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RECTIFIABILITY OF NON EUCLIDEAN PLANAR
SELF-CONTRACTED CURVES

ANTOINE LEMENANT

Abstract. We prove that any self-contracted curve in R2 endowed with a C2 and strictly
convex norm, has finite length. The proof follows from the study of the curve bisector of two
points in R2 for a general norm together with an adaptation of the argument used in [2].

1. Introduction

The concept of self-contracted curve was first introduced by Daniilidis, Ley and
Sabourau in [5, Definition 1.2]. For a given metric space (E, d) and a possibly
unbounded interval I of R, a map γ : I → E is called a self-contracted curve, if for
every [a, b] ⊂ I, the real-valued function

t 7→ d(γ(t), γ(b))
is non-increasing on [a, b]. Sometimes to emphasis on the used distance we will also
say d-self-contracted curve or ‖ · ‖-self-contracted curve when the distance comes
from a norm.

The origin of this definition comes from the fact that, in the Euclidean space
(Rn, | · |), any solution of the gradient descent of a proper convex fonction f : Rn →
R, i.e. a solution γ of the gradient system{

γ′(t) = −∇f(γ(t)) t > 0,
γ(0) = x0 ∈ Rn

(1.1)

is a self-contracted curve (actually it is enough for f to be quasiconvex, that is, its
sublevel sets to be convex).

One of the main question about solutions of (1.1), is whether or not bounded
solutions are of finite length. If f is analytic (and not necessarily convex) then
it follows from the famous Łojasiewicz inequality [6], while it fails for general C∞
functions [8, p. 12]. Now for a general convex function, the Łojasiewicz inequality
does not need to hold (see [1, Section 4.3]). However, bounded solutions have finite
length.

The latter was first proved by Manselli and Pucci in 1991 [7], but was then
rediscovered later by Daniilidis, Ley and Sabourau in [5] which focuses on the
following more general question, of purely metric nature:

Does any bounded self-contracted curve have finite length? (1.2)
In [5] it is proved that the answer is yes in a two dimensional Euclidean space.

It was then established in higher dimensions in [2], still in the Euclidean setting.
However, it is no more true in a general infinite dimensional Hilbert space.

Math. classification: 53A04, 37N40, 49J52, 49J53, 52A10, 65K10.
Keywords: Self-contracted curve, uniformly convex norm, rectifiable curve, self-expanded

curve, proximal algorithm.
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A natural question is whether the answer to (1.2) remains yes in a finite dimen-
sional space, when the metric space is not Euclidean anymore. In the recent paper
[3], it is proved that it holds true on a Riemannian manifold.

In this paper we prove that the answer to (1.2) is yes in R2 endowed with a
strictly convex C2 norm.

Theorem 1.1. — Let ‖ · ‖ be a C2 and strictly convex norm on R2, let I ⊂ R
be an interval and let γ : I → R2 be a ‖ · ‖-self-contracted curve. Then there exists
a constant C > 0 depending only on ‖ · ‖ such that

`(γ) 6 Cdiam(K(γ)) (1.3)
where `(γ) is the length of the curve, K(γ) is the closed convex hull of the support
of the curve γ, and diam(K) is the diameter of K. In particular, any bounded
‖ · ‖-self-contracted curve has finite length.

Notice that to establish the inequality (1.3), the norm which is used to compute
`(γ) or diam(K) does not really matter, since all the norms are equivalent on
R2. Actually, we will establish (1.3) with `(γ) and diam(K) computed using the
Euclidean norm on R2, denoted | · |. More precisely, our strategy is to reproduce
the Euclidean argument used in [2], in the simple case of dimension 2, and prove
that if γ is no more | · |-self-contracted but merely ‖ · ‖-self-contracted, then the
proof still works almost by the same way.

However, there are some notable differences. The main one concerns the starting
point of the proof, which consists, for any t0 < t1, of localizing the curve “after” t1
on one side of the perpendicular bisector of the segment [γ(t0), γ(t1)]. This follows
directly from the definition of being self-contracted. Indeed, for t0 < t1 < t, since
the function s 7→ d(γ(s), γ(t)) is non-increasing on [t0, t] we have

d(γ(t1), γ(t)) 6 d(γ(t0), γ(t))
which means that γ(t) is situated on one side of the bisector (or mediatrix)

M(γ(t0), γ(t1)) := {x ∈ R2 : d(γ(t0), x) = d(γ(t1), x)}.
For the Euclidean distance this yields a “separating line” for the curve after t0,

whose direction is orthogonal to γ(t0) − γ(t1). If the distance is not Euclidean
anymore, the line segment bisector is no longer perpendicular, and not even a line
anymore. However, if the distance is coming from a C2 and strictly convex norm,
we prove that the bisector is a curve which is asymptotic to a line at infinity,
whose direction is well identified: in a certain sense it is a direction dual to γ(t0)−
γ(t1). Moreover, the bisector stays close enough to the middle line having the same
direction. After noticing those facts, we are able to adapt the proof of [2] and this
is how we prove Theorem 1.1.

Let us finish this introduction with a little discussion about the assumptions of
our main theorem. First, we notice that, even if the argument in [2] works in any
dimension n, our adaptation for a general norm is stated for n = 2. The main reason
for this restriction comes from the curve bisector, which is a curve asymptotic to
a line in dimension 2, but becomes a surface in higher dimensions, which is not
asymptotic to a linear subspace anymore. Indeed, the restriction of the surface-
bisector to any subspace H of dimension 2, would be a curve asymptotic to a line,
but the direction of that asymptotic line may vary from the choice of H in a way
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that is difficult to control. Without any clearly defined asymptotic subspace for the
surface-bisector, it is not easy to find a good direction to use in the argument for
getting the key estimate leading to the result.

Secondly, we assumed C2 and strict convexity for the norm. The reason is,
again, due to the curve bisector. Indeed, without strict convexity one looses the
uniqueness of the center i.e for a given R > 0 and two points A,B, it may have
more than two points P which satisfies ‖P − A‖ = ‖P − B‖ = R. It could even
have an infinite number of those. This implies that the bisector is no more a curve
but some set of possibly higher Hausdorff dimension, and it is easy to see that this
set may not be asymptotic to a line at infinity. Therefore, the strict convexity is
needed to have a curve, and the C2 assumption is needed to show that this curve
is moreover asymptotic to a line at infinity. We do not know if the latter remains
true without the C2 assumption but only strict convexity.

In conclusion, our work can be seen as finding a general context which makes
the Euclidean argument in [2] still working, yielding some little restrictions (strict
convexity, dimension 2). We do not know if the result remains true for a more
general norm or in higher dimensions, but we believe that this, if true, would
require some completely alternative proof1.

1.1. Notation and terminology. In this paper we will work on R2 endowed with
the Euclidean norm |x| with scalar product 〈x, y〉. The Euclidean ball with center
x and radius R will be denoted by B(x,R) and SN−1 is the Euclidean unit sphere.
For v ∈ R2 we will denote by v⊥ the image of v the rotation of angle π

2 in the
anticlockwise direction.

Eventually, on this Euclidean space R2 we shall also consider another non Eu-
clidean norm that will be denoted by ‖ · ‖. The associated ball will be denoted by
B‖·‖(x, r) and the sphere for the norm ‖ · ‖ will then be denoted by ∂B‖·‖(x, r).

A curve is a mapping γ : I → R2, not necessarily continuous, from some interval
I ⊂ R. The length of a curve is the quantity

`(γ) := sup
{
m−1∑
i=0
|γ(ti)− γ(ti+1)|

}
,

where the supremum is taken over all finite increasing sequences t0 < t1 < · · · < tm
that lie in the interval I.

The mean width of a convex K ⊂ R2 is the quantity

W (K) = 1
2π

∫
S1
H1(Pu(K))du

where Pu is the orthogonal projection onto the real line in R2 directed by the vector
u ∈ S1, and H1 denotes the 1-dimensional Hausdorff measure. Although we shall
not use it in this paper, let us mention the following nice identity valid for any
compact and convex set K ⊂ R2,

W (K) = H
1(∂K)
π

.

1When the last version of this paper was sent to the editor, the author has been aware of a
recent preprint by E. Stepanov and Y. Teplitskaya where a positive answer to this question is
announced, using a different approach.
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It is also clear from the definition that

W (K) 6 diam(K).

If x, y ∈ R2 we will denote by [x, y] ⊂ R2 the segment between x and y.
A norm ‖ · ‖ is said to be C2 if x 7→ ‖x‖ is of class C2 on R2 \ {0}. This implies

that the sphere ∂B‖·‖(x, r) is a C2 manifold. A norm is said to be C2 and strictly
convex if, for any x ∈ R2 \{0} we have D2‖x‖ > 0 (in the sense of quadratic forms).
This implies that the ball B‖·‖(0, 1) is strictly convex in the geometrical sense, i.e.
for any couple of points x, y ∈ ∂B‖·‖(0, 1) we have [x, y] ∩ ∂B‖·‖(0, 1) = {x, y}. In
other words the segment [x, y] without its extremities x and y lies in the interior of
the ball B‖·‖(0, 1). This means that the sphere ∂B‖·‖(0, 1) contains no “flat-parts”.

2. Preliminaries about the curve bisector

Let ‖ · ‖ be a C2 and strictly convex norm on R2, and a, b ∈ R2 be any given
points. Then we focus on the curve bisector defined by

M(a, b) := {z ∈ R2 : ‖a− z‖ = ‖b− z‖}.

If the norm is Euclidean, it is well known thatM(a, b) is the line passing through
the middle point a+b

2 and perpendicular to b−a. But for a general norm, the curve
bisector may not be perpendicular and may even not be a line. However, it is not
difficult to see thatM(a, b) is always asymptotically converging to a line at infinity,
and the direction of that line is given by the dual vector to b− a (i.e. the vector on
the sphere B‖·‖(0,1) at which the tangent to the sphere has direction b− a). Figure
2.1 represents the curve bisector of two points for the norm ‖ · ‖4 in R2.

Figure 2.1. The curve bisector of the segment [A,B] for the norm
‖ · ‖4 is a curve which is asymptotic to a line at infinity, whose
direction is given by the point m on the sphere ∂B‖·‖4(0, 1) at
which the tangent to the sphere has the same direction as the
segment [A,B].
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To prove this, we shall need to consider the direction defined in the following
definition.

Definition 2.1 (Definition of Lx). — Let ‖·‖ be a C2 and strictly convex norm
on R2. For any x ∈ ∂B‖·‖(0, 1) we define the vectorial line “dual to x”, denoted
Lx, in the following way: there exists exactly two points y1, y2 ∈ ∂B‖·‖(0, 1) such
that the tangent line to ∂B‖·‖(0, 1) at point yi is directed by x. Then Lx is the line
passing through y1 and y2. If x 6= 0 and ‖x‖ 6= 1, we denote by Lx the line Lx/‖x‖.

Remark 2.2. — A geometrical way to find the yi mentioned in Definition 2.1
is as follows. Let Hx ⊂ R2 \ B‖·‖(0, 1) be a line directed by x. Then translate
this line in the direction x⊥ until it touches the sphere ∂B‖·‖(0, 1), i.e. consider
Hx + tx⊥ for t > 0, or t < 0, depending on the relative position of B‖·‖(0, 1)
with respect to Hx. Assume for simplicity that it is t > 0 and find a first t0 for
which Hx + t0x

⊥ ∩ B‖·‖(0, 1) 6= ∅. Since the norm is C2 and strictly convex, the
touching point is unique. This point is one of the yi, assume it is y1. Then, keep
on moving Hx in the same direction x⊥. There will be a last time t1 > t0 for which
Hx + tx⊥ ∩ B‖·‖(0, 1) 6= ∅ for all t ∈ (t0, t1), and Hx + tx⊥ ∩ B‖·‖(0, 1) = ∅ for all
t > t1. Then, still using the C2 and strictly convex property of the norm, it follows
that Hx + t1x

⊥ ∩ B‖·‖(0, 1) consists of a unique point, which by symmetry of the
ball with respect to the origin, must be −y1. For example, in Figure 1, the line
passing through the origin is LB−A = LA−B .

Remark 2.3. — For all x ∈ ∂B‖·‖(0, 1), let α(x) ∈ [0, π2 ] be the smallest angle
between the two lines Lx and Rx. Then it is easy to see that

π

2 > inf
x∈∂B‖·‖(0,1)

α(x) =: α0 > 0.

Indeed, the infimum is actually a minimum, and it cannot be zero because the
origin lies in the interior of the ball. Roughly speaking, the angle α0 quantifies
how far the ball for ‖ · ‖ is from being the Euclidean ball, in the sense of how the
tangent line to the sphere can be far from making an angle of π

2 with the radius.
Another way to define α0 is as follows: for every x ∈ ∂B‖·‖(0, 1) let νx be outer
unit normal vector to ∂B‖·‖(0, 1) at point x. Then α0 is the unique real number in
[0, π2 ] solution to

sin(α0) = inf
x∈∂B‖·‖(0,1)

〈νx,
x

|x|
〉. (2.1)

The following proposition says that M(a, b) is asymptotic to the line

L(a, b) := b+ a

2 + Lb−a (2.2)

at infinity.

Proposition 2.4. — Let ‖ · ‖ be a C2 and strictly convex norm on R2. Then
for every ε > 0 there exists R > 0 such that for all couple of points a, b ∈ R2

satisfying a 6= b and ‖b− a‖ = 1,

sup{dist(z, L(a, b)) : z ∈M(a, b) \B(a,R)} 6 ε,

where L(a, b) is defined in (2.2), and dist is the Euclidean distance.
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Proof. — Let a, b ∈ R2 be satisfying a 6= b and ‖b−a‖ = 1, and let zR ∈M(a, b)
be such that ‖zR − a‖ = R → +∞. Assume for simplicity that zR stays in one of
the half planes delimited by the line a+ (b− a)R. Then it is easy to see that zR−a

R

and zR−b
R both converge to the same direction w ∈ ∂B‖·‖(0, 1), the one directing

the line Lb−a. To see this, we let Rn be a subsequence making wn := zRn−a
Rn

and
w′n := zRn−b

Rn
converging on the compact set ∂B‖·‖(0, 1) to some w and w′. We

actually have that w = w′ because

‖wn − w′n‖ = ‖b− a‖/Rn = 1/Rn → 0.

Now we claim that w is directing the line Lx, where x = b − a. To see this, it
is enough showing that the tangent line to ∂B‖·‖(0, 1) at point w is directed by
x. This follows from the fact that, since ∂B‖·‖(0, 1) is a C2 manifold, the rescaled
secants (wn−w′n)/‖wn−w′n‖, which is nothing but a− b, converges to the tangent
line to ∂B‖·‖(0, 1) at the point w.

Now to prove the proposition, we need to go one order further, namely use a C2

argument. For this purpose, we adopt the following point of view: let a, b ∈ R2 be
such that ‖a− b‖ = 1 and let v = b− a the direction of the segment [a, b]. For all
t ∈ R, we denote by Ht := (0, t) + Rv the line directed by v in R2, of height t. Let
t0 > 0 be the maximum t such that Ht∩B‖·‖(0,1) 6= ∅. Let also at and bt be the two
points of Ht ∩ ∂B‖·‖(0, 1), for t ∈ (−t0, t0). Then for any t ∈ (−t0, t0), it is clear
that the origin lies on the curve bisector M(at, bt) (see Figure 2.2). Actually, by
using the rescaling (bt − at)/‖bt − at‖ we get this way a complete parametrization
on (−t0, t0) of M(0, v), the curve bisector of a the segment of unit length directed
by v starting from the origin (which is the same as M(a, b), after translation to the
origin).

Moreover, when t converges to −t0 or t0, the points at and bt converge to some
points −y and y on the sphere ∂B‖·‖(0, 1), the ones at which the tangent line to
∂B‖·‖(0, 1) is directed by v. The line passing through −y and y is exactly Lv.

Next, for any R > 1
2 , there exists a unique tR ∈ (−t0, 0) such that 1

‖atR−btR‖
= R.

Therefore, if zR ∈M(0, v) is such that ‖zR‖ = R,

dist(zR, Lv) 6 R|mtR − ltR |, (2.3)

where mt = (at + bt)/2 is the middle point of the segment [at, bt], and lt is the
intersecting point of the two segments [0,−y] and [at, bt] (see Figure 2.2).

Now, we claim that, when |at − bt| → 0,

|mt − lt| 6 C|at − bt|2 + o(|at − bt|2), (2.4)

for some C > 0 (depending only on ‖ · ‖). This is enough to conclude because
returning to (2.3) we get, using that ‖atR − btR‖ = 1

R ,

dist(zR, L(0, v)) 6 R|mtR − ltR | 6 C ′
1
R
−→

R→+∞
0.

Now to prove (2.4), we work locally around the point −y ∈ ∂B‖·‖(0, 1). Let
T−y be the tangent line at point −y. Since the norm is C2 and strictly convex,
in a certain well chosen coordinate system, the sphere ∂B‖·‖(0, 1) almost coïncides
with the graph of s 7→ As2 for some A > 0, up to some error of second order.
Consequently, in that coordinate system, the segments [at−bt] which have the same
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b b

0

Ht
at bt

b
mt

b

−y

1
1

B‖·‖(0, 1)

ν

b
lt

Figure 2.2. The distance from M(at, bt) to Lb−a is the same as
the distance from mt to Lb−a (the line passing through 0 and −y),
which is less than the distance between mt and lt.

direction as T−y, almost coïncides with the segment [−xs, xs] where xs = (s,As2),
again up to some error of second order. On the other hand the angle θ between
the radius [0,−y] of the ball B‖·‖(0, 1) and the vertical line orthogonal to T−y, is
at most π

2 − α0, where α0 is defined in Remark 2.3 (see Figure 2.3).

b

−y

[0,−y]

T−y

θ ≤ π
2 − α0

As2

−xs xs

s

∂B‖·‖(0, 1)

b b bb
at bt

Figure 2.3. Situation in the proof of (2.4).

We deduce that |mt − lt| 6 |A sin(θ)s2|+ o(s2) = Cs2 + o(s2), as desired. This
achieves the proof of (2.4), and of the proposition. �

Definition 2.5. — For any x ∈ R2 and v ∈ R2 with ‖v‖ = 1 we denote by
Qv(x) the projection of x ∈ R2 on Rv parallely to Lv (i.e. the v component of x
written in the basis (v, v′) where v′ is a vector director for Lv).

The next proposition quantifies the maximum distance between M(a, b) and the
line L(a, b).
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Proposition 2.6. — Let ‖ · ‖ be a C1 and strictly convex norm on R2. There
exists 0 < κ < 1/2 depending on the norm ‖ · ‖, such that for any given a, b ∈ R2,
the curve bisector M(a, b) is contained in the strip Sκ(a, b) defined as

Sκ(a, b) := {x ∈ R2 : |Q b−a
‖b−a‖

(x− a+ b

2 )| 6 κ‖b− a‖}.

Proof. — We first prove that for all a, b in R2, M(a, b) ⊆ S1/2(a, b). Let a, b be
given. We can assume that ‖b− a‖ = 1 and we denote by v = b− a. Adopting the
same notation at, bt,mt as in the proof of Proposition 2.4, we see that

sup{|Qv(x− v/2)| : x ∈M(0, v)} = sup
t∈[−t0,t0]

|Qv(mt)|
‖bt − at‖

.

By convexity of the ball B‖·‖(0,1) we have Lv ∩ [at, bt] 6= ∅ for all |t| 6 t0, from
which we find that

sup
t∈[−t0,t0]

|Qv(mt)|
‖bt − at‖

6 1/2,

as claimed.
Now to pass from 1/2 to some κ < 1/2 we argue by contradiction. Assuming

the proposition is false, we can find an := atn , bn := btn , such that

|Qv(mn)|
‖bn − an‖

−→
n→+∞

1/2, (2.5)

where mn := (an + bn)/2. According to Proposition 2.4, we can assume that

inf
n
‖an − bn‖ > δ, (2.6)

for some δ > 0. Indeed, let R > 0 be given by Proposition 2.4 for ε := 1/4 and
let δ := 1/R. Then, for all at and bt satifying r := ‖at − bt‖ 6 δ, we have that
‖at/r‖ = 1/r > 1/δ = R thus (0, 0) ∈M(at/r, bt/r) \B(at/r,R) and therefore the
conclusion of Proposition 2.4 says

dist((0, 0), L(at/r, bt/r)) 6 ε = 1
4 .

In particular this implies |Qv(at+bt2 )|/‖bt − at‖ 6 1/4. Hence, our sequence of an
and bn satisfying (2.5) must satisfy ‖an − bn‖ > δ for n large enough. Now by
compactness of ∂B‖·‖(0, 1) we can assume that an → a = at0 and bn → b = bt0
satisfying ‖a− b‖ > δ. By (2.5) we also have that

|Qv(m)|
‖b− a‖

= 1/2,

where m = (a + b)/2. But this implies that Lv ∩ [a, b] is either the point a or the
point b, which is a contradiction because, by strict convexity of the ball B, the line
Lv must meet the segment [a, b] only by its interior. This finishes the proof of the
Proposition. �
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3. Rectifiability of ‖ · ‖-SC-curves

In the sequel if γ is a ‖·‖-self-contracted curve, we denote by Γ := γ(I) the image
of the curve, and for all x ∈ Γ we introduce the “piece of curve after x” namely,

Γ(x) := {y ∈ Γ : x � y},
where � denotes the order on the curve given by its parameterization. We will also
denote by Ω(x) the convexe hull of Γ(x).

We start with a first lemma about the maximum aperture of the angle between
y′ − x0 and y− x0 when x0, y, y

′ are all lying on Γ with y and y′ after x0. Namely,
for an Euclidean self-contracted-curve, it is easy to see that whenever x0, y, y

′ ∈ Γ
are satisfying x0 � y � y′ we have

〈y − x0, y
′ − x0〉 > 0.

The way this is proved in [2] is as follows. From the self-contracted property we
infer that

|y′ − x0| > |y′ − y|.
Thus writing y′ − y = (y′ − x0) + x0 − y and squaring the estimates we get

|y′ − x0|2 > |y′ − x0|2 + |y − x0|2 − 2〈y′ − x0, y − x0〉
which yields

〈y′ − x0, y − x0〉 > 0.
For a general norm which is no more Euclidean, we get a similar estimate from

a different argument.

Lemma 3.1. — Let ‖ · ‖ be a C2 and strictly convex norm on R2. Let α0 be the
constant of Remark 2.3 and let γ : I → R2 be a ‖ · ‖-self-contracted curve. Then
for every x0, y, y

′ ∈ Γ satisfying x0 � y � y′ we have〈 y − x0

|y − x0|
,
y′ − x0

|y′ − x0|
〉
> − cos(α0). (3.1)

Proof. — The argument is purely geometric. Let x0, y, y
′ ∈ Γ satisfying x0 �

y � y′. The self contracting property yields
‖y′ − x0‖ > ‖y′ − y‖

which means that x0 6∈ B‖·‖(y′, ‖y − y′‖). Hence, assuming y′ = 0 and ‖y‖ = 1,
to find a lower bound for the left-hand side of (3.1) we can consider the following
problem, denoting B := B‖·‖(0, 1), and fixing y ∈ ∂B,

inf
x∈R2\B

〈 y − x
|y − x|

,
−x
|x|
〉
. (3.2)

To solve this problem, we first prove that it is equivalent to take the infimum in
x ∈ ∂B. Indeed, let us define

ϕ(x) := 〈 x− y
|y − x|

,
x

|x|
〉

and consider the function f of the real variable t > 0 defined by f(t) = ϕ(tx). A
simple computation shows that d

dt |y − tx| =
〈tx−y,x〉
|y−tx| and d

dt 〈tx− y, x〉 = |x|2 thus

f ′(t) = |x|
2|y − tx|2 − 〈tx− y, x〉2

|x||y − tx|3
> 0,
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due to the Cauchy-Schwarz inequality. This implies that t 7→ ϕ(tx) is non decreasing
in t and the infimum in (3.2) is the same as:

inf
x∈∂B

〈 x− y
|y − x|

,
x

|x|
〉
. (3.3)

But now it is easy to conclude using the convexity of B. Indeed, for a given x ∈ ∂B,
let νx be the unit outer normal vector to ∂B at point x. Then by convexity of B,
since y ∈ ∂B we must have

〈x− y, νx〉 > 0,
and by definition of α0 we deduce that〈 x− y

|y − x|
,
x

|x|
〉
> − cos(α0). �

We are now ready to prove the main result of this paper.
Proof of Theorem 1.1. — We use the same notation ≺, Γ, Γ(x), Ω(x) as before.

The begining of the proof follows essentially the proof of [2, Theorem 3.3] which
is divided into several steps. Although the first two steps are very close to the
Euclidean situation, we write here the full detail.

The first step consists in first noticing that to prove the theorem, it is enough
finding some c0 > 0 such that for any pair of points x, x′ ∈ Γ with x′ � x it holds

W (Ω(x)) + c0|x− x′| 6W (Ω(x′)) (3.4)
(this is Claim 1 of [2, Theorem 3.3]).

Indeed, letting t0 < t1 . . . < tm be any increasing sequence in I, and set xi :=
γ(ti). If (3.4) holds, then

m−1∑
i=0
|γ(ti+1)− γ(ti)| =

m−1∑
i=0
|xi+1 − xi| 6

1
c0

m−1∑
i=0

(
W (Ω(xi)−W (Ω(xi+1))

)
= 1
c0

(W (Ω(x0))−W (Ω(xm))) 6 1
c0
W (Ω(x0)),

since the mean width W (H) is a nondecreasing function of H (the variable H is
ordered via the set inclusion). Taking the supremum over all choices of t0 < t1 . . . <
tm in I we obtain (1.3) for C = 1/c0.

Therefore, the theorem will be proved, if we show that (3.4) holds for some
constant c0 > 0. Before we proceed, we introduce some extra notation similar to
the ones of [2] but modified with the constant κ. Indeed, let κ be the constant
given by Proposition 2.6 depending only on ‖ · ‖ and let λ := 1

2 − κ > 0. Let x, x′
be fixed in Γ with x′ ≺ x. We set (see Figure 3.1)

v0 := x′ − x
|x′ − x|

and x0 := x′ − v0
λ

2 |x− x
′|. (3.5)

Let us also set

ξ0(y) = y − x0

|y − x0|
∈ S1, for any y ∈ Γ(x). (3.6)

Notice that x0, v0 and ξ0(y) depend on the points x, x′, while the desired constant
c0 does not (may depend only on ‖ · ‖). To determine c0, we shall again transform
the problem into another one (similar to Claim 2 of [2, Theorem 3.3]).
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Let us assume that there exists some constants δ > 0 and τ > 0 (depending only
on ‖ · ‖), such that for all x, x′ in Γ with x′ ≺ x (and for x0, v0 defined by (3.5)),
there exists v̄ ∈ S1 such that the following two properties hold:

〈v̄, v0〉 > τ (3.7)〈
v, ξ0(y)

〉
6 −δ for all y ∈ Γ(x). (3.8)

Then (3.4) holds true (and consequently (1.3) follows).
This is a slight modification of Claim 2 of [2, Theorem 3.3]). To prove the latter,

assume that such constants δ, τ , and a vector v̄ exist, so that (3.7) and (3.8) holds.
Up to change δ into τ/2 if necessay, we may assume that δ 6 τ/2. Set

V :=
{
v ∈ S1 ; |v − v| 6 δ

}
.

From (3.8) we get
〈v, y − x0〉 6 0, for all v ∈ V and y ∈ Ω(x). (3.9)

Let us now assume that x0 is the origin. Recall that, for v ∈ R2, Pv denotes
the orthogonal projection onto the line Rv. Observe that Ω(x′) contains the convex
hull of Ω(x) ∪ [x, x′], whence

Pv(Ω(x)) ⊂ Pv(Ω(x′)).
In particular,

H1(Pv(Ω(x))) 6 H1(Pv(Ω(x′))) for v ∈ Sn−1, (3.10)
Then (3.9) says that for all directions v in V we have

supPv(Ω(x)) 6 0 < Pv(x′) 6 supPv(Ω(x′))
(in the above expression we have identified a point on the real line Rv with its
coordinate on that line. Let us also recall that we assumed the point x0 to be the
origin).

Now for every v ∈ V we have
〈v, v0〉 = 〈v̄, v0〉+ 〈v − v̄, v0〉 > τ − |v0||v − v̄| > τ/2 (3.11)

because δ 6 τ/2. This gives a lower bound for the length of the projected segment
[x0, x

′] onto Rv. Precisely, recalling that

|x0 − x′| =
λ

2 |x− x
′|,

we get

Pv(x′) >
λτ

4 |x− x
′|.

This yields

H1(Pv(Ω(x))) + λτ

4 |x− x
′| 6 H1(Pv(Ω(x′))) for v ∈ V . (3.12)

Integrating (3.12) for v ∈ V and (3.10) for v ∈ S1\V , and summing up the resulting
inequalities we obtain (3.4).

Consequently, our next goal is to determine δ > 0 and τ > 0 so that (3.7) and
(3.8) hold.

Here comes the point where the proof slightly differs from [2, Theorem 3.3] and
where the preliminary section about the curve bisector plays a role. First we notice
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that from the self-contracted property of the curve, the set Γ(x) lies only on one
side of the curve bisector M(x, x′) (the one containing x). On the other hand by
applying Proposition 2.6, we know that M(x, x′) ⊂ Sκ(x, x′) (see Proposition 2.6
for the definition of Sκ(x, x′)). Let w be a vector parallel to Lv0 and let ν ∈ S1 the
vector orthogonal to it pointing in the opposite direction with respect to Γ(x).

b b

x x′

Γ(x)

b

x0

v0

κ

λ

Sκ(x, x
′)

M(x, x′)

ν

Lv0 +
x+x′

2

w

Figure 3.1. Γ(x) lies on one side of the curve bisector M(x, x′)
which is contained in the strip Sκ(x, x′).

Then it holds, thanks to our definition of x0 in correspondance to the width of
Sκ,

〈y − x0, ν〉 6 −
λ

2 6 0 ∀y ∈ Γ(x). (3.13)
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Moreover, the angle between ν and v0 can be estimated by the constant α0
defined in Remark 2.3, which yields

〈ν, v0〉 > cos(π2 − α0) =: τ1 > 0.

The vector ν is very close to satisfy the required conditions (3.7) and (3.8).
Actually, as already used in [2], the desired vector v̄ will be constructed as a little
perturbation of ν, precisely, of the form

νε := ν + εν⊥

|ν + εν⊥|
for some ε > 0 small, to be chosen later.

Let us check first that for any ε 6 τ1/6, it holds
〈νε, v0〉 > τ1/2

so that condition (3.7) would be satisfied for any of those νε, with τ = τ1/2. Indeed,
using the inequality

√
1 + t 6 1 + t

2 , we obtain

|ν − νε|2 = 1
1 + ε2 [(

√
1 + ε2 − 1)2 + ε2] 6 1

2ε
4 + ε2

which yields, for ε 6 1,
|ν − νε| 6 3ε. (3.14)

Consequently,
〈νε, v0〉 = 〈ν, v0〉+ 〈νε − ν, v0〉 > τ1 − |ν − νε| > τ1/2

when 3ε 6 τ1/2.
Now it remains to find ε 6 τ1/6 that would moreover make νε satisfying an

inequality like (3.8). To do so, we decompose the half space
H := {y∈ R2 : Pν(y) 6 0}= {y ∈ R2 : 〈ξ0(y), ν〉 6 0}

in two different regions. Let
H1 := {y∈ R2 : 〈ξ0(y), ν〉 6 −2µ}

and
H2 := {y∈ R2 : −2µ < 〈ξ0(y), ν〉 6 0},

for some µ > 0 that will be chosen later. Observe that H is a half-space, while H1
and H2 are angular sectors, whose aperture are related to µ as showed in Figure
3.2.

Notice also that, by (3.14), if ε 6 min(τ1/6, µ/3), then
for all y ∈ H1, 〈ξ0(y), νε〉 6 〈ξ0(y), ν〉+ |ν − νε| 6 −µ, (3.15)

as desired, and we only need to take care of H2. For this purpose, we furthermore
decompose H2 itself in the two regions,

Hµ := H2 ∩B(x0, 1)
H ′µ := H2 \Hµ.

We know from (3.13) that for all y ∈ Hµ,

〈ξ0(y), ν〉 = 〈 y − x0

|y − x0|
, ν〉 6 − λ

2|y − x0|
6 −λ2 .
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ν

H2

H2

H1

arcsin(2µ)

b
x0

Figure 3.2. The regions H1 ∪H2 = H.

Therefore, if ε 6 min(α0/6, µ/3, λ/12) then (3.15) holds and moreover,

〈ξ0(y), νε〉 6 〈ξ0(y), ν〉+ |ν − νε| 6 −
λ

4 , for all y ∈ Hµ.

It remains finally to consider y ∈ H ′µ. For this we may assume that 2µ 6 1
2 so that

H ′µ is divided in two connected components, one denoted H+
µ lying in the upper

half-space {x : 〈x, v⊥0 〉 > 0} and another one denoted H−µ lying in the other part
{x : 〈x, v⊥0 〉 6 0}. Now for µ ∈ (0, 1

2 ) let us define the quantity

βµ := sup{〈ξ0(x), ξ0(y)〉 : x ∈ H+
µ and y ∈ H−µ }.

It is clear that βµ → −1 when µ goes to 0. Therefore, since α0 > 0, there exists
µ > 0 small enough (depending only on α0), such that βµ < − cos(α0). By applying
Lemma 3.1, we infer that the following alternative holds

Γ(x) ∩H ′µ ⊂ H+
µ or Γ(x) ∩H ′µ ⊂ H−µ .

Next, we set
ε0 = min(α0/6, µ/3, λ/12).

In the first case (i.e. when Γ(x) ∩H ′µ ⊂ H+
µ ) we define

ν̄ := ν−ε0

and in the second case (i.e. when Γ(x) ∩H ′µ ⊂ H−µ ) we define

ν̄ := νε0 .
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We finally check that this choice suit our purposes. Indeed, it is not difficult to see
that

sup
y∈H+

µ

〈
ξ0(y), v0 − ε0v

⊥
0

|v0 − ε0v⊥0 |

〉
= cos

(π
2 + θ

)
,

where θ is the angle between ν and ν−ε0 (see Figure 3.3).

b

ε0

ν

ν−ε0

B(x0, 1)

x0

H+
µ

H−
µ

b y

H1

θ

Figure 3.3. The minimum angle between y − x0 and ν−ε0 for
y ∈ H+

µ is achieved when y − x0 ∈ ν⊥.

This yields

sup
y∈H+

µ

〈
ξ0(y), v0 − ε0v

⊥
0

|v0 − ε0v⊥0 |

〉
= − ε0√

1 + ε0
6 −ε0

2 ,

provided that ε0 6 1.
Gathering all the estimates together, we have found some ν̄ satisfying

sup
y∈Γ(x)

〈ξ0(y), ν̄〉 6 −τ,

with τ = min(µ, λ4 ,
ε0
2 ), and this finishes the proof of the Theorem. �
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