introduction are:

(1) To construct an A∞- category of branes in this model, using only data
“visible at long distances” - that is, only data about BPS solitons and their
interactions. This is the “web-based formalism.”

(2) To explain how the “web-based” construction of an A∞-category of branes
is related to the FS category.

(3) To construct an A∞ 2-category of theories, interfaces, and boundary oper-
ators.

(4) To show how these interfaces categorify the wall-crossing formula for BPS
solitons as well as the wall-crossing formulae for framed BPS states.

Two of the motivations for the detailed construction of interfaces are the non-
abelianization map of Hitchin systems that arises in theories of class S [8], and
the application of supersymmetric gauge theory to knot homology [18]. We will
return to these motivations briefly in Sections §3.4.1 and §3.6, respectively. These
applications have only been partially worked out and remain interesting topics for
further research. They are described in more detail in Sections §18.2 and §18.4 of
[9], respectively.

1.3. A Review of Landau-Ginzburg Models. To warm up, let us review some
well-known facts about Landau-Ginzburg theory in two dimensions. We want to un-
derstand the groundstates of the model in various geometries with various boundary
conditions. We approach the subject from the viewpoint of Morse theory.

2010 Mathematics Subject Classification: 37K40, 53D37, 81T30, 81T40, 81Q60.
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6 Davide Gaiotto, Gregory W. Moore & Edward Witten

1.3.1. Supersymmetric Quantum Mechanics and Morse Theory. From a physicist’s
point of view Morse theory is the theory of the computation of groundstates in
supersymmetric quantum mechanics (SQM) [16]. Recall that in SQM we have a
particle moving on a Riemannian manifold q : R → M together with a real Morse
function h : M → R and we consider the (Euclidean) action

SSQM =
∫
dt

(
1
2 |q̇|

2 + 1
2 |dh|

2 + · · ·
)
. (1.1)

There is a uniquely determined perturbative vacuum Ψ(pi) associated to each crit-
ical point pi of h. True vacua are linear combinations of the Ψ(pi). How do we find
them?

To find the true vacua we introduce the MSW (“Morse-Smale-Witten”) complex
generated by the perturbative ground states

M = ⊕pi:dh(pi)=0Z ·Ψ(pi). (1.2)

The complex is graded by the Fermion number operator F , whose value on Ψ(pi)
is:

f = 1
2(n− − n+) (1.3)

where n± is the number of ± eigenvalues of the Hessian. The matrix elements of
the differential Q are obtained by counting the number of solutions to the instanton
equation:

dq

dτ
= ∇h (1.4)

which have no reduced moduli and interpolate between two critical points. By
“counting” we always mean “counting with signs determined by certain orienta-
tions.” The space of true ground states is the cohomology H∗(M, Q) of the MSW
complex.

1.3.2. Landau-Ginzburg Models from Supersymmetric Quantum Mechanics. Now,
to formulate LG models, we apply the SQM formulation of Morse theory to the
case where the target manifold M of the SQM is a space of maps D → X, and D
is a one-dimensional manifold, possibly with boundary:

M = Map(D → X). (1.5)

The real SQM Morse function is

h = −
∫
D

(
φ∗(λ)− 1

2Re(ζ−1W )dx
)
. (1.6)

Here ζ is a phase. For simplicity we assume that the Kähler manifold is exact and
choose a trivialization of the symplectic form ω = dλ. Recall that W : X → C
is a holomorphic Morse function. This means that at the critical points where
dW (φi) = 0 the Hessian W ′′ is nondegenerate. If we work out the SQM action we
get a 1 + 1 dimensional field theory. The bosonic terms in the action are∫

D×R

1
2 |dφ|

2 + 1
2 |∇W |

2 + · · · (1.7)
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The perturbative groundstates, from the SQM viewpoint, are solutions of δh = 0.
This equation is equivalent to the ζ-soliton equation:

d
dxφ

I = gIJ̄
iζ
2
∂W̄

∂φ̄J̄
. (1.8)

(Later we will find it useful to note that the ζ-soliton equation is equivalent to both
upwards gradient flow with potential Im(ζ−1W ) as well as Hamiltonian flow with
Hamiltonian Re(ζ−1W ).)

One solution of (1.8) is given by constant field configuration
φ(x, t) = φi ∈ V (1.9)

where V denotes the set of critical points of W . If these are compatible with the
boundary conditions they turn out to be true vacua, and they are massive vacua if
W is Morse. However, it is possible to consider boundary conditions so that (1.8)
does not admit solutions where φ is a constant. These are called soliton solutions,
and we turn to them next.

1.3.3. Solitons on the Real Line. Now suppose D = R. We choose boundary con-
ditions of finite energy:

lim
x→−∞

φ = φi (1.10)

lim
x→+∞

φ = φj (1.11)

where φi, φj ∈ V and φi 6= φj . What is the MSW complex in this case?
It is a standard fact that solutions to (1.8) project to straight lines of slope iζ

in the complex W -plane. Therefore, there is no solution for generic ζ. There can
only be a solution for

iζ = iζji := Wj −Wi

|Wj −Wi|
(1.12)

in which case a solution projects in the W -plane to a line segment between the
critical values Wi and Wj of W .

Now, to describe the solutions we introduce the notion of a Lefshetz thimble.
This is the maximal (i.e. maximal dimension) Lagrangian subspace of X defined by
the inverse image in X of all solutions to (1.8) satisfying the boundary condition
(1.10), (respectively (1.11)). Solutions satisfying (1.10) are known as left-Lefshetz
thimbles and those satisfying (1.11) are known as right-Lefshetz thimbles. Evi-
dently, a soliton solution for D = R must simultaneously be in a left and a right
Lefshetz thimble, and hence sits in the intersection of the two. We assume that the
left- and right- Lefshetz thimbles intersect transversally in the fiber over a regular
value of W on the line segment [Wi,Wj ]. Denote this set of intersections by Sij .
There will be a finite number of classical solitons, one for each intersection point
p ∈ Sij . The MSW complex turns out to be:

Mij = ⊕p∈Sij
(
ZΨf

ij(p)⊕ ZΨf+1
ij (p)

)
. (1.13)

The grading of the complex is given by the fermion number of the perturbative
ground state. This turns out to be given by f or f + 1 for the two generators above
where

f = −η(D + ε)
2 . (1.14)
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Here D is the Dirac operator obtained by linearizing the ζ-soliton equation (1.8),
ε is small and positive, and η(D) denotes the eta invariant of Atiyah, Patodi, and
Singer.1

We can now introduce the BPS soliton degeneracies [2]:
µij := −TrMijFeiπF (1.15)

where F is the Fermion number operator, taking values f and f + 1 on the per-
turbative groundstates Ψf

ij(p) and Ψf+1
ij (p), respectively. The degeneracies µij will

show up in §2.4 and again in §3 when we discuss wall-crossing. We can already
note that, in some sense, Mij has “categorified the 2d BPS degeneracies.”

The differential on Mij is given by following the SQM paradigm: We count
instantons. In the present case the SQM instantons are solutions to the ζ-instanton
equation: (

∂

∂x
+ i ∂

∂τ

)
φI = iζ

2 g
IJ̄ ∂W̄

∂φ̄J̄
, (1.16)

with boundary conditions illustrated in Figure 1.

Figure 1. Left: An instanton configuration contributing to the
differential on the MSW complex. The black regions indicate the
locus where the field φ(x, τ) varies vary significantly from the vac-
uum configurations φi or φj . The length scale here is `W , set by
the superpotential W . Right: Viewed from a large distance com-
pared to the length scale `W the instanton looks like a straight line
x = x0, where the vacuum changes discontinuously from vacuum
φi to φj . The nontrivial τ -dependence of the instanton configura-
tion, interpolating from a soliton p1 to another soliton p2 has been
contracted to a single vertex located at τ = τ0. This vertical line
with a single vertex on it is the first example of a “web” in the web
formalism.

1Roughly speaking, the η invariant of a self-adjoint operator is a regularized version of the sum
of signs of the eigenvalues of the operator. In general it is not integer, but the difference of eta
invariants for different ij solitons will be an integer. This is why the MSW complex is graded by a
Z-torsor rather than by Z. There is a tricky point here: In the algebraic manipulations below it is
important to use the Koszul rule, a rule that only makes sense when there is an integral grading.
One needs to write f = fi− fj +nij , where nij is integral, and remove the fi by a kind of “gauge
transformation” of the wavefunctions. Then the complex is Z-graded.
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Written out the boundary conditions for the ζ-instanton equation are:

lim
x→−∞

φ(x, τ) = φi , lim
x→+∞

φ(x, τ) = φj , (1.17)

lim
τ→−∞

φ(x, τ) = φp1
ij (x) , lim

τ→+∞
φ(x, τ) = φp2

ij (x) . (1.18)

Following the rules of SQM, the matrix elements of the differential are obtained by
counting the solutions with no reduced moduli, (i.e. the solutions with two moduli).

Remarks. — (1) The complex (1.13) is not a standard mathematical Morse
theory complex: h is degenerate because of translation invariance. The
critical set is R, parametrizing the “center of mass” of the soliton. But
we sum neither the cohomology nor the compactly supported cohomology
of this critical set, as one would do in standard Morse theory. Rather,
we attach a certain Clifford module to each critical locus. Physically this
arises from the quantization of the “collective coordinates” associated with
the center of mass of the soliton. The module has rank two. That is why
each classical soliton contributes two perturbative groundstates in equation
(1.13). In equation (2.20) below we have factored out this center of mass
degree of freedom and hence each soliton leads to just one perturbative
groundstate.

(2) Supersymmetric quantum mechanics has two supersymmetries satsifying
{Q, Q̄} = 2H. When the spatial domain is D = R there are more symme-
tries in the problem, such as translational symmetry along R, not manifest
from the general SQM viewpoint. Consequently, when the spatial domain
is R the LG model has (2,2) supersymmetry:

{Q+, Q̄+} = H + P {Q+, Q−} = Z̄

{Q−, Q̄−} = H − P {Q̄+, Q̄−} = Z.
(1.19)

The supersymmetries of the SQM are of the form

Qζ := Q− − ζ−1Q̄+, Q̄ζ := Q̄− − ζQ+. (1.20)

The vacua of the model φi ∈ V preserve four supersymmetries. The ζ-
soliton equation is the Qζ (or Q̄ζ)-fixed point equation for stationary clas-
sical field configurations. Solutions of these equations preserve two out
of the four supersymmetries. The ζ-instanton equation is an equation for
the theory in Euclidean signature and preserves only one supersymmetry,
namely Qζ . When D is a half-line or an interval, with suitable boundary
conditions, only the two-dimensional supersymmetry algebra generated by
Qζ and Q̄ζ will be preserved.

(3) Now comes an important physics point: The theory ismassive with a length
scale `W corresponding to the inverse of the lightest soliton mass. Physical
correlations should decay exponentially beyond that scale. We can picture
the solitons and instantons as in Figure 1.

(4) The ζ-instanton equation has also appeared in the literature on the rela-
tion of matrix models and Landau-Ginzburg models [17, 5]. It also appears
in the literature on BPS domain walls in four-dimensional supersymmet-
ric theories [1, 10]. There are even some exact solutions available in the
literature [14].
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1.4. LG Models on a Half-Plane and the Strip.

1.4.1. Boundary Conditions. If D has a left-boundary x` 6 x or a right boundary
x 6 xr at finite distance then we need to put boundary conditions to get a good
Morse theory, or QFT.

(1) At x = x`, xr, the boundary value φ∂ must be valued in a maximal La-
grangian submanifold L`,Lr of X in order to have elliptic boundary con-
ditions for the Dirac equation on the fermions.

(2) The theory is simplest when the Lagrangian submanifolds are exact: ι∗(λ) =
dk, for a single-valued function k. Indeed, the Morse function (1.6) is re-
placed by h → h ± k(φ∂), where the sign is for the negative/positive half-
plane, respectively. Note that k can thus be interpreted physically as a
boundary superpotential.

We are certainly interested in X which is noncompact (since we want W to be
nontrivial) and we are typically interested in noncompact Lagrangians. Now, we
want to have well-defined spaces of quantum states on an interval HL`,Lr , invari-
ant under separate Hamiltonian symplectomorphisms of the left and right branes.
(These are mirror dual to gauge transformations on the branes of the B-model.)

The generators of the MSW complex in this case can be identified with the
intersection points

L(∆x)
` ∩ Lr (1.21)

where we regard the ζ-soliton equation (1.8) as a flow in x and L(∆x) means the
flow has been applied for a range (∆x).

Figure 2. A pair of Lagrangian submanifolds L`, Lr embedded
in the u− v plane. L` and Lr intersect at the one point indicated.
u is plotted horizontally and we assume that L`, Lr are embedded
in the half-plane u > 0.

But now there is a problem: Intersection points can go to infinity as the length
of the interval is changed (or if independent Hamiltonian symplectomorphisms are
applied to left and right branes). As an example, consider ζ−1W = iφ2 and consider
the candidate left and right branes shown in Figure 2. We regard the ζ-soliton
equation as a flow in x, and if φ = u + iv is the decomposition into real and
imaginary parts then

∂xu = u ∂xv = −v . (1.22)
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Therefore, the flow in x of L` will not intersect Lr for sufficiently large x. Therefore
there will be supersymmetric states for small width of [x`, xr] but none for large
width of [x`, xr]. This is potentially an interesting feature for a physicist studying
supersymmetry breaking, but it is a bug for the kind of “partial topological field
theory” we are studying.

In [9] we find that there are two distinct criteria we could impose on the allowed
Lagrangians to avoid the above problem. One solution is to restrict the left and
right branes to be positively and negatively W -dominated, respectively. A brane
supported on L is positively (negatively) W -dominated if Im(ζ−1W ) → ±∞ as
φ goes to infinity along L. Alternatively, one can restrict the Lagrangians to be
Branes of class Tκ: Choose a phase κ 6= ±ζ, and constants c, c′. The precise
choices don’t matter too much, although which component of the circle κ sits in is
significant. Branes of class Tκ are based on Lagrangians which project under W to
a semi-infinite rectangle in the W -plane:

|Re (κ−1W )| 6 c
Im (κ−1W ) > c′,

(1.23)

as in Figure 3. In the second approach branes on both the left and right boundaries
are taken to be in class Tκ. Now, under the x-flow of the ζ-soliton equation we
have

d

dx
Re (κ−1W ) = −1

2{Re(ζ−1W ),Re(κ−1W )} = 1
4Im( ζ

κ
)|dW |2 . (1.24)

Then, points at infinity flow very fast out of the rectangle and hence intersection
points L(∆x)

` ∩ Lr always sit in a bounded region and cannot escape to infinity.

T
κ

Figure 3. The rays in the complex W -plane that start at critical
points and all run in the iκ direction fit into the semi-infinite strip
Tκ, which is shown as a shaded region.

1.4.2. LG Ground States on a Half-Line. Now we consider the theory on the posi-
tive half-plane. We choose ζ so that it does not coincide with any of the ζij defining
the solitons for D = R. What are the groundstates preserving Qζ supersymmetry?

The MSW complex ML`,j is generated by the ζ-solitons on the half-plane satis-
fying the above boundary conditions. The grading on the complex is again given by
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fermion number but finding a formula for the fermion number is a little nontrivial.
We only know how to describe it when X is Calabi-Yau. In this case case we define

eiϑ = vol
Ω|L

(1.25)

(where Ω trivializes KX and is normalized so that ΩΩ̄ is the volume form on X)
and we need to be able to define a single-valued logarithm ϑ. (That is, the Maslov
index must vanish.) In this case we define the fermion number (on the interval) to
be:

f = −1
2η(D)− 2ϕr − ϕ`2π (1.26)

where ϕ = ϑ(φ∂). On a half-line we drop ϕr or ϕ` as appropriate.
The differential on the complex is given by counting ζ-instantons. The picture

of the instantons on the half-plane is shown in Figure 4

Figure 4. An instanton in the complex ML,j . The solitons corre-
sponding to p1, p2 ∈ L∩Rζj , where R

ζ
j is the right Lefshetz thimble,

are exponentially close to the vacuum φj except for a small region,
shown in turquoise, of width `W . In addition, the instanton tran-
sitions from one soliton to another in a time interval of length `W ,
indicated by the green square. At large distances the green square
becomes the 0-valent vertex used in half-plane webs.

1.4.3. LG Ground States on the Strip. The story on the strip is very similar to that
on the half-plane, but there is an interesting wrinkle that provides a nice example
where naive categorification of formulae for BPS degeneracies fails: We consider
the LG theory on R × [x`, xr]. When |xr − x`| � `W the ζ-solitons must nearly
“factorize” so there is a natural isomorphism:

ML`,Lr ∼= ⊕i∈VML`,i ⊗Mi,Lr . (1.27)
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So if we define the BPS degeneracy of the half-line solitons:

µL,i := TrML,ieiπF, (1.28)

and similarly define µi,L and µL`,Lr , then the Euler-Poincaré principle guarantees

µL`,Lr =
∑
i∈V

µL`,iµi,Lr . (1.29)

Now, the naive categorification would state:

H∗(ML`,Lr )
?∼= ⊕i∈VH∗(ML`,i)⊗H∗(Mi,Lr ). (1.30)

Here we have used the natural differential on the tensor-product complex. It cor-
responds to the ζ-instantons of Figure 5:

Figure 5. Naive differential on the strip.

As we will see, equation (1.30) is wrong. The reason is that there are other ζ-
instantons which also contribute to the physically correct differential. One example
is a ζ-instanton that looks like Figure 6. We will interpret this figure more precisely
at the end of §2.1.1.

Instanton corrections to the naïve

differential

Figure 6. An instanton correction to the naive differential on the strip.
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1.5. A Physicist’s View of the Fukaya-Seidel Category. Finally, we sketch
the Fukaya-Seidel (FS) category, at least the way a physicist would approach it
(after benefiting from exposure to mathematical thinking on this topic).2

Fix ζ. Our objects will be branes based on Lagrangians in class Tκ, where
κ is in one of the two components of U(1) − {±ζ}. Up to A∞ equivalence the
category should only depend on the choice of component. The morphism space is
the MSW complex ML`,Lr generated by solutions of the ζ-soliton equation. Then,
to compute the differentialM1, we count ζ-instantons with one-dimensional moduli
space. (That is, zero-dimensional reduced moduli space.) To compute the higher
A∞-products we follow the example of open string field theory in light-cone gauge.
We divide up the interval into equal length subintervals and consider the diagram
in Figure 7. Finally, we have to integrate over the moduli - the relative positions
of the joining times. When the fermion numbers of the incoming and outgoing
states are such that the amplitude is not trivially zero the expected dimension of
the moduli space will be zero, and in fact the solutions will only exist for a finite
set of critical values τi − τi+1 where the strings join. The amplitude is obtained by
counting over the finite set of solutions to the ζ-instanton equation.

τ3

τ2

τ1

τ2

τ3

τ1

a) b)

Figure 7. A picture of the worldsheet of n open strings all of
width w coming in from the past (τ = −∞) with a single open
string of width nw going out to the future (τ = +∞), familiar
from the light-cone gauge formulation of string interactions. (a)
There are n− 1 values of τ at which two open strings combine to
one. The linearly independent differences between these critical
values of τ are the n − 2 real moduli of this worldsheet. (b) The
picture in (a) can be slightly modified in this fashion so that the
worldsheet is smooth. The moduli are still the differences between
the critical values of τ .

The A∞-category we have sketched above is not precisely what we one finds in
the literature. (See, for example [15].) Our understanding from experts is that
something roughly along the lines of what we have written using the ζ-instanton
equations is understood to be the natural conceptual framework for defining the

2We thank Nick Sheridan for many useful discussions about the mathematical approaches to
the FS category.
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FS category, and that proofs along these lines will materialize in the literature in
due course.

2. The Web Formalism

2.1. Boosted Solitons and ζ-Webs. Now we would like to interpret more pre-
cisely the meaning of Figure 6.

2.1.1. Boosted Solitons. Recall that ζ-instantons satisfy(
∂

∂x
+ i ∂

∂τ

)
φI = iζ

2 g
IJ̄ ∂W̄

∂φ̄J̄
, (2.1)

and we are interested in solutions for arbitrary phase ζ. Recall too that ζ-solitons
on D = R satisfy

d
dxφ

I = gIJ̄
iζ
2
∂W̄

∂φ̄J̄
. (2.2)

Moreover, with boundary conditions (φi, φj) at x = −∞,+∞ solutions only exist
for special phases iζji given by the phase of the difference of critical valuesWj−Wi.

We can nevertheless use solitons of type ij to produce solutions of the ζ-instanton
equation on the Euclidean plane by taking the ansatz:

φboosted
ij (x, τ) := φsoliton

ij (cos θx+ sin θτ). (2.3)
Since (

∂

∂x
+ i ∂

∂τ

)
φboosted,I
ij (x, τ) = ieiθζji

2 gIJ̄∂J̄W̄ (φboosted
ij ) , (2.4)

it follows that if we choose the rotation θ so that
eiθζji = ζ , (2.5)

then we obtain a solution to the ζ-instanton equation. We call such solutions to
the ζ-instanton equation boosted solitons. A short computation shows that the
“worldline” (i.e. the region where the solution is not exponential close to one of the
vacua φi or φj) is parallel to the complex number zij := zi − zj where zi = ζW̄i.
See Figure 8.

Stationary 
soliton

``Boosted 
soliton’’

These will define 
edges of webs…

Figure 8. The boosted soliton. A short computation show that
the “worldline” is parallel to the complex number zij := zi − zj
where zi = ζW̄i.
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Now we can start to interpret the “extra” ζ-instanton illustrated in Figure 6.
The idea is that if the width of the interval is much larger than `W then the ζ-
instanton is well-approximated, away from the boundaries, by a boosted soliton.
There is some kind of “emission amplitude” and “absorption amplitude” associated
with the region where the boosted soliton joins the boundaries. In order to discuss
these we first consider the ζ-instanton equation on the plane, but with some unusual
boundary conditions at infinity.

2.1.2. Fan Boundary Conditions. We would like to consider solutions to the ζ-
instanton equation that look like a collection of several boosted solitons at infinity.
The boosted solitons will be obtained from a cyclically ordered set of solitons

F = {φp1
i1,i2

, . . . , φpnin,i1}. (2.6)
ordered so that the worldlines of the boosted solitons have monotonically decreasing
phase. We refer to such a set of solitons as a cyclic fan of solitons. We are interested
in solutions to the ζ-instanton equation which look like the corresponding boosted
solitons as z moves clockwise around a circle at infinity, as in Figure 9. Note this
only makes sense when the phases of the successive differences zik,ik+1 are clockwise
ordered. We call such a sequence of vacua a cyclic fan of vacua.

Figure 9. Boundary conditions on the ζ-instanton equation de-
fined by a cyclic fan of solitons. Here there are five boosted soli-
tons and their worldlines near infinity are the rays r1, . . . , r5. The
boosted soliton solutions are exponentially close to the constant
vacua near the rays u1, . . . , u5 and can be modified there to pro-
duce true solutions to the ζ-instanton equation.

If the index of a certain Dirac operator is positive then we expect, from index
theory, that there will be ζ-instantons which approach such a cyclic fan of solitons
at infinity. In fact, as mentioned above, physicists studying domain wall junctions
have established the existence of such solutions in some special cases [1, 10] and
there are even examples of exact solutions [14]. We will assume that a moduli space
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of such solutionsM(F) exists. Based on physical intuition we expect these moduli
spaces to satisfy two crucial properties:

(1) Gluing: Under favorable conditions, two solutions which only differ signifi-
cantly from fan solutions inside a bounded region can be glued together as
in Figure 10 This process can be iterated to produce what we call ζ-webs,
shown in Figure 11:

(2) Ends: The moduli space M(F) can have several connected components.
Some of these components will be noncompact, and the “ends,” or “bound-
aries at infinity,” of the moduli space will be described by ζ-webs.

Two such solutions can be

``glued’’ using the boosted

soliton solution

Figure 10. Gluing two solutions with fan boundary conditions
to produce a new solution with fan boundary conditions. The
red regions indicate where the solution deviates significantly from
the boosted solitons and the vacua. When the “centers” of the
two ζ-instantons are far separated the approximate, glued, field
configuration can be corrected to a true solution.

We call this

picture a

web: w

Figure 11. Several solutions can be glued together to produce a
ζ-web solution.

The compact connected components ofM(F)-webs are called ζ-vertices. We are
most interested in the ζ-vertices of dimension zero: These will contribute to the
path integral of the LG model with fan boundary conditions provided the fermion
number of the outgoing states sums to 2. We claim that counting such points for
fixed fans of solitons produces interesting integers that satisfy L∞ identities. We
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will state that claim a bit more precisely later. This picture is the inspiration for
the web-formalism, to which we turn next. It will give us the language to state the
above claim in more precise terms.

2.2. The Web Formalism on the Plane. We now switch to a mathematical
formalism that we call the web-based formalism for describing the above physics.

2.2.1. Planar Webs and their Convolution Identity.

Definition. — The vacuum data is the pair (V, z) where V is a finite set called
the set of vacua and z : V→ C defines the vacuum weights.

The vacua are denoted i, j, · · · ∈ V. The vacuum weight associated to i is denoted
zi. The vacuum weights {zi} are assumed to be in general position. This means

{z1, . . . , zN} ∈ V := CN − E , (2.7)

where E is the exceptional set. The latter is defined to be collections of vacuum
weights that satisfy at least one of the following three criteria: (1) zij = 0 for some
i 6= j or (2) three distinct vacuum weights are colinear or (3) the weights allow
the construction of an exceptional web. (Once we define webs below we can define
exceptional webs to be those whose deformation space has a dimension larger than
the expected dimension 2V − E.)

Definition. — A plane web is a graph in R2, together with a coloring of the
faces by vacua such that the labels across each edge are different and moreover,
when oriented with i on the left and j on the right the edge is straight and parallel
to the complex number zij := zi − zj . We take plane webs to have all vertices of
valence at least two.

Definition. — The deformation type of a web is the equivalence class under
stretching of internal edges and overall translation. There is a moduli space of
deformation types and it can be oriented. We denote an oriented deformation type
by w.

An example of two different deformation types of web is shown in Figure 12. In
the web formalism and the related homotopical algebra there are many tricky sign
issues, ultimately tracing back to the need to choose oriented deformation types
of webs. Getting the signs right is a highly technical business and we will avoid
it altogether in these notes. That is not to say that the signs are unimportant —
they most certainly are! In [9] signs are taken into account with great care.

Figure 12. The two webs shown here are considered to be differ-
ent deformation types, even though the web on the left can clearly
degenerate to the web on the right.
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Next, we introduce some notation for certain fans of vacua associated to a web.
Recall that a fan of vacua is a cyclically ordered set of vacua so that successive
edges are clockwise ordered. We can associate two kinds of fans of vacua to a web
w:

(1) The local fan of vacua at a vertex v ∈ w is denoted Iv(w).
(2) The fan of vacua at infinity is denoted I∞(w).

See Figure 13 for examples.

Local fan of vacua at a vertex v:

For a web w there are two kinds of cyclic fans we

should consider:

Fan of vacua :

Figure 13. Illustrating the local fan of vacua and the fan of vacua
at infinity for a web w.

Now we introduce the key construction of a convolution of webs: Suppose we
have two webs w and w′ such that there is a vertex v of w where we have

Iv(w) = I∞(w′). (2.8)

Then define w ∗v w′ to be the deformation type of a web obtained by cutting out
a small disk around v and gluing in a suitably scaled and translated copy of the
deformation type of w′. The procedure is illustrated in Figure 14.

Figure 14. Illustrating the convolution of a web w with internal
vertex v having a local fan Iv(w) = {j1, j2, j3, j4} with a web w′

having a fan at infinity I∞(w′) = {j1, j2, j3, j4}.
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The upshot is that if W is the free abelian group generated by oriented defor-
mation types of webs then convolution defines a product

W ×W →W (2.9)

(making it a “pre-Lie algebra” in the sense of [4]).

A rigid web has d(w) = 0.

It has one vertex:

A taut web has d(w)

= 1:

A sliding web has d(w)

= 2

Figure 15. Illustrating rigid, taut, and sliding webs with 0, 1, and
2 internal degrees of freedom. Here d(w) refers to the dimension
of the reduced moduli space of the web, that is the dimension of
the moduli space quotiented by the action of translation.

Let us now consider the taut webs. These are, by definition, those with only one
internal degree of freedom. That is, the moduli space of the taut webs is three-
dimensional. See Figure 15. We define the taut element t ∈ W to be the sum over
all the taut webs:

t :=
∑

d(w)=3

w. (2.10)

The key fact about taut webs is that

t ∗ t = 0. (2.11)

The proof is that if we expand this out then we can group products in pairs which
cancel. The pairs correspond to opposite ends of a moduli space of “sliding” webs,
with two internal degrees of freedom. The idea is illustrated in Figure 16.

2.2.2. Representation of Webs.

Definition. — A representation of webs is a pair R = ({Rij}, {Kij}) where
Rij are Z-graded Z-modules defined for all ordered pairs ij of distinct vacua and
Kij is a degree −1 symmetric perfect pairing

Kij : Rij ⊗Rji → Z. (2.12)

Given a representation of webs, we define a representation of a cyclic fan of vacua
I = {i1, i2, . . . , in} to be

RI := Ri1,i2 ⊗Ri2,i3 ⊗ · · · ⊗Rin,i1 (2.13)
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Figure 16. The two boundaries of the deformation type of the
sliding web shown on the right correspond to different convolu-
tions shown above and below. If we use the lengths L1, L2 of the
edges as coordinates then the orientation from the top convolution
is dL2 ∧ dL1. On the other hand the orientation from the bottom
convolution is dL1 ∧ dL2 and hence the sum of these two convo-
lutions is zero. This is the key idea in the demonstration that
t ∗ t = 0.

when I is the cyclic fan at a vertex of a web we refer to RIv(w) to as the represen-
tation of the vertex. Elements of RIv(w) are called interior vectors.

Next we collect the representations of all possible vertices by forming
Rint := ⊕IRI , (2.14)

where the sum is over all cyclic fans of vacua. We include I = ∅ and define R∅ = Z.
We want to define a map

ρ(w) : TRint → Rint , (2.15)
where for any Z-module M we define the tensor algebra to be

TM := M ⊕M⊗2 ⊕M⊗3 ⊕ · · · (2.16)
In fact, the operation will be graded-symmetric so it descends to a map from the
symmetric algebra SRint → Rint.

We now define the contraction operation: We take ρ(w)[r1, . . . , rn] to be zero
unless n = V (w), the number of vertices of w, and there exists an order {v1, . . . , vn}
for the vertices of w such that ra ∈ RIva (w). If such an order exists, we will define
our map

ρ(w) : ⊗v∈V(w)RIv(w) → RI∞(w) . (2.17)
as the application of the contraction map K to all internal edges of the web. Here
V(w) is the set of vertices of w. Indeed, if an edge joins two vertices v1, v2 ∈ V(w)
then if RIv1 (w) contains a tensor factor Rij it follows that RIv2 (w) contains a tensor
factor Rji and these two factors can be paired by K as shown in Figure 17.
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Figure 17. The internal lines of a web naturally pair spaces Ri1,i2
with Ri2,i1 in a web representation, as shown here.

It is not difficult to see that the convolution identity t ∗ t = 0 implies that ρ(t)
satisfies the axioms of an L∞ algebra ρ(t) : TRint → Rint:∑

Sh2(S)

εS1,S2 ρ(t)[ρ(t)[S1], S2] = 0 , (2.18)

where we sum over 2-shuffles of the ordered set S = {r1, . . . , rn} and εS1,S2 is a sign
factor discussed at length in [9].

Definition. — An interior amplitude is an element β ∈ Rint of degree +2 so
that if we define eβ ∈ TRint ⊗Q by the exponential series then

ρ(t)(eβ) = 0. (2.19)

Definition. — A Theory T consists of a set of vacuum data (V, z), a repre-
sentation of webs R = ({Rij}, {Kij}) and an interior amplitude β.

The simplest case of the L∞ equation implies there is a component of β in
Rij⊗Rji sastifying a quadratic equation. Using K we can interpret this component
of β as a map Qij : Rij → Rij of degree one that squares to zero. Thus, the Rij
become chain complexes. It is also worth noting that if β is an interior amplitude
and we define ρβ(w)[r1, . . . , r`] := ρ(w)[r1, . . . , r`, e

β ] then ρβ(t) : TRint → Rint

also satisfies the L∞ Maurer-Cartan equation and in this way we obtain moduli
spaces of Theories.

The mathematical structure we have just described is realized in the Landau-
Ginzburg model as follows:

(1) Vacua: V is the set of critical points of W .
(2) Vacuum weights: zi = ζW̄i.
(3) Web representation:

Rij := ⊕p∈SijZΨf+1(p) (2.20)
is the MSW complex, where we take the upper fermion number for each
soliton p. The contraction K is defined by the path integral and is a kind
of inner product on the solitons.

(4) Interior amplitude: Suitably interpreted, the path integral leads to a count-
ing of ζ-instantons with fan boundary conditions and defines an element
in Rint which is an interior amplitude β. This follows from localization of



AN INTRODUCTION TO THE WEB-BASED FORMALISM 23

the path integral on the moduli space of ζ-instantons and the fact that the
path integral must create a Qζ-closed state. For details see Section §14 of
[9].

2.2.3. Examples: Theories with Cyclic Weights. Two useful examples have V =
Z/NZ. We break the cyclic symmetry and label vacua by i ∈ {0, . . . , N − 1} with
weights:

VNϑ : zk = e−iϑ− 2πi
N k k = 0, · · ·N − 1 . (2.21)

(Although we have broken manifest cyclic symmetry all physically relevant results
are cyclically symmetric. The web representations (2.23) and (2.25) below appear
to violate this symmetry but that is not the case when one takes into account the
“gauge freedom” in the definition of fermion numbers.)

The first example is T Nϑ with a single chiral superfield and superpotential

W = φ− e−iNϑ φ
N+1

N + 1 . (2.22)

The web-representation is3

Rij = Z[1] i < j ,
Rij = Z i > j .

(2.23)

At a vertex of valence n we have degRI = n − 1 and hence only 3-valent vertices
contribute to the MC equations, so the only nonzero amplitudes are βijk ∈ Rijk for
0 6 i < j < k 6 N − 1. The L∞ equations come from the two taut webs of Figure
18 and are just:

βijkβikt − βijtβjkt = 0 i < j < k < t . (2.24)

Figure 18. The two terms in the component of the L∞ equations
for i < j < k < t. The resemblance to crossing symmetry is
somewhat fortuitous. In other models the L∞ equations do not
resemble crossing symmetry equations.

A more elaborate set of examples is provided by the mirror dual to the B-model
on CPN−1 with SU(N) symmetry. This again has vacuum weights (2.21) but now
we take

Rij = Aj−i[1] i < j ,
Rij = AN+j−i i > j ,

(2.25)

3The notation Z[f ] where f is an integer means the following: Recall that all modules in this
paper are graded by Z or a Z-torsor. If M is a graded module then M [f ] denotes the module
with grading shifted by f . When we write Z it is understood to have grading zero, so Z[1] is the
complex of rank one concentrated in degree one.
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where A` is the `-th antisymmetric power of a fundamental representation of SU(N)
and

Kij(v1 ⊗ v2) = κij
v1 ∧ v2

vol (2.26)

where κij is a sign (determined by a rule in [9]) and vol denotes a choice of volume
form on CN . An SU(N)-invariant ansatz for the interior amplitude reduces the
L∞ MC equations to (2.24) above.

2.3. The Web Formalism on the Half-Plane. Fix a half-plane H ⊂ R2 in the
(x, τ) plane. Most of our pictures will take the positive or negative half-plane,
x > x` or x 6 xr, but it could be any half-plane.

Definition. — Suppose ∂H is not parallel to any of the zij . A half-plane web
inH is a graph in the half-plane which may have some vertices (but no edges) on the
boundary. We apply the same rule as for plane webs: Label connected components
of the complement of the graph by vacua so that if the edges are oriented with i
on the left and j on the right then they are parallel to zij . Boundary vertices are
allowed to be 0-valent.

We can again speak of a deformation type of a half-plane web u. Now translations
parallel to the boundary of H act freely on the moduli space. Once again we
define half-plane webs to be rigid, taut, and sliding if the reduced dimension of
the moduli space is d(u) = 0, 1, 2, respectively. Similarly, we can define oriented
deformation type in an obvious way and consider the free abelian group WH of
oriented deformation types of half-plane webs in the half-plane H. Some examples
where H = HL is the positive half-plane are shown in Figure 19.

Figure 19. Four examples of taut positive-half-plane webs

There are now two new kinds of convolutions:
(1) Convolution at a boundary vertex defines

∗ :WH ×WH →WH . (2.27)
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(2) Convolution at an interior vertex defines:

∗ :WH ×W →WH . (2.28)

We now define the half-space taut element:

tH :=
∑
d(u)=1

u . (2.29)

The convolution identity is

tH ∗ tH + tH ∗ tp = 0 , (2.30)

where we now denote the planar taut element by tp. The idea of the proof is the
same as in the planar case. An example is shown in Figure 20.

Figure 20. An example of the identity on plane and half-plane
taut elements. On the right is a sliding half-plane web. Above
is a convolution of two taut half-plane webs with orientation dy ∧
d`1∧d`2, where y is the vertical position of the boundary vertex and
`1, `2 are the lengths of the internal edges. Below is a convolution of
a taut half-plane web with a taut plane web. The orientation is dy∧
d`2 ∧ d`1. The two convolutions determine the same deformation
type but have opposite orientation, and hence cancel.

2.4. Categorification of the 2D Spectrum Generator. Given a half-plane and
a representation of webs we can introduce a collection of chain complexes R̂ij that
will play an important role in what follows.
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One way to motivate the R̂ij is to recall the Cecotti-Vafa-Kontsevich-Soibelman
wall-crossing formula [3, 13] for the Witten indices/BPS degeneracies

µij = TrRij (−1)F

of 2d solitons. The µij were extensively studied in [6, 2, 3] where the wall-crossing
phenomenon was first discussed. One way to state the wall-crossing formula uses
the matrix of BPS degeneracies

1 +⊕zij∈Hµ̂ijeij :=
⊗
zij∈H

(1 + µijeij) , (2.31)

where we assume there are N vacua so we can identify V = {1, . . . , N}, eij are
elementaryN×N matrices, 1 is theN×N unit matrix, and in the tensor product we
order the factors left to right by the clockwise order of the phase of zij . Continuous
deformations of the Kähler metric gIJ̄ and/or the superpotential W in general lead
to discontinuous changes in the number of solutions of equations (1.8), (1.10), and
(1.11). The deformations of the Kähler metric do not change the indices µij but
changes in the superpotential that cross walls where three or more vacuum weights
become colinear can indeed change the BPS index µij . The wall-crossing formula
states that, nevertheless, the matrix (2.31) remains constant, so long as no ray
through one of the zij enters or leaves H.

The matrix (2.31) is sometimes called the “spectrum generator.” We now “cat-
egorify” the spectrum generator, and define R̂ij from the formal product

R̂ := ⊕Ni,j=1R̂ijeij :=
⊗
zij∈H

(Z · 1 +Rijeij) . (2.32)

Note that R̂ii = Z is concentrated in degree zero and R̂ij = 0 if zij points in the
opposite half-plane −H. If J = {j1, . . . , jn} is a half-plane fan in H then we define

RJ := Rj1,j2 ⊗ · · · ⊗Rjn−1,jn (2.33)

and R̂ij is just the direct sum over all RJ for half-plane fans J that begin with i
and end with j.

Remarks. — (1) We can “enhance” the (categorified) spectrum generator
R̂ with “Chan-Paton factors.” By definition, Chan-Paton data is an assign-
ment i→ Ei of a Z-graded module to each vacuum i ∈ V. The modules Ei
will be referred to as Chan-Paton factors. The enhanced spectrum genera-
tor is defined to be

R̂(E) := ⊕i,j∈VR̂ij(E)eij := (⊕i∈VEieii) R̂ (⊕j∈VEjejj)∗ . (2.34)
(2) Phase ordered products such as (2.31) have also appeared in many previous

works on Stokes data, so the Rij can also be considered to be “categorified
Stokes factors” and R̂ is an “categorified Stokes matrix.”

(3) If we consider a family of theories where the rays zij and zjk pass through
each other then the categorified spectrum generator R̂ is in general not in-
variant, in striking contrast to (2.31). A categorified version of the Cecotti-
Vafa-Kontsevich-Soibelman wall crossing formula is a rule for describing
how R̂ changes. We will discuss such a rule in §3.5 below.
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2.5. A∞-Categories of Thimbles and Branes.

2.5.1. The A∞-Category of Thimbles. We now want to define the A∞-category of
Thimbles, denoted Vac: Suppose we are given the data of a Theory T and a half-
plane H. Then Vac has as objects the vacua i, j, · · · ∈ V. As we will see,the objects
of the category are better thought of as Thimble branes Ti,Tj , . . . , defined at the
end of §2.5.2 below. The space of morphisms Hom(j, i) is simply

Hom(j, i) := Hop(i, j) := R̂ij . (2.35)
Here we have also introduced the notation Hop(i, j) := Hom(j, i) since many for-
mulae in A∞-theory look much nicer when written in terms of Hop.

We can enhance the category with Chan-Paton factors. The morphism spaces
are simply the matrix elements of R̂(E):

HopE(i, j) := R̂ij(E) = EiR̂ijE∗j . (2.36)
The corresponding category is denoted Vac(E).

Now we need to define the A∞-multiplication in Vac(E) of an n-tuple of com-
posable morphisms. As a first step, for any half-plane web u we define a map

ρ(u) : TR̂(E)⊗ TRint → R̂(E) . (2.37)
It will be graded symmetric on the second tensor factor. As usual, we define the
element

ρ(u)[r∂1 , . . . , r∂m; r1, . . . , rn] (2.38)
by contraction. We will abbreviate this to ρ(u)[P ;S] where P = {r∂1 , . . . , r∂m} and
S = {r1, . . . , rn}. We define ρ(u)[P ;S] to be zero unless the following conditions
hold:

• The boundary arguments match in order and type those of the boundary
vertices: r∂a ∈ RJv∂a (u)(E).

• We can find an order of the interior vertices Vi(u) = {v1, . . . , vn} of u such
that they match the order and type of the interior arguments: ra ∈ RIva (u).

If the above conditions hold, we will simply contract all internal lines with K and
contract the Chan Paton elements of consecutive pairs of r∂a by the natural pairing
Ei ⊗ E∗j → δijZ. With this definition in hand, we can check that the convolution
identity for taut elements implies a corresponding identity for ρ[tH]:∑
Sh2(S),Pa3(P )

ε ρ(tH)[P1, ρ(tH)[P2;S1], P3;S2] +
∑

Sh2(S)

ε ρ(tH)[P ; ρ(tp)[S1], S2] = 0 ,

(2.39)
where Pa3(P ) is the set of partitions of the ordered set P into an ordered set of
three disjoint ordered sets, all inheriting the ordering of P . The signs are discussed
in detail in [9]. We call (2.39) the LA∞ relations.

The most important consequence of these identities is that if we are given an
interior amplitude β, we can immediately produce an A∞ category where the mul-
tiplication

ρβ(tH) : TR̂(E)→ R̂(E) (2.40)
is defined by saturating all the interior vertices with the interior amplitude:

ρβ(tH)[r∂1 , . . . , r∂m] := ρ(tH)[r∂1 , . . . , r∂m; eβ ] . (2.41)
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This has the effect of killing the second term in (2.39) and combining the first
summand into the usual defining relations for an A∞-category. The product is
illustrated in Figure 21.

Figure 21. Illustrating the A∞-product on time-ordered bound-
ary vectors r∂1 , . . . , r∂n. We sum over taut half-plane webs u, indi-
cated by the green blob, and saturate all interior vertices with the
interior amplitude β.

Remarks. — The conceptual meaning of (2.39) is that there is an L∞ morphism
from the L∞ algebra Rint to the L∞ algebra of the Hochschild cochain complex
of the A∞ category Vac(E). The paper [12] shows that in the present context the
map is in fact an L∞ isomorphism.

2.5.2. The A∞-Category of Branes. We define a Brane, denoted B = (E ,B) to be a
choice of Chan-Paton data E together with a boundary amplitude, that is, a degree
+1 element

B ∈ R̂(E) (2.42)
that solves the Maurer-Cartan equations

∞∑
n=1

ρβ(tH)[B⊗n] = ρβ(tH)[ B1− B ] = 0 . (2.43)

The category of Branes is denoted Br. It depends on the Theory T and the
half-plane H. Its objects are Branes B = (E ,B) where E is any choice of Chan
Paton data E and B is a compatible boundary amplitude. The space of morphisms
from B2 to B1 is defined by simply modifying the enhanced spectrum generator
to

Hop(B1,B2) :=
(
⊕iE1

i eii
)
⊗ R̂⊗

(
⊕iE2

i eii
)∗
. (2.44)

In order to define the composition of morphisms
δ1 ∈ Hop(B0,B1), δ2 ∈ Hop(B1,B2), . . . , δn ∈ Hop(Bn−1,Bn) (2.45)

we use the formula

Mn(δ1, . . . , δn) := ρβ(tH)
(

1
1− B0

, δ1,
1

1− B1
, δ2, . . . , δn,

1
1− Bn

)
. (2.46)
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Note that Mn(δ1, . . . , δn) ∈ Hop(B0,Bn). After some work (making repeated use
of the fact that the Ba solve the A∞-Maurer-Cartan equation) one can show that
the Mn satisfy the A∞-relations and hence Br is an A∞-category. In particular
M2

1 = 0 can be considered to be a differential (i.e. a nilpotent supercharge).

Remarks. — (1) The multiplication (2.46) can be illustrated much as in
Figure 21. The only difference is that now the boundary vectors r∂s don’t
have to saturate all boundary vertices. Rather, boundary vertices between
r∂k and r∂k+1 can be saturated by the boundary amplitude Bk.

(2) For each vacuum i we define the Thimble Brane Ti to be the brane with
CP data E(Ti)j = δi,jZ with boundary amplitude B(Ti) = 0. Then the
category of Thimbles Vac is a full subcategory of Br.

2.5.3. Realization in the LG Model. Choose H to be the positive half-plane with
boundary conditions set by a Lagrangian L ⊂ X. The Chan-Paton data is given
by the MSW complex:

Ei = ML,i . (2.47)
We consider amplitudes with boundary conditions shown in Figure 22. The count-
ing of the number of ζ-instantons satisfying these boundary conditions can be used
to define an element BJ ∈ E ⊗RJ ⊗E∗. As with the case of the interior amplitude,
localization of the path integral to the moduli space of ζ-instantons together with
Qζ-closure of the state produced by the path integral implies that B is a boundary
amplitude in the above sense.

Figure 22. Boundary conditions for general half-plane instantons
with fan boundary conditions at x→ +∞ and solitons at τ → ±∞.

In general the M1-cohomology of Hop(B1,B2) is a space of Qζ-closed local
boundary operators and the physical interpretation ofMn(δ1, . . . , δn) is that we are
taking a kind of “operator product.” The Qζ closure of the path integral implies
that the Mn satisfy the A∞-MC equation.

Remarks. — (1) Spaces of local operators between some simple branes,
such as Thimbles, for the theories with cyclic weights (Section §2.2.3 above)
are described in Section §5.7 of [9]. In the theory with SU(N) symmetry
they are nontrivial representations of SU(N).
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(2) If we want good morphism spaces associated to the interval [x`, xr] we need
to restrict the class of Lagrangian submanifolds, as we have seen. In [9] it is
argued that the suitable class of branes for which the web-formalism makes
sense is the class of W -dominated branes for which Im(ζ−1W ) → +∞
at infinity. (For right-branes on boundaries of the negative half-plane we
require Im(ζ−1W ) → −∞.) This class of branes includes the union of
branes of class Tκ for κ in the open half-plane containing ζ. However,
in order to compare to the Fukaya-Seidel category one should restrict to
a smaller class of branes, and it turns out that the subset of branes of
class Tζ will suffice. This might seem odd, since, as mentioned above, in
our formulation of the Fukaya-Seidel category, we definitely want to use
branes of type Tκ with κ 6= ±ζ. The reason for the apparent discrepancy
is explained in the next section.

2.6. Relation of the Web-Based Formalism to the FS Category. Now we
would like the relate the A∞-category constructed in the FS approach and in the
web-based approach, say, for the positive half-plane. The web-based formalism
applies to branes of class Tζ and our description of the FS category applies to
branes of class Tκ with κ 6= ±ζ.

To relate the two we strongly use the rotational non-invariance of the ζ-instanton
equation and consider the FS category based on branes of class Tζ but now the
morphism spaces are defined by solving the equation on a horizontal strip, obtained
from the vertical one by rotation by π/2. Thus, to define the morphisms of the FS
category we use the MSW complex MB1,B2 whose generators are solutions of the
ζ-instanton equation are invariant under translation in x (but not in τ). Now we
can use branes of class Tζ on the upper and lower boundary.

Figure 23. We count rigid ζ-instantons in the funnel geometry
to define an A∞-morphism between the FS category and the web-
based category. The branes B1,B2 are in class Tζ .

To relate the FS and web-based categories we now consider the ζ-instanton
equation on the funnel geometry of Figure 23. A state in the far past at x→ −∞
on the strip is an incoming soliton, in the above sense. A state in the morphisms
in the web-based formalism gives half-plane fan boundary conditions at infinity for
the positive half-plane. But these two states determine boundary conditions for the
ζ-instanton equation on the space in Figure 23. We can therefore define a map

U : MB1,B2 → Hop(B1,B2) . (2.48)
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The matrix elements of U are defined by counting ζ-instantons in the funnel geom-
etry. When we consider states of the same fermion number the expected dimension
of the moduli space is dimension zero and the moduli space is expected to be a
finite set of points.

Figure 24. When the difference of fermion numbers of ingoing
and outgoing states is +1 there will be a one-dimensional moduli
space of ζ-instantons. The two typical boundaries are indicated in
(a) and (b). They lead to the two terms in the equation assuring
that U is a chain map.

We claim that U is a chain map. To prove this we consider the one-dimensional
moduli spaces of solutions to the ζ-instanton equation between states whose fermion
number differs by 1. The two ends correspond to ζ-instantons far down the strip -
giving the differential on MB1,B2 and taut webs far out on the positive half-plane,
giving the differential on Hop(B1,B2), so

U ◦MFS
1 −Mweb

1 ◦ U = 0 , (2.49)
where M1 denotes the differential on the morphisms in the A∞-category. Using
similar arguments one can show that U can be extended to a full A∞-equivalence
between the categories. For further details see Section §15 of [9].

2.7. Local Operators. The web formalism can also be used to determine spaces
of local operators. To do this, we extend the L∞ algebra Rint by introducing a
module Ri ∼= Z for each vacuum i ∈ V. In Section §9 of [9] we show that

Rc := ⊕i∈VRi ⊕Rint (2.50)
admits a natural L∞ algebra structure associated with doubly-extended webs. The
extra data we add to a web are vertices with no edges attached. We argue that the
cohomology of this complex is a space of local operators. The realization of these
local operators in the Landau-Ginzburg models is a little subtle and is discussed in
detail in Section §16 of [9]. The Ri have generators corresponding to an insertion of
“closed string” states on the circle with φ(x) = φi, while the RI ⊂ Rint are related
to twisted ζ-solitons. That is, solitons on the circle where ζ(x) = ζeix. It turns
out that the local operators described by the M1-cohomology of Hop(B1,B2) and
the cohomology of Rc include certain kinds of disorder operators, novel to Landau-
Ginzburg theories.
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As an example, including suitable disorder operators helps resolve a puzzle in
mirror symmetry: The standard B-model local operators of the CPN−1 model
do not correspond to the standard A-model local operators of the affine SU(N)
Toda model. Nevertheless, as shown in [9] the cohomology of (2.50) beautifully
reproduces the space of B-model operators on CPN−1.

3. Interfaces and Categorified Wall-Crossing

3.1. Motivation: Interfaces in Landau-Ginzburg Models. Suppose we have
a family of superpotentialsW (φ; c), parametrized by a point c in a topological space
C.4 Suppose ℘ : [x`, xr] → C is a continuous path. Then we can define a variant
of LG theory based on an x-dependent superpotential:

Wx(φ) := W (φ;℘(x)), (3.1)
so that Wx(φ) is constant (in x) for x 6 x` and for x > xr. Clearly this 1 + 1
dimensional theory no longer has translational invariance. It does, however, still
have two out of the four supersymmetries of LG theory. This is demonstrated most
easily if we take the approach via Morse theory/SQM using the Morse function on
Map(R, X):

h = −
∫
R

[
φ∗(λ)− 1

2Re(ζ−1W (φ;℘(x))dx
]
. (3.2)

Clearly the resulting theory has a kind of “defect” or “domain wall” localized near
[x`, xr] interpolating between the left LG theory defined with superpotentialWx`(φ)
and the right LG theory defined with superpotential Wxr (φ). We will refer to this
as a (LG, supersymmetric) interface. The term “Janus” is also often used in the
literature.

In the above setup we have a continuous family of vacuum weights
zi(x) = ζW̄x(φi,x) , (3.3)

where the vacuum i is parallel transported from the vacua in the theory at x` and
φi,x are the critical points of the superpotential Wx(φ). The ζ-instanton equation
now becomes: (

∂

∂x
+ i ∂

∂τ

)
φI = iζ

2 g
IJ̄ ∂W̄

∂φ̄J̄
(φ̄;℘(x)) , (3.4)

and ζ-solitons are just τ -independent solutions. The analog of boosted solitons
have curved worldlines, as in Figure 25.

Now, we would like to define a relation of the branes in the left theory to the
branes in the right theory by “parallel-transporting” across the interface.

3.2. Abstract Formulation: Flat Parallel Transport of Brane Categories.
Suppose we have a “continuous family of Theories.” We use the term “Theory” in
the sense of the web formalism. To make sense of this one must put a topology
on the set of Theories. Note that the set of vacuum weights V of (2.7) carries a
natural topology. Thus we can certainly speak of a continuous map

℘ : [x`, xr]→ V = CN − E . (3.5)
We call this a vacuum homotopy.

4 C can be any space, but the notation is again chosen because one of the primary motivations
is the theory of spectral networks and Hitchin systems.
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Figure 25. An analog of the boosted soliton for the case of a
supersymmetric interface.

More generally, one can also define a sense in which web representations and the
interior amplitudes change continuously. So, in general, we have a continuous family
of Theories T (x) on [x`, xr]. We would like to relate T ` = T (x`) to T r = T (xr).
More precisely, we want to define an A∞-functor

F(℘) : Br(T `,H)→ Br(T r,H) , (3.6)

where H is, say, the positive half-plane.
The functor F(℘) is meant to be a categorical version of parallel transport by a

flat connection. Thus we want:
(1) An A∞-equivalence of functors:

F(℘1) ◦ F(℘2) ∼= F(℘1 ◦ ℘2) (3.7)

for composable paths ℘1, ℘2.
(2) An A∞-equivalence of functors:

F(℘1) ∼= F(℘2) (3.8)

for paths ℘1, ℘2 homotopic in some suitable space.
We will show that one can construct such functors for “tame” vacuum homo-

topies, i.e. homotopies of the type (3.5). Flushed with success we then want to
extend the construction to more general vacuum homotopies for paths of weights
which cross the exceptional walls E. But you don’t always get what you want:

The existence of such a functor forces discontinuous changes of the web repre-
sentation and the interior amplitude: This is the categorified version of wall-
crossing.

The secret to constructing F(℘) is the theory of Interfaces in the web-based
formalism, to which we turn next.
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3.3. Interface Webs and Composite Webs.

3.3.1. The A∞-Category of Interfaces. In order to understand the parallel trans-
port of Brane categories it will actually be very useful to consider discontinuous
jumps between Theories.

Given a pair of vacuum data (V−, z−) and (V+, z+) we can define an interface
web by using the data on the negative and positive half-planes, respectively. Ex-
amples are shown in Figures 26 and 28 below. We can define the taut element
t−,+ and write a convolution identity. Next, if we are given left and right Theories
(T −, T +) then we can define a representation of interface webs:

(1) Chan-Paton factors are now labeled by a pair of vacua Ej−,j′+ .
(2) At a boundary vertex we have the representation:

RJ(E) := Ejm,j′1 ⊗R
+
J′+
⊗ E∗j1,j′n

⊗R−J− (3.9)

associated to the picture in Figure 26, where J = (J−, J ′+).

Figure 26. Conventions for Chan-Paton factors localized on in-
terfaces. If representation spaces are attached to the rays then
this figure would represent a typical summand in Hom(jmj′1, j1j′n).
We order such vertices from left to right using the conventions of
positive half-plane webs.

Now the categorified spectrum generator is given by the product

R̂(E) =
(⊕
i,i′

Eii′ eii⊗ei′i′
)(
R̂(T −,H−)tr⊗1

)(
1⊗R̂(T +,H+)

)(⊕
j,j′

Ejj′ ejj⊗ej′j′
)∗
.

(3.10)
See Figure 26 for a typical summand.

Now an interface amplitude is a degree one element B−,+ ∈ R̂(E) satisfying the
A∞-MC equation:

ρ(t−,+)
(

1
1− B−,+ ; eβ− ; eβ+

)
= 0 . (3.11)

We define an Interface to be a pair
I−,+ = (E−,+,B−,+) , (3.12)
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and we can define an A∞-category of Interfaces, denoted
Br(T −, T +) . (3.13)

The objects of Br(T −, T +) are Interfaces, for some choice of CP data and the space
of morphisms between I−,+2 and I−,+1 is the natural generalization of (2.44):

Hop(I−,+1 , I−,+2 ) :=(⊕
i,i′

E1
ii′ eii ⊗ ei′i′

)(
R̂(T −,H−)tr ⊗ 1

)(
1⊗ R̂(T +,H+)

)(⊕
j,j′

E2
jj′ ejj ⊗ ej′j′

)∗
.

(3.14)
The A∞-multiplications are given by the natural generalization of equation (2.46):
we just contract with the taut element tH → t−,+ and saturate all interior vertices
with the left or right interior amplitude β−, β+.

Figure 27. The only taut interface web when T `, T r are the triv-
ial theory has two boundary vertices. The boundary amplitude is
associated to a single boundary vertex: B ∈ E ⊗ E∗ is a morphism
of E of degree one. There is only one taut web, shown above. The
MC therefore says that B2 = 0. Thus an Interface between the
trivial theory and itself is the same thing as a chain complex.

Remarks. — (1) An Interface between the empty theory and itself is pre-
cisely the data of a chain complex. See Figure 27 for the explanation.

(2) The identity Interface. A very useful example of an Interface is the identity
Interface Id ∈ Br(T , T ). The CP spaces are E(Id)ij = δi,jZ and

R̂(E) = ⊕i,jR̂+
ij ⊗ R̂

−
jieij ⊗ eij , (3.15)

where the superscripts ± indicate that R̂ is defined with respect to the
positive, negative half-plane, respectively. To define the interface we take
BI to have nonzero component only in summands of the form Rij ⊗ Rji
corresponding to the fan {i, j; j, i}. The vertex looks like a straight line of
a fixed slope running through the domain wall. The boundary amplitude
is the element in Rij⊗Rji given by K−1

ij . and the Maurer-Cartan equation
is proved by Figure 28.

(3) Landau-Ginzburg interfaces and branes in the product theory: In the con-
text of Landau-Ginzburg models we can consider interfaces between a the-
ory defined by (X1,W1) on the negative half-plane and (X2,W2) on the
positive half-plane. By the doubling trick we would expect such interfaces
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Figure 28. Examples of taut interface webs which contribute to
the Maurer-Cartan equation for the identity interface Id between
a Theory and itself.

to be related to branes for the positive half-plane of the theory based on
(X̄1 ×X2, W̄1 +W2). This is morally correct, but there are two closely re-
lated subtleties which should be pointed out. First, from the purely abstract
formalism, if we try to relate Interface amplitudes for a pair of Theories
T −, T + to boundary amplitudes for T −×T + we will, in general, fail: The
vacua of the product theory are labeled by (j−, j+) but the slopes of the
edges of the webs are the slopes of zj1

−,j
2
−

+ zj1
+,j

2
+
. In general half-plane

fans for the product theory will have nothing to do with pairs of half-plane
fans in the left and right theories. The two concepts will be equivalent,
however, in the special case that the web representations are of the form

R(j1
−,j

1
+),(j2

−,j
2
+) = δj1

−,j
2
−
R+
j1

+,j
2
+
⊕ δj1

+,j
2
+
R−
j1
−,j

2
−
. (3.16)

Second, on the Landau-Ginzburg side, if we literally take the product met-
ric and the product superpotential then the Morse function h1 + h2 is too
degenerate: The critical manifolds are R× R, corresponding to a center of
mass collective coordinate for two separate solitons. We must perturb the
theory by perturbing the superpotential with ∆W (φ̄1, φ2). Generic pertur-
bations will in fact produce MSW complexes giving web representations of
the form (3.16).

3.3.2. Composition of Interfaces. A crucial new ingredient is that Interfaces can
be composed. Suppose we have the situation shown in Figure 29 with a pair of
Interfaces I−,0 and I0,+. We will produce a new Interface, denoted

I−,0 � I0,+ ∈ Br(T −, T +) (3.17)

as shown in Figure 30.
The key idea in the construction is to use “composite webs” c = (u−, s, u+). An

example is shown in Figure 31. Again one can develop the whole web theory, write
taut elements and a convolution identity. (The convolution identity has some novel
features. See [9] for details.) The upshot is that the product Interface I−,0 � I0,+

has
(1) Chan-Paton data:

E(I−,0 � I0,+)ii′ := ⊕i′′∈V0E−,0i,i′′ ⊗ E
0,+
i′′,i′ . (3.18)
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Figure 29. Two Interfaces between a sequence of three Theories.

Figure 30. The Interface resulting from the “operator product”
of the two Interfaces.

Figure 31. An example of a composite web, together with con-
ventions for Chan-Paton factors. In this web the fan of vacua at
infinity has J∞(c) = {j′1, . . . j′n; j1, . . . , jm} Reading from left to
right the indices are in clockwise order.

(2) Interface amplitude:

B(I−,0 � I0,+) := ρβ(tc)
[

1
1− B−,0 ; 1

1− B0,+

]
, (3.19)
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where tc is the taut element for composite webs.
Using the convolution identity (omitted here) one can show that it indeed

satisfies the Maurer Cartan equations for an interface amplitude between
the theories T − and T + with Chan-Paton spaces (3.18).

Now one can show that we have an A∞-bifunctor

Br(T −, T 0)×Br(T 0, T +)→ Br(T −, T +) . (3.20)

This is illustrated in Figure 32

Figure 32. Illustrating the bi-functor property: We take the
“OPE” of both local boundary operators on the interfaces, and
of the interfaces, shown in (a), to produce a local operator on an
interface, shown in (b).

An important special case is that where T − is the trivial Theory so that

Br(T −, T 0) = Br(T 0) .

Then we see that a � with a fixed Interface I ∈ Br(T 0, T +) gives an A∞-functor
on categories of Branes:

Br(T 0)×Br(T 0, T +)→ Br(T +) . (3.21)

Physically, we are moving a 0,+ interface I into a boundary and mapping a bound-
ary condition for Theory T 0 to one for Theory T +.

Thus, our quest for parallel transport of Brane categories will be fulfilled if we
can find suitable Interfaces I[℘] associated with paths between theories T ` and T r.

3.3.3. An A∞ 2-Category of Interfaces. A natural question to ask about the com-
position of Interfaces is whether it is associative. In fact, to define the composite
webs we need to choose positions on the x-axis for the two domain walls as well as
the position of the final interface. These positions can influence the set of composite
webs. So we should really denote the product of Interfaces by(

I−,0 � I0,+)
x−,0,x0,+,x−,+

. (3.22)
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However, one can show that the product only depends on these positions up to
“homotopy equivalence.” The proof, which is somewhat long, involves developing
a theory of webs which are time-dependent. Similarly, one can prove that the
composition is associative, up to “homotopy equivalence.” All the details are in [9].

To define “homotopy equivalence” let us note that the A∞-structure of the cate-
gory of Branes and Interfaces requires in part that the Hop spaces have a differential:
If δ ∈ Hop(B1,B2) then

M1(δ) = ρβ(tH)
(

1
1− B1

, δ,
1

1− B2

)
, (3.23)

and M1 ◦M1 = 0, when the Hop spaces are composable. We can thus define a
notion of homotopy equivalence of Branes (and entirely parallel definitions apply
to Interfaces):

(1) Two morphisms are homotopy equivalent if δ1 − δ2 = M1(δ3).
(2) Two Branes are homotopy equivalent, denoted, B ∼ B′, if there are two

M1-closed morphisms δ : B → B′ and δ′ : B′ → B which are inverses up to
homotopy. That is:

M2(δ, δ′) ∼ Id M2(δ′, δ) ∼ Id , (3.24)
where Id is the natural identity in ⊕iEi ⊗ E∗i .

The net result of these observations is that we have defined what might be called
an “A∞-2-category” structure:

(1) The objects, or 0-morphisms are the Theories.
(2) The 1-morphisms between two Theories are Interfaces I−,+.
(3) The 2-morphisms between two 1-morphisms are the boundary-changing

operators on the Interface.
This is illustrated in Figure 33.

Figure 33. Illustrating the two category of Theories, Interfaces,
and boundary operators.

3.4. An Example of Categorical Transport. We will now sketch how one can
actually construct a parallel transport interface for a tame vacuum homotopy:

℘ : x 7→ {zi(x)} ∈ CN − E (3.25)
which does not cross the exceptional walls E. We assume ℘(x) only varies on a
compact set [x`, xr].
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Our goal is to define an Interface
I[℘] ∈ Br(T `, T r) (3.26)

so that if ℘1(x) ∼ ℘2(x) give homotopic paths of vacuum weights with fixed end-
points then I[℘1] and I[℘2] are homotopy-equivalent Interfaces, and such that if
we compose two paths then

I[℘1]� I[℘2] ∼ I[℘1 ◦ ℘2] , (3.27)
where ∼ means homotopy equivalence.

The key is to construct an analogous theory of curved webs where the ij edges
have tangents at (x, τ) parallel to zi(x) − zj(x). One crucial new feature emerges
for curved webs. Following the tangent vectors, sometimes the edges are forced to
go to infinity at finite values of x. These special values of x are known as binding
points. We can have “future stable” binding points as in Figure 34 or “past stable”
binding points as in Figure 35.

Figure 34. Near a future stable binding point x0 of type ij the
edges separating vacuum i from j asymptote to the dashed green
line x = x0 in the future. Figures (a) and (b) show two possible
behaviors of such lines. The phase e−iϑ(x)zij rotates through the
positive imaginary axis in the counterclockwise direction.

Figure 35. Near a past stable binding point x0 of type ij the
edges separating vacuum i from j asymptote to the dashed green
line x = x0 in the past. Figures (a) and (b) show two possible
behaviors of such lines. The phase e−iϑ(x)zij rotates through the
positive imaginary axis in the clockwise direction.

The binding points x0 are characterized as the values of x for which
zij(x0) ∈ iR+ . (3.28)

The future/past stability is determined by the sense in which Re (zij(x)) passes
through zero as x passes through x0:
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(1) Future stable binding point: As x increases past x0 zij(x) goes through the
positive imaginary axis in the counter-clockwise direction.

(2) Past stable binding point: As x increases past x0 zij(x) goes through the
positive imaginary axis in the clockwise direction.

Now we define Chan-Paton data of the desired Interface. For each binding point
x0 of type ij introduce a matrix with chain-complex entries. It depends on whether
x0 is future-stable or past-stable:

Sij(x0) := Z · 1 +Rijeij future stable, (3.29)
Sij(x0) := Z · 1 +R∗jieij past stable. (3.30)

We will refer to Sij(x0) as a categorified Sij-factor, or just as an Sij-factor, for
short. Then we define the Chan-Paton factors of the Interface to be:

⊕i,j∈V Ei,jei,j :=
⊗
i 6=j

⊗
x0∈gij ∪fij

Sij(x0) , (3.31)

where the tensor product on the RHS of (3.31) is an ordered product over binding
points, ordered from left to right by increasing values of x0. The amplitudes for
the Interface are simply given by evaluating the taut curved web on the interior
amplitude: ρ(tcurved)(eβ). (This formula needs some interpretation. See [9] for
details.) In this way we get an Interface

I[℘] ∈ Br(T `, T r) (3.32)
associated to the tame vacuum homotopy ℘(x). It satisfies the desired properties
for flat parallel transport.

Figure 36. Breaking up the path ℘ into elementary paths we
need only produce special interfaces for “trivial” transport, and
for transport across S-walls.

Note that, thanks to the composition property (3.27), up to homotopy we can
break up I[℘] as a product of Interfaces as in Figure 36. Therefore to construct
I[℘] we need only construct then the Interfaces for crossing the Sij walls. These are
denoted Sp,f

ij for past and future stable crossings, respectively. The amplitudes can
be described quite explicitly [9]. The functors B→ B�Sp,f

ij are closely related to
mutations.

3.4.1. Categorified S-Wall-Crossing. We now return to one of our motivations from
Section §1.2 above, namely the categorification of the S-wall crossing that plays such
an important role in the theory of spectral networks [8]. Given an Interface I−,+

associated with a path of theories the framed BPS degeneracies are, by definition:
Ω(I−,+, ij′) := TrE(I−,+)ij′ e

iπF . (3.33)
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If we consider a path ℘x whose endpoint terminates with z(x), and that crosses an
ij binding point as x increases past x0 (and hence z(x) crosses an Sij-wall) then
the matrix of Witten indices

F [℘x] :=
∑
k,`

Ω(I[℘x], k, `)ek,` (3.34)

jumps by

F 7→

{
F · (1 + µijeij) xij ∈ fij
F · (1− µjieij) xij ∈ gij

(3.35)

according to whether the binding point is future or past stable, respectively. This
is the framed wall-crossing formula. Now, since the Witten index of Rij is µij we
recognize the formula for the change of the Interface

I[℘x]→ I[℘x]�Sp,f
ij (3.36)

as x crosses the binding point as a categorification of the S-wall crossing formula.

Example. — Consider a theory with two vacua, such as the Landau-Ginzburg
model withW ∼ φ3−zφ. The family is parametrized by z ∈ C with C = C∗. There
are two massive vacua at φ± = ±z1/2. We choose a path ℘ defined by z(x) in C∗
where x ∈ [ε, 1 − ε] for ε infinitesimally small and positive with z(x) = ei(1−2x)π.
Thus the path nearly encircles the singular point z = 0 beginning just above and
ending just below the cut for the principal branch of the logarithm. If ζ has a small
positive phase then there are two binding points of type +− at x = 1/3 − δ, 1 − δ
and one binding point of type −+ at x = 2/3− δ where we can take δ samll with
δ > ε. These binding points are all future stable. The wall-crossing formula for the
framed BPS indices amounts to a simple matrix identity:(

1 0
1 1

)(
1 −1
0 1

)(
1 0
1 1

)
=
(

0 −1
1 0

)
(3.37)

where the three factors on the LHS reflect the wall-crossing across the three Sij-
rays, and the matrix on the RHS accounts for the monodromy of the vacua. The
categorification of the wall-crossing identity (3.37), at least at the level of Chan-
Paton factors, is obtained by replacing the matrix of Witten indices on the LHS of
(3.37) by the Chan-Paton factors of the three Interfaces of type S to get:(

Z 0
Z[f2] Z

)(
Z Z[f1]
0 Z

)(
Z 0

Z[f2] Z

)
=
(
E−− E−+
E+− E++

)
(3.38)

where f1, f2 are integral fermion number shifts and f1 + f2 = 1. Multiplying out
the matrices we see that E−+ = Z[f1], while

E−− = E++ = Z⊕ Z[1] (3.39)
is a complex with a degree one differential (we have used f1 + f2 = 1) and

E+− = Z[f2]⊕ Z[f2]⊕ Z[f2 + 1] (3.40)
is another complex with a degree one differential. The matrix of complexes (3.38)
is quasi-isomorphic to the categorified version of the monodromy:(

0 Z[1− f2]
Z[f2] 0

)
. (3.41)
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Figure 37. For the path of vacuum weights in Figure 38 we have
BPS rays crossing as in the standard marginal stability analysis of
the two-dimensional wall-crossing formula.

Figure 38. An example of a continuous path of vacuum weights
crossing a wall of marginal stability. Here zk = a and zi = b with
a, b real and a < 0 < b. They do not depend on x, while zj(x) = ix.
We show typical vacuum weights for negative and positive x and
the associated trivalent vertex. As x passes through zero the vertex
degenerates with zjk(x) and zij(x) becoming real. Note that with
this path of weights the {i, j, k} form a positive half-plane fan in
the negative half-plane, while {k, j, i} form a negative half-plane
fan in the positive half-plane. If we choose x` < 0 < xr there is an
associated interface I<>.

3.5. Categorified Wall-Crossing for 2d Solitons. The standard wall-crossing
formula for BPS indices of 2d solitons was studied by Cecotti and Vafa in [2]. It
is associated with a homotopy of vacuum weights so that the cyclic orders of the
central charges gets reversed, as in Figure 37. We can realize this by the explicit
homotopy of vacuum weights shown in Figures 38 and 39. The wall-crossing of
the BPS indices is a special case of the famous Kontsevich-Soibelman wall-crossing
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Figure 39. In this figure the path of weights shown in Figure 38 is
reversed. Again, zk = a and zi = b with a, b real and a < 0 < b, but
now zj(x) = −ix. We show typical vacuum weights for negative
and positive x and the associated trivalent vertex. Note that with
this path of weights the {i, j, k} form a positive half-plane fan in
the positive half-plane, while {k, j, i} form a negative half-plane
fan in the negative half-plane. In order to define an interface we
choose initial and final points for the path −xr < 0 < −x` so that,
after translation, it can be composed with the path defining I<>.

formula:
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To categorify this we seek to define Interfaces:

I<> ∈ Br(T `, T r) & I>< ∈ Br(T r, T `) (3.44)

(where the notation is meant to remind us how the half-plane fans are configured
in the negative and positive half-planes). Now, the essential statement constrain-
ing these Interfaces is that the composition of the Interfaces should be homotopy
equivalent to the identity Interface:

I<> � I>< ∼ IdT ` & I>< � I<> ∼ IdT r . (3.45)
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In [9] we construct such Interfaces I>< and I<> and show that the most natural
solution to the constraints follows from:
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(3.46)

where the superscript ± on the right hand side refers to the sign of (−1)F. We
have written an identity of virtual vector spaces. One could move terms to left and
right hand sides so that only plus signs appear and we would then have an identity
of vector spaces. We have written the equation in terms of virtual vector spaces
to bring out the fact that (3.46) is a categorification of the wall-crossing formulae
(3.43).

Figure 40. This figure depicts the a knot (actually, a link) in the
boundary at y = 0 at a fixed value of x0. It is presented as a tangle
evolving in the x1 direction and therefore can be characterized as
a trajectory of points za(x1) in the complex z = x2 + ix3 plane.
The tangle is closed by “creation” and “annihilation” of the points
za in pairs (with identical values of ka).

3.6. Potential Application to Knot Homology. To conclude, let us consider
very briefly the motivation from knot homology. For background see [18][19][20][7],
and the review in §18.4 of [9]. The central idea is to consider five-dimensional
supersymmetric gauge theory on a five-manifold with boundary:

M5 = R×M3 × R+, (3.47)

where M3 is a three-manifold. The knot resides in M3 on the boundary and is
used to formulate the crucial boundary conditions for the instanton equations of
the gauge theory. These 5d instanton equations were first written in [11, 18]. At
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a formal level they turn out to be the ζ-instanton equations for a gauged Landau-
Ginzburg model whose target space is a space of complexified gauge connections on
M3 [9]. In the case whenM3 = R×C, with C a Riemann surface, the equations are
also the ζ-instanton equations for a gauged Landau-Ginzburg model whose target
space is a space of complexified gauge fields on M̃3 = C × R+. It is this latter
form which forms the background for the discussion of [7]. In either case, the knot
complex is the MSW complex for the Landau-Ginzburg theory.

When M5 = R× R× C × R+ we denote coordinates on the first two factors by
(x0, x1). We consider the case where the knot is in R3 (so C is just the complex
plane) and is furthermore presented as a tangle, i.e. an evolving set of points in the
complex plane, za(x1), a = 1, . . . n, as in Figure 40.

For any collection S of strands parallel to the x1 axis
• Solutions of the 5d instanton equation which do not depend on (x0, x1) will
give some vacuum data VS .

• Solutions of the 5d instanton equation which depend only on the com-
bination x1 cosµ + x0 sinµ will provide the spaces of solitons which can
interpolate between any two given vacua and thus web representations for
the vacuum data VS .

• Solutions of the 5d instanton equation with fan-like asymptotics in the
(x0, x1) plane will provide interior amplitudes βS and thus Theories TS .

If S is an empty collection, we expect the theory TS to be trivial.
Similarly, for any “supersymmetric interface” I, i.e. a time-independent bound-

ary condition for the 5d equations which involves a set of parallel strands S− for
x1 � −L and a set of parallel strands S+ for x1 � L

• Solutions of the 5d instanton equation which do not depend on time will
give Chan-Paton data EIj,j′ .

• Solutions of the 5d instanton equation with fan-like asymptotics in the
(x0, x1) plane will provide boundary amplitudes BI and thus an Interface
I[I] between Theories TS− and TS+ .

We can assume that the stretched link is approximated by a sequence of collec-
tions of strands Sa, starting and ending with the empty collection S0 = Sn = 0,
separated by interfaces Ia,a+1. The approximate ground states and instantons of
the knot homology complex will literally coincide with the chain complex of the
Interface I(Link) between the trivial Theory and itself, defined as the composition
of the Interfaces I[Ia,a+1]

I(Link) := I[I0,1]� · · ·� I[In−1,n] . (3.48)

Furthermore, if we allow the transverse position of the strands to evolve adiabati-
cally in between discrete events such as recombination of strands, according to some
profile Sa(x1), we expect the knot homology complex to coincide with the chain
complex of an Interface I(Link) which include the insertion of the corresponding
categorical parallel transport Interfaces:

I(Link) := I[I0,1]� I[TS1(x1)]� · · ·� I[TSn−1(x1)]� I[In−1,n] . (3.49)

We conjecture that the chain complexes so constructed define a knot homology
theory. The required double-grading comes about as follows: The Rij and Chan-
Paton data have the usual grading by F. The second grading comes from the fact
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that the relevant superpotential W is a Chern-Simons functional. In particular, it
is not single valued and dW can have interesting periods.
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