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THE ROLE OF THE HILBERT METRIC IN A CLASS OF
SINGULAR ELLIPTIC BOUNDARY VALUE PROBLEMS IN

CONVEX DOMAINS

DENIS SERRE

Abstract. In a recent paper [7], we were led to consider a distance over a bounded open
convex domain. It turns out to be the so-called Thompson metric, which is equivalent to the
Hilbert metric. It plays a key role in the analysis of existence and uniqueness of solutions to
a class of elliptic boundary-value problems that are singular at the boundary.

Introduction

Let Ω be a connected open set in Rn. If p ∈ Rn, we denote |p| its usual Euclidian
norm. The class of boundary value problems that we are interested in is

div(a(|∇w|)∇w) + F (|∇w|)
w

= 0 in Ω, (0.1)

w > 0 in Ω, (0.2)
w = 0 on ∂Ω. (0.3)

Hereabove, a is a smooth numerical even function, which satisfies the requirements
for ellipticity:

a(r) > 0, a(r) + ra′(r) > 0, ∀r > 0. (0.4)
We warn the reader that we do not assume a priori a uniform ellipticity ; it may
happen that the ratio

a(r)
a(r) + ra′(r)

tends either to 0 or to +∞ as r → +∞. For instance, we allow the principal part
to be the minimal surface operator, where a(r) = (1 + r2)−1/2, for which

a(r)
a(r) + ra′(r) = 1 + r2 → +∞.

We suppose that F is a smooth, non-negative function, and that
F (0) > 0. (0.5)

The lower order term in (0.1) therefore becomes singular at the boundary, where
w vanishes.

Notations. In the sequel, we denote b(r) = ra(r), so that a+ ra′ = b′. We define
a strictly increasing function

G(r) =
∫ r

0

sb′(s)
F (s) ds.

The inverse G−1 will be denoted H.

Math. classification: 35J75, 52A99.
Keywords: Elliptic PDEs, convex domain, Hilbert metric, singular BVP.
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Data. At first glance, it may look strange that neither the equation, nor the bound-
ary contain some explicit data ; both are “homogeneous”. Our data is nothing but
the domain itself. The assumption about Ω meets that in other works on non-
uniformly elliptic BVPs: it is a bounded convex domain in Rn.

Motivations. We came to this class of problems through the analysis of the two-
dimensional Riemann problem for the Euler system of a compressible flow, when
the gas obeys the so-called Chaplygin equation of state. This problem can be recast
as

div ∇w√
1 + |∇w|2

+ 2
w
√

1 + |∇w|2
= 0, (0.6)

which is (0.1) with

n = 2, a(r) = 1√
1 + r2

, F = 2a.

We first proved the existence and uniqueness (see [6]) for this problem whenever
Ω is uniformly convex, in the sense that the curvature is bounded away from zero
along the boundary. Later on, we removed the uniform assumption and proved the
existence for every convex bounded planar domain [7]. This improvement involves
an interior Lipschitz estimate of logw in terms of a special metric over Ω, for which
the boundary is a horizon. We shall show below that this distance is nothing but the
Hilbert metric dH , giving meanwhile a new and rather simple proof of the triangle
inequality.

It turns out that the very same BVP also governs those graphs x3 = w(x1, x2)
that are complete minimal surfaces in the 3-dimensional hyperbolic space H3, the
upper half-space in R3, equipped with the metric

ds2 = dx2
1 + dx2

2 + dx2
3

x2
3

,

of constant negative curvature. The existence of such minimal surfaces was stud-
ied by Anderson [1] in the parametric and the non-parametric cases, the latter
involving the graph of w. The non-parametric part of Anderson’s paper is however
incomplete, in that the author contents himself to establish L∞-bounds (by below
and above) and claims that it automatically implies regularity estimates in the inte-
rior. This claim is not true because the principal part of the PDE, the operator for
minimal surfaces, is not a priori uniformly elliptic. Uniform ellipticity requires the
knowledge of a prior Lipschitz estimate, which can not be overlooked. The same
flaw occurs in Lin’s paper [4].

We point out that in both of these motivations, the convexity of Ω is a neces-
sary condition for existence (and therefore a necessary and sufficient one). In the
Chaplygin Riemann problem, this convexity is guaranted by the analysis of the
propagation of shock waves. If Ω is not convex, a complete minimal surface in H3,
asymptotic to ∂Ω, exists1 as a current [1], but it is not a graph over Ω.

1This is the parametric part, by far the main one, of Anderson’s paper, on which we have no
doubt at all.
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Content of this paper. We start by showing in Section 1 the equality between
our (not so) new distance and the Hilbert metric in Ω.

Then we turn towards the class of BVPs (0.1, 0.2, 0.3). We show that essen-
tially the same strategy as the one designed in [7] works out under the rather mild
assumption that ∫ +∞

e−G(s) b
′(s)
F (s) ds <∞. (0.7)

Our main result is therefore

Theorem 0.1. — Let a, F be even smooth functions, satisfying (0.4,0.5,0.7).
Then, for every bounded convex domain Ω ⊂ Rd, there exists one and only one
function

w ∈ C(Ω) ∩ C∞(Ω)
solving the BVP (0.1,0.2,0.3).

In addition, logw is Lipschitz, with constant 1, with respect to the Hilbert metric
dH .

Of course, if a or F has only finite regularity, then w has only finite regularity.

1. A distance over a bounded convex domain

Let Ω be a non-void, bounded convex open domain in Rn. Given two points
p, q ∈ Ω, Ω − p contains a ball centered at the origin and is therefore absorbing.
Thus there exists some λ > 0 such that Ω − q ⊂ λ(Ω − p). If µ > λ, then also
Ω− q ⊂ µ(Ω− p), by convexity. Likewise, the infimum m(p, q) of all such numbers
satisfies the same inclusion, by continuity. Hence the set of these numbers is of the
form [m(p, q),+∞). Considering the volumes, we have

|Ω| = |Ω− q| 6 m(p, q)n|Ω− p| = m(p, q)n|Ω|,
which implies

m(p, q) > 1. (1.1)
The equality in (1.1) stands only if

Ω− q = Ω− p,
that is if p = q.

If r ∈ Ω is a third point, then
Ω− r ⊂ m(q, r)(Ω− q) ⊂ m(q, r)m(p, q)(Ω− p)

and therefore
m(p, r) 6 m(q, r)m(p, q).

All this shows that the logarithm of m is a non-negative function over Ω×Ω, which
vanishes only along the diagonal and satisfies the triangle inequality. In other words,
the function

dΩ(p, q) = logm(p, q) + logm(q, p)
is a distance over Ω. In our paper [7], we used the equivalent metric

d′Ω(p, q) = max{logm(p, q), logm(q, p)}.

We prove here that dΩ is nothing but the Hilbert distance dH over Ω (see [3]).
Let us recall the definition of the latter. If p, q ∈ Ω, let r, s be the intersection
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points of the line L passing through p and q, with the boundary ∂Ω ; we label the
points so that r, p, q, s are in this order along L. Then dH is the logarithm of a
cross-ratio :

dH(p, q) = log rq · ps
rp · qs

.

Our first result therefore reads

Proposition 1.1. — For every non-void, bounded convex open domain Ω ⊂
Rn, one has

dΩ ≡ dH . (1.2)

The equality (1.2) follows immediately from the

Lemma 1.2. — With the notation above, there holds

m(p, q) = rq

rp
. (1.3)

Proof. — Let u ∈ R be the barycentric coordinate of r on the line L, that is
r = up + (1 − u)q. Because r is exterior to (p, q), on the same side as p, we have
u > 1. Let us define θ = 1

u ∈ (0, 1). Because r is a boundary point of Ω, and Ω is
convex open, we have (1− θ)Ω + θr ⊂ Ω. This is equivalent to writing

Ω− q ⊂ u

u− 1(Ω− p),

which is the inequality 6 in (1.3).
Conversely, suppose that Ω− q ⊂ λ(Ω− p). Then we have Ω− q ⊂ λ(Ω− p) and

therefore r − q ∈ λ(Ω− p). This amounts to writing(
1 + u

λ

)
p− u

λ
q ∈ Ω,

but this is equivalent to
v 6 1 + u

λ
6 u,

where v is likewise the barycentric coordinate of s. The second inequality gives
λ > u

u−1 . This implies the inequality > in (1.3). �

Remarks 1.3. — This characterization of the Hilbert metric is related to the
construction of the Hilbert projective metric over the cone

C = {(t, tx) | t > 0 and x ∈ Ω},

see [8]. The proof above provides a much simpler proof of the triangle inequality
than the original one. For the classical proof, which involves projective geometry,
see the introductory article in Image des Mathématiques [5]. Lemma 1.2 also implies
that d′Ω is identical to the Thompson metric in Ω.

2. The strategy for existence and uniqueness to the BVP

Our first observation is that the PDE (0.1) is of the quasilinear form∑
i,j

aij(∇w)∂i∂jw +N(w,∇w) = 0,
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where the principal part is elliptic,

c(p)|ξ|2 6
∑
i,j

aij(p)ξiξj 6 C(p)|ξ|2, 0 < c(p) < C(p) <∞.

The coefficients aij involve the gradient of w, but not w itself. Finally the lower
order term N is non-increasing in w. Therefore the PDE satisfies the maximum
principle (MP).

The MP allows us to compare a sub-solution and a super-solution. A locally
Lipschitz function u : Ω → (0,+∞) is a sub-solution of (0.1) if it satisfies, in the
distributional sense,

div(a(|∇u|)∇u) + F (|∇u|)
u

> 0. (2.1)

It is a super-solution if it satisfies the opposite inequality 6 in (2.1). If in addition
u is continuous over Ω, we say that u is a super-solution of the BVP if it is a super-
solution of (0.1), and it satisfies u > 0 on ∂Ω. It is a sub-solution if it satisfies (2.1),
and u 6 0 over ∂Ω (but then this means u ≡ 0 on the boundary, because u > 0 in
the interior).

If u and v are a sub-solution and a super-solution respectively, of the BVP in
some domain Ω, then u 6 v in Ω. In particular, if w is a solution in Ω, then
u 6 w 6 v. This immediately implies the uniqueness part of Theorem 0.1.

The method for existence is based on the one hand on a continuation argument,
described in Section 5, and on the other hand on a priori estimates. The latter
must be robust enough to allow us to pass to the limit in a sequence of solutions.
To ensure the boundary condition, we shall use sub- and super-solution respectively
to construct barrier functions w± > 0, with w± ≡ 0 on the boundary. The fact
that w is clamped between w− and w+ implies the boundary condition. It also
ensures that w is positive and bounded in Ω. In order to pass to the limit in the
PDE, we need a precompactness property of ∇w in L∞loc(Ω). This will be given
by a C1,β

loc -regularity estimate for some β > 0 and the Ascoli–Arzela theorem. The
regularity is a well-known fact (see Gilbarg & Trudinger [2]) whenever the operator

L(p) =
∑
i,j

aij(p)∂i∂j

is uniformly elliptic. Since we have not assumed the latter property, it must come
as a consequence of the fact that p = ∇w takes its values in a compact subset of
Rn. In other words, we need an a priori estimate of ∇w in L∞loc(Ω).

We summarize below the tasks we are going to address:
• Construct a finite upper bound w+ of w, continuous up to the boundary,

where it satisfies w+ ≡ 0.
• Construct a lower bound w− > 0 of w, continuous up to the boundary,
where it satisfies w− ≡ 0.

• Find a Lipschitz estimate of w in Ω. This estimate may and will deteriorate
near the boundary, but it must be uniform on every compact subset of Ω.
This is where the Hilbert metric is at stake.

• Make all these estimates uniform with respect to some approximation.
Of course, the only tool at our disposal is the maximum principle.



110 Denis Serre

3. The barrier functions

We shall use repeatedly the fact that the PDE (0.1) is invariant under a scaling:
if z is a solution in some domain ω, then the function zµ(x) := 1

µz(µx) is again a
solution, in 1

µ ω.

3.1. The upper barrier. We write our convex domain as the intersection of slabs

Ω =
⋂

ν∈Sn−1

Πν , Πν = {x ∈ Rn |α−(ν) < x · ν < α+(ν)},

where we have of course α±(−ν) = −α∓(ν). Notice that ν 7→ α± is continuous.
Our upper bound will be given as the infimum of super-solutions. The building

block is the solution of the BVP in the interval (0, 1) :

Lemma 3.1 (1-D case.). — When n = 1 and the domain is (0, 1), then the BVP
admits a unique solution W .

We infer that the BVP in a slab Πν admits a solution, namely

Wν(x) = (α+(ν)− α−(ν))W
(
x · ν − α−(ν)
α+(ν)− α−(ν)

)
.

Because Ω ⊂ Πν and Wν is non-negative, in particular along ∂Ω, its restriction to
Ω is a super-solution of the BVP in Ω. Therefore the expected solution w satisfies
w 6Wν . This yields to our upper bound,

w(x) 6 w+(x) = inf
ν∈Sn−1

Wν(x).

The continuity of α±, plus the uniform continuity ofW , imply that w+ is continuous
over Ω. We point out that, because every y ∈ ∂Ω is a boundary point of some Πν ,
w+ vanishes on the boundary.

Proof. — We already know uniqueness. Using the reflexion x↔ 1− x, we infer
that W must be even: W (1 − x) = W (x). We anticipate that W is monotonous
over (0, 1

2 ) and write the PDE, now an ODE as

(b(W ′))′ + F (W ′)
W

= 0, W (0) = W ′(1
2) = 0.

We recall that b′ > 0, from ellipticity.
Let us define z = W ′ ◦W−1. Using W ′ = z(W ), we transform the ODE into

zb′(z) dz
dW

+ F (z)
W

= 0.

The latter ODE amounts to writing G(z) + logW = cst, from which we obtain
z = H(log c

W ) for some integrating factor c ∈ R.
Let us make temporarily the choice that c = 1 and consider a maximal solution

of the autonomous ODE W ′ = H(− logW ). We have
dW

H(− logW ) = dx.

Because of (0.7), we have ∫
0

ds

H(− log s) <∞.
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Therefore there exists a unique solution W0 of the Cauchy problem

W ′0 = H(− logW0), W0(0) = 0.

This W0 is increasing. Since the integral∫
0
e−G(s) b

′(s)
F (s) ds

is converging, we have ∫ e−G(0)
ds

H(− log s) <∞

and therefore W0 reaches the value e−G(0) at some finite x̄ > 0. Then W ′0(x̄) = 0.
Extending W0 it by parity, we obtain a solution of the BVP in the interval (0, 2x̄).
Then

W (t) = 1
2x̄W0(2x̄t)

defines the solution of the BVP over (0, 1). �

3.2. The lower barrier. The construction of the lower barrier does not make use
of the convexity. We begin with a building block:

Lemma 3.2. — There exists an ε > 0 such that the function Z(x) = ε
2 (1− |x|2)

be a sub-solution of the BVP in the unit ball B(0; 1).

Proof. — Since Z is positive in the ball, it suffices to check that Z satisfies (2.1).
This inequality writes

1
2(ε2 − t2)(b(t) + (n− 1)a(t)) 6 F (t), ∀t ∈ [0, ε].

Because a and b are non-negative, it is enough to have
ε2

2 (b(t) + (n− 1)a(t)) 6 F (t), ∀t ∈ [0, ε].

Let A and B be the upper bounds of a and b over [0, 1] respectively. If ε < 1, it is
enough to have

ε2

2 (B + (n− 1)A) 6 sup
t∈[0,ε]

F (t),

which is obviously true for ε > 0 small enough. �

By translation and scaling, we inherit a sub-solution of the BVP in any ball
B(x0; ρ) :

Zx0,ρ(x) = ρZ

(
x− x0

ρ

)
.

If B(x0; ρ) is contained in Ω, then w is a super-solution for the BVP in this ball,
and we infer w > Zx0,ρ. This leads us to our lower barrier function

w−(x) = sup{Zx0,ρ(x) |B(x0; ρ) ⊂ Ω}.

Because every x ∈ Ω is the center of some ball B ⊂ Ω, we have w− > 0 in Ω. On
an other hand, w− is continuous over Ω. Because Zx0,ρ is non-positive over the
boundary, the same is true for w−, which therefore vanishes identically over ∂Ω.
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4. The Lipschitz estimate

The main ingredient is the

Lemma 4.1. — The solution of the BVP (0.1,0.2,0.3) in a bounded convex open
domain Ω satisfies, if it exists

| logw(q)− logw(p)| 6 max{logm(p, q), logm(q, p)}, ∀p, q ∈ Ω. (4.1)
Consequently, logw is Lipschitz with constant at most 1, with respect to the Hilbert
metric.

Because the restriction of the Hilbert metric to a compact subset K ⊂ Ω is
equivalent to the Euclidian distance, we infer a Lipschitz estimate in the classical
sense, away from the boundary. Because minK w− > 0 and w+ is bounded, this
transfers into a local Lipchitz estimate of w:

Corollary 4.2. — For every compact subset K ⊂ Ω, the restriction w|K en-
joys an a priori estimate in the Lipschitz semi-norm supK |∇w|.

Proof. — Given p, q ∈ Ω, the function

x 7→ m(p, q)w
(

x

m(p, q) + p

)
is the solution of the BVP in the domain m(p, q)(Ω− p). Since the latter contains
Ω− q, it is also a super-solution in the domain Ω− q. It is therefore larger than or
equal to the solution w(x+ q) in the latter:

w(x+ q) 6 m(p, q)w
(

x

m(p, q) + p

)
, ∀x ∈ Ω− q.

Setting x = 0 in the inequality above, we derive
w(q) 6 m(p, q)w(p).

Exchanging the roles of p and q, we also have w(p) 6 m(q, p)w(q), whence (4.1). �

4.1. The best Lipschitz constant. Lemma 4.1 provides an upper bound for the
Lipschitz constant of logw with respect to the Hilbert metric:

cΩ := sup
x 6=y

| logw(y)− logw(x)|
dH(x, y) 6 1.

We may wander whether this bound is accurate or not. Remark that if O is a
boundary point and L is a ray emanating from O in Ω, then the restriction of dH
to L is logarithmic, in the sense that if x, y ∈ L tend to O, then

dH(x, y) = | log ty + log(TL − tx)− log tx − log(TL − ty)| ∼ | log ty − log tx|,
where t is the affine coordinate along L with origin O, and TL is the coordinate
or the other intersection point of L with ∂Ω. If the solution w admits a Hölder
singularity at a boundary point, of exponent α ∈ (0, 1], we deduce that cΩ > α.

One remarquable application of this principle is the following proposition.

Proposition 4.3. — Let the origin be a boundary point of ∂Ω, and denote C
the tangent cone at 0. Suppose that the BVP in the cone C admits a super-solution
of the form V+(x) = |x|v+

(
x
|x|

)
, which vanishes at the boundary. Then the BVP
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is solvable in the cone C, with a solution V (x) = |x|v
(
x
|x|

)
, and the solution in Ω

is asymptotic to V as x→ 0. In particular,

cΩ = 1.

We warn the reader that the super-solution V+ does not exist if ∂Ω is smooth
at the boundary. The proposition produces a homogeneous solution whenever the
cone C is contained in a circular cone of aperture < π

2 .
The fact that V is homogeneous of degree one is a consequence of the scaling

invariance of both C (the conical property) and the PDE, and the expected unique-
ness.

Proof. — Let w be the solution of the BVP in Ω, and recall that for every µ > 0,
the function

wµ(x) := 1
µ
w(µx)

is the solution of the BVP in the domain 1
µΩ. Let us list a few properties of the

sequence (wµ)µ>0 :
• For ε < η, one has the lower bound (maximum principle) wε > wη in 1

ηΩ.
This because 1

ηΩ ⊂ 1
εΩ.

• For ε < η, one has the Lipschitz estimate

| logwε(x)− logwε(y)| 6 dεH(x, y) 6 dηH(x, y), ∀x, y ∈ 1
η

Ω,

where we have denoted dηH the Hilbert distance in 1
ηΩ.

• By the maximum principle, wµ 6 V+ for every µ > 0.
The Lipschitz estimate ensures that the PDE remains uniformly elliptic in every
compact subdomain of the cone C. Therefore the theory of elliptic regularity applies:
every derivative Dβwµ remains bounded as µ→ 0+, on every compact subdomain
of C. The (monotonic) limit V = limwµ exists because of the bound V+, and is
again a solution of the PDE. In addition, it satisfies V µ = V , which means that it
is homogeneous of degree one. Because of the upper bound V 6 V+, we know that
V vanishes along the boundary, and is therefore a solution to the BVP in C.

Let us know select two points x, y on the same ray L, close to the origin. The
asymptotics above gives | logw(y)− logw(x)| ∼ | log |y| − log |x|| ∼ dH(x, y). This
implies cΩ > 1. With Lemma 4.1, we conclude that cΩ = 1. �

Another interesting situation is that of the equation

∆w + 1
w

= 0.

When n = 1, and therefore the domain is I = (0, `), the ODE can be integrated
by hand and we find u(x) ∼ C`x

√
−2 log x. This quasi-Lipschitz behaviour at the

boundary implies cI > 1, and therefore cI = 1.
The situation is significantly better for our fundamental example :

Proposition 4.4. — Consider the BVP for the equation (0.6). When Ω is a
disk (hence n = 2), we have cΩ = 1

2 .
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Proof. — By scaling, we may work in D = D(0; 1). Then

w(x) =
√

1− |x|2
2 ,

a rare case where the solution is known in close form. In particular, the Hölder
singularity of exponent 1

2 implies cΩ > 1
2 . On the other hand dH is given by

dH(x, y) = 2 log
(

1− x · y +
√
|y − x|2 − |x ∧ y|2

)
− log(1− |x|2)(1− |y|2).

Let us prove the converse inequality cΩ 6 1
2 . The inequality | logw(x)− logw(y)| 6

1
2dH(x, y) to prove is equivalent to

1− |x|2 6 1− x · y +
√
|y − x|2 − |x ∧ y|2.

It is implied by
(x · (y − x))2 + |x ∧ y|2 6 |y − x|2,

which is true because the left-hand side equals (x · (y − x))2 + |x ∧ (y − x)|2 =
|x|2|y − x|2, and on the other hand |x| < 1. �

We now show that the assumption made in Proposition 4.3 is always met in our
fundamental example. The cone C is a sector Sα of aperture α ∈ (0, π).

Proposition 4.5. — The BVP for the fundamental example (0.6) is solvable
in any planar sector Sα.

Corollary 4.6. — Let Ω be a planar open convex domain. Let us restrict
to the equation (0.6). If ∂Ω has a kink (a point at which ∂Ω has more than one
tangent), then

cΩ = 1.

Proof. — Let us work in polar coordinates. The sector is
Sα := {reiθ | θ ∈ (0, α)}.

The self-similar solution is written wα(x) = rA(θ). The boundary condition is
A(0) = A(α) = 0.

With ∇wα = A~er +A′~eθ, the ODE satisfied by θ 7→ A(θ) is

A√
1 +A2 +A′2

+
(

A′√
1 +A2 +A′2

)′
+ 2
A
√

1 +A2 +A′2
= 0,

that is
A(1 +A2)(A′′ +A) + 2(1 +A2 +A′2) = 0. (4.2)

The solutions of (4.2) may not be constant. This equation can indeed be integrated
once, into

A4(1 +A2 +A′2) = C(1 +A2)2, (4.3)
for some positive constant C. This autonomous ODE has the form A′2 = FC(A)
where FC is positive over (0, A∗) with

A∗ =
√

1
2

(
C +

√
C2 + 4C

)
.

The Cauchy problem
A′ =

√
FC(A), A(0) = 0
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admits a unique maximal solution AC on an interval [0, `], with

` =
∫ A∗

0

dA√
FC(A)

,

and we have A′C(`) = 0. The maximum principle tells us that at fixed x, the map
C 7→ AC(x) is increasing. In particular, C 7→ ` is increasing; obviously, it is also
continuous.

Let us compute the limits `(0) and `(+∞). We have

` =
∫ A∗

0

A2dA√
(1 +A2)(A∗2 −A2)(CA∗−2 +A2)

= A∗3
∫ 1

0

s2ds√
(1 +A∗2s2)(1− s2)(C +A∗4s2)

.

When C → 0+, one has A∗2 ∼
√
C and therefore

` ∼ C1/4
∫ 1

0

s2ds√
1− s4

→ 0,

whence `(0) = 0. When instead C → +∞, we have A∗2 ∼ C and

` =
∫ 1

0

s2ds√
(s2 +A∗−2)(1− s2)(s2 + CA∗−4)

→
∫ 1

0

ds√
1− s2

= π

2 .

Extending AC by parity, we obtain a solution AC of (4.3) vanishing at 0 and 2`,
where 2` ranges from 0 to π when C ∈ (0,+∞). Therefore, there exists a unique
C for which 2` = α. Then wα = rAC(θ) is the announced solution. �

5. Existence proof

So far, we have proved that if the solution w of the BVP in Ω exists, then
it enjoys a finite upper bound w+, a positive lower bound w−, and a Lipschitz
estimate over every compact subdomain K ⊂ Ω. This ensures that the linear
operator

∑
i,j aij(∇w)∂i∂j is uniformly elliptic on relatively compact subdomains.

From regularity theory [2], we deduce locally uniform estimates of derivatives ∂βw
of every order.

Our existence proof deals first with a modified problem, from which the singu-
larity at the boundary has been removed, and the a priori uniform ellipticity has
been restored.

5.1. Relaxation of the boundary condition. Let ε > 0 be given, we consider
the BVP formed by the PDE (0.1), together with the boundary condition

w = ε over ∂Ω. (5.1)
Because of the maximum principle, the solution wε must be unique and satisfy
wε > ε in Ω. We may therefore replace the singularity 1

w in (0.1) by a smooth
positive, decreasing function gε(w) which coincides with 1

w over (ε,+∞).
An upper barrier w+,ε can be constructed by the following procedure. For every

slab Πν containing Ω, we consider the function

zε,ν(x) = λW

(
x · ν − α

λ

)
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with the same W as provided by Lemma 3.1. The parameters are chosen so that
z ≡ ε on the boundary of the slab:

λ = α+(ν)− α−(ν)
1− 2s , α = 1− s

1− 2s α−(ν)− s

1− 2s α+(ν), s = s(ε) := W−1(ε).

Because zε,ν is a solution in Πν , it is a super-solution in Ω. Therefore our upper
barrier is

w+,ε = inf
ν∈Sn−1

zε,ν .

We point out that |∇zε,ν | 6W ′(s(ε)). This implies the same bound for w+,ε.
Let now ā be a smooth numerical function that coincides with a over [0,W ′(s(ε))],

such that r 7→ rā(r) is increasing and ā is constant over [1 + W ′(s(ε)),+∞). Let
σ ∈ [0, 1] be a parameter. Then the functions zε,ν is a super-solution of the modified,
uniformly elliptic PDE

div(ā(|∇w|)∇w) + σgε(w)F (|∇w|) = 0. (5.2)

We point out that zε,ν is actually a solution when σ = 1. The BVP (5.2,5.1) admits
therefore the upper barrier function w+,ε. Because a solution satisfies ε 6 w 6 w+,ε,
and since w+,ε = ε on the boundary, one infers that w|∂Ω = ε and the normal
derivative ∂νw is bounded by that of w+,ε, that is by W ′(s(ε)). Then, because a
PDE of the form above enjoys a maximum principle for derivatives, we find that
for any solution of (5.2,5.1), one has |∇w| 6W ′(s(ε)).

All this, together with Theorem 11.3 of [2], shows that the map T , defined by
w 7→ z = Tw if

div(ā(|∇w|)∇z) + σgε(w)F (|∇w|) = 0, z|∂Ω = ε

admits a fixed point wε in C1,β(Ω), which is a classical solution of (5.2,5.1). It
satisfies the expected bounds

ε 6 wε 6 w+,ε. (5.3)
These bounds ensure that wε is actually a solution of (0.1,5.1). We point out that
wε is unique.

5.2. Passage to the limit. We now prove that the wε’s satisfy uniform estimates.
On the one hand, the same rescaling as before can be used: if p, q ∈ Ω, and if
Ω− q ⊂ λ(Ω− p), then

x 7→ λwε

(x
λ

+ p
)

solves (5.2) in Ω− q, and is > λε > ε over ∂(Ω− q). By the MP, we deduce

wε(x+ q) 6 λwε
(x
λ

+ p
)
.

Setting x = 0 in the inequality above, we obtain

wε(q) 6 λwε(p).

This shows that logwε is Lipschitz with respect to the Hilbert metric, with Lipschitz
constant 6 1. This implies a Lipschitz estimate in the usual sense, over every
compact subdomain.

On the other hand, the same lower barrier w− applies to the modified BVP, and
the upper barrier w+,ε converges uniformly towards w+ as ε → 0+. By regularity
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theory, we therefore obtain uniform bounds for higher derivatives in every compact
subdomain.

By Ascoli–Arzela and a diagonal procedure, we may extract from (wε)ε>0 a
subsequence that converges in C1,β

loc (Ω) for some β > 0, to some limit function w.
We may pass to the limit in (0.1), so that w solves the PDE. On the other hand,
passing to the limit in w− 6 wε 6 w+,ε yields w− 6 w 6 w+. In particular,
w ∈ C(Ω) and w satisfies the boundary condition (0.3). This ends the proof of
Theorem 0.1.
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