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POLISH GROUPS AND BAIRE CATEGORY METHODS

JULIEN MELLERAY

Abstract. This article is a slightly modified version of the author’s habilitation thesis,
presenting his work on topics related to Polish groups, Baire category methods and metric
model theory. Nearly all results presented are not new, though some arguments are. Among
new results, we show that, for any countably infinite group Γ, all conjugacy classes in the
space of actions of Γ on the Urysohn space are meager; and that the group of bounded
isometries of the Urysohn space, endowed with the topology of uniform convergence, is path-
connected.
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1. Introduction

The present article is a slightly modified version of the author’s habilitation
thesis; the first aim of such a thesis is to serve as an introduction to the author’s
work and domains of interest. In their current form, my hope is that these notes
may be useful as an introduction to some of the uses of Baire category methods
and ideas inspired by model theory.

When I first learned about the Baire category theorem, I thought it was re-
markable that such a simple statement, with such a simple demonstration, could
be used to establish the existence of apparently complicated mathematical objects.
But that, to me, is not the main interest of Baire category notions; they are also
particularly useful for instance as substitutes for measure-theoretic concepts in con-
texts where no natural measure is present. This phenomenon is particularly striking
when one studies properties of Polish groups, which are the main subject of inter-
est of this memoir. These groups appear in many places: infinite combinatorics,
functional analysis, topological dynamics, ergodic theory... Isometry groups, home-
omorphism groups, permutation groups can often be endowed with a Polish group

Math. classification: 22A05, 54E52, 22F50, 54H20, 03E15.
Keywords: Polish groups, automorphism groups, Baire category, topological dynamics, mini-

mal homeomorphisms.
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structure and Baire category, or more generally descriptive-set-theoretic methods
prove useful.

In the first section, we recall some definitions and concepts of Baire category
theory, then present a panorama of Polish groups; we also discuss an interesting
example of a group which (unfortunately?) cannot be endowed with a Polish group
structure.

Next, we discuss the Urysohn space U and some of its siblings; this space,
built by Urysohn in 1924, is characterized by the fact that it is both universal
(it contains an isometric copy of any separable metric space) and homogeneous
(any isometry between finite subspaces extends to an isometry of the whole space).
These properties make the isometry group of U an interesting and rich object,
for instance it contains an isomorphic copy of any Polish group. These notions
of homogeneity and universality make sense in a variety of contexts and provide
interesting problems. Before moving on to some of these, we discuss isometric
embeddings of U into Banach spaces, which are surprisingly rigid: Holmes proved
that there is essentially only one way of embedding U isometrically into a normed
vector space, as soon as one has decided which point gets mapped to 0. We will
investigate which spaces share this rigidity property.

Then we move on to actions of countable groups on some homogeneous struc-
tures, mainly the separable Hilbert space, the standard atomless probability al-
gebra, and the Urysohn space. We study Baire category in the space of actions
of some countable group Γ on one of these structures; this space has a natural
Polish topology, and understanding generic properties of isometric actions, unitary
representations and measure-preserving actions of countable groups also has some
consequences on the structure of the ambient Polish group. This is a classic theme
of research in ergodic theory, originally considered by Halmos in the case when the
acting group is Z and much-studied since.

The last section, which is also the longest, bears the title “First order logic and
Polish groups”. This section actually contains little (or no?) logic, but the language
and notions of first-order logic, and its metric avatar sometimes called “metric model
theory”, play a crucial role. Wittgenstein famously wrote that “the limits of my
language are the limits of my world”; the limits of my language were pushed when I
learned about metric model theory, and consequently the limits of my mathematical
world were redefined by this new language. My hope is to convince the reader,
whom I imagine to be somewhat skeptical, of the interest of considering Polish
groups using a point of view influenced by model theory. It is certainly not new
that this interaction is fruitful and natural in the context of automorphism groups
of countable structures, which are exactly the closed subgroups of the permutation
group of the integers; but it is only more recently that it appeared that model
theory was relevant to the study of general Polish groups, and I believe some of the
work presented here played a part in this realization.

I chose to use a relatively informal writing style, and to present few complete
proofs; often a sketch of proof is proposed, sometimes a complete argument is
given when it seems particularly enlightening to me or is not easily found in the
literature. I tried to make this text accessible and interesting for a reader who is
not a specialist of Polish groups; I hope that the experts will nevertheless find some
food for thought.
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2. Baire category

2.1. The basics of Baire category. We begin by recalling the statement of the
Baire category theorem.

Theorem 2.1 (Baire). — Let X be a completely metrizable topological space,
and (On)n<ω be a countable family of dense open subsets of X. Then the intersec-
tion

⋂
n<ω On is dense in X.

Definition 2.2. — Let X be a topological space. A subset of X is meager if it
is contained in a countable union of closed sets, each of which has empty interior.
A subset is comeager, or generic, if it contains a countable intersection of dense
open sets.

Thus, the Baire category theorem is the assertion that comeager subsets of com-
pletely metrizable spaces are dense. Countable intersections of open sets are called
Gδ sets; countable unions of closed sets are called Fσ sets. It is important to keep
in mind that Baire’s theorem is a topological theorem as opposed to a metric one:
what matters is that there exists a compatible complete metric, even though the
metric one “naturally” considers on X may not be complete. For instance, the
usual distance on ]0,+∞[ is certainly not complete; however, the distance defined
by d(s, t) = |s− t|+ | 1s −

1
t | is, and it induces the usual topology on ]0,+∞[. This

is part of a broader phenomenon.

Theorem 2.3 (Alexandrov). — Let (X, d) be a metric space. There exists a
complete metric compatible with the topology of X if, and only if, X is a Gδ subset
of the completion of (X, d).

This is easily seen to be equivalent to X being a Gδ subset of any metrizable
space containing it. What matters most for us is that the Baire category theorem
is true in any Gδ subset of a completely metrizable space.

Baire category notions are useful as notions of largeness: a comeager set may be
thought of as being large, and a meager set as being small. The union of countably
many small sets is still a small set; dually, the intersection of countably many large
sets is still a large set. Of course, one is reminded of measure theory, where small
sets are those which have measure zero, and large sets those with full measure. We
will often work in contexts where there is no natural measure (something that will
be made precise in the discussion at the beginning of the next section), so we have
to content ourselves with category notions, cruder than measure-theoretic tools but
which can be used in different contexts.

We say that a topological space X in which the Baire category theorem holds is
a Baire space; any Gδ subset of a completely metrizable space is a Baire space, and
any open subset of a Baire space is a Baire space. This gives rise to a local notion
of largeness: given an open subset O of a topological space X and a subset A ⊆ X,
we say that A is comeager in O if A ∩O is a comeager subset of O. The local and
global notions of largeness get along reasonably well: if A is globally large, then
it is locally large everywhere; if A is large in an open set O, then A ∩ O is the
intersection of O and a globally large subset of X.

We would want these local and global notions of largeness to get along even
better; namely, a natural assumption would be that, if a set is not globally small,
then it is locally large somewhere. This is not necessarily true (at least, not if one
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uses the usual axioms of Zermelo–Fraenkel set theory (ZF)1). The analogy with
measure leads us to introduce a class of sets which behave well with regard to our
notion of largeness; in measure theory, the measurable sets are those who differ
from a Borel set by a negligible set. The same definition makes sense here.

Definition 2.4. — Let X be a topological space. A subset A of X is Baire-
measurable if there exists an open set O such that the symmetric difference A∆O
is meager.

It might be a bit surprising that the definition requires an open set rather than
a Borel set; actually this does not matter: any Borel set is equal to an open set
modulo a meager set, which is a consequence of the fact that the family of Baire-
measurable subsets of a topological space X is a σ-algebra. Pursuing the analogy
with measure, one could think of this as a strong form of regularity: if µ is an
(outer) regular Borel measure on a topological space X, then any measurable set
is equal to a Gδ set modulo a set of µ-measure 0.

Remark 2.5. — The standard terminology for the above property is “A has the
property of Baire”. I always found it confusing, because my intuition is that a set
with the property of Baire should satisfy the Baire category theorem, and this is
obviously not always the case. For instance, the space of rational numbers has
the property of Baire yet is a textbook example of a topological space failing to
satisfy Baire’s theorem. This is why I use the less standard, but to my mind more
evocative, “Baire-measurable” terminology.

Note that from the definition of Baire-measurability it follows that if A is Baire-
measurable and non-meager in a Polish space X then there exists a nonempty
open subset O of X such that A is comeager in O. This is what we wanted: if a
set is well-behaved (i.e. Baire measurable) and not small, then it is locally large
somewhere.

Most of the time, we will not be working with general completely metrizable
spaces, but merely with separable spaces.

Definition 2.6. — A Polish space is a completely metrizable and separable
topological space.

In particular, the topology of a Polish space is second countable, i.e. it admits
a countable basis of open sets. We will often use the fact that any such space
satisfies the Lindelöff property: from any open covering one can extract a countable
subcovering. Note again that being a Polish space is a topological condition, not
a metric one; often we will need to manipulate Polish spaces with noncomplete
metrics. We use the terminology Polish metric space when we are concerned with
complete separable metric spaces.

Remark 2.7. — The term “Polish space” is often credited to Bourbaki, who
were supposedly honoring the pioneering work of Polish topologists and set theorists
during the first half of the twentieth century. In some papers, mostly from the fifties
and sixties, one can find the term “polonais space” in articles written in English
(for instance [33]). Using the French word for “Polish” was an interesting way to

1Throughout this text we work, as usual, in ZF + (Dependent Choice); the reader may safely
assume that we work with the usual set theoretic axioms, and that we accept the axiom of choice.
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capture the influence of mathematicians of both countries on this notion, but it
does not seem to have caught on.

We already saw that all Borel subsets of Polish spaces are Baire-measurable,
which is useful but not sufficient for our purposes. The problem is that many
naturally-defined subsets of Polish spaces turn out not to be Borel; an underlying
issue is that the continuous image of a Borel set need not be Borel in general.

Definition 2.8. — Let X be a Polish space. A subset A ⊆ X is analytic if
there exists a Polish space Y , a Borel mapping f : Y → X and a Borel subset B of
Y such that f(B) = A. A subset A of X is coanalytic if its complement is analytic.

Actually, the condition above is equivalent to saying that there is a Polish space
Y , and a continuous mapping from Y to X such that f(Y ) = A.

Theorem 2.9 (Lusin-Sierpinski). — Let X be a Polish space and A be an
analytic subspace of X. Then A is Baire-measurable.

Any Borel subset of a Polish space is analytic; one can use a diagonal argument to
show that there exist analytic non Borel subsets of Polish spaces (any uncountable
Polish space contains one). The following fundamental result may be considered as
the starting point of descriptive set theory.

Theorem 2.10 (Lusin). — Let X be a Polish space, and A be a subset of X.
Then A is Borel if, and only if, A is both analytic and coanalytic.

This result has the following spectacular consequence.

Theorem 2.11. — Let X,Y be Polish spaces, and f : X → Y be a function.
Then f is Borel if, and only if, its graph is a Borel subset of X × Y .

I will not give proofs of these classical results here; we use [74] as a general
reference for descriptive-set-theoretic facts and theorems. The following fact is
used in the classical proof of Theorem 2.9 and will be useful to us later.

Theorem 2.12. — Let X be a topological space, and let A be a subset of X.
Denote by U(A) the union of all open subsets of X in which A is comeager. Then
U(A) \A is meager, and A is Baire-measurable if, and only if, A \U(A) is meager.

The definition of U(A) will play a role in the next section (in the proof of Pettis’
lemma) as well as in the last section.

2.2. Polish groups.

Definition 2.13. — A topological group is a group endowed with a topology
for which the group operations (g, h) 7→ gh and g 7→ g−1 are continuous.

A Polish group is a topological group whose topology is Polish.

Polish groups are abundant in analysis but also, as we shall see, in ergodic theory
and model theory. Below we will discuss important examples in some detail; for
now, let us simply note that any countable discrete group is Polish, as is any locally
compact metrizable group, any separable Banach space (the group operation being
addition of vectors), etc. In locally compact groups, one can use the Haar measure
to provide a notion of largeness which is well-behaved with respect to the group
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operations; while one cannot in general hope that the Haar measure is translation-
invariant on both sides, it is invariant on one side (e.g. under the left translation
action of the group on itself), and translates of subsets of measure zero always have
measure zero.

The Haar measure was used by Weil in the thirties, generalizing a result of
Steinhaus for G = (R,+), to prove that a discontinuous homomorphism defined on
a locally compact group must be fairly wild.

Theorem 2.14 (Weil). — Let G be a locally compact topological group, and
A be a non-negligible Haar-measurable subset of G. Then AA−1 contains a neigh-
borhood of the neutral element 1G. Consequently, any Haar-measurable homomor-
phism from a locally compact group to a second-countable topological group must
be continuous.

Sketch of proof. The first statement is proved using the regularity of the Haar
measure; the second sentence is an easy exercise: let G be a locally compact group,
H a second-countable topological group and ϕ : G→ H a Haar-measurable homo-
morphism. Pick a nonempty open neighborhood V of 1H ; the Lindelöff property
of ϕ(G) implies that there exists a countable family hn of elements of ϕ(G) such
that ϕ(G) =

⋃
hn(V ∩ ϕ(G)), from which one obtains a countable family (gn) of

elements of G such that G =
⋃
gnϕ

−1(V ).
Hence ϕ−1(V ) is not negligible, so ϕ−1(V )(ϕ−1(V ))−1 ⊆ ϕ−1(V V −1) contains

a neighborhood of 1G whenever V is an open neighborhood of 1H . Given any
open neighborhood W of 1H , continuity of group operations implies that one can
find an open neighborhood V of 1H such that V V −1 ⊆ W . Hence ϕ−1(W ) has
nonempty interior; we just proved that ϕ is continuous at 1G, hence continuous
everywhere. �

Unfortunately, as soon as one gets out of the class of locally compact groups, one
loses the Haar measure, in the worst way possible: by a result of Weil (see Appendix
B of [48] for a proof, coming from [102] and attributed to Ulam), a Polish group
which admits a left-translation invariant measure class (i.e. a measure µ such that
all its left translates are absolutely continuous with respect to µ) must be locally
compact. Thus one must make do with Baire category methods.

Theorem 2.15 (Pettis [107]). — Let A,B be subsets of a Baire topological
group; then U(A)U(B) ⊆ AB. In particular, if A is a Baire-measurable non meager
subset of G then AA−1 contains a neighborhood of 1G.

Consequently, any Baire-measurable homomorphism from a Baire topological
group to a second-countable topological group must be continuous.

We recall that U(A) denotes the union of all open subsets of X in which A is
comeager, that A is comeager in U(A), and that A is Baire measurable if, and only
if, A \ U(A) is meager. The fact that Baire-measurable homomorphisms between
Polish groups are continuous was first proved by Banach [8].

Proof. — Let A,B be two subsets of X, and pick g ∈ U(A)U(B). Equivalently,
U(A)∩ g(U(B))−1 = U(A)∩U(gB−1) is nonempty; this is an open set in which A
and gB−1 are both comeager, hence the fact that open subsets of Baire spaces are
Baire implies that A ∩ gB−1 6= ∅, i.e. g ∈ AB.

Now, if A is Baire-measurable and nonmeager, then U(A)U(A−1) is a nonempty
open neighborhood of 1G which is contained in AA−1; the automatic continuity
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of Baire-measurable homomorphisms with range in a second countable group is
deduced from this exactly as in the case of Haar-measurable homomorphisms. �

Let us point out a few structural facts about Polish groups.

Theorem 2.16. — Let G be a Polish group, and H be a subgroup of G. Then
H, endowed with the relative topology, is a Polish group iff H is closed in G.

Proof. — One implication is obvious. Assume that H is a subgroup of G which
is Polish when endowed with the relative topology. Then H is a Gδ subset of H;
thus, for any k ∈ H, H and kH are dense Gδ subsets of H, so the Baire category
theorem implies that H ∩ kH is nonempty for all k ∈ H, so H = H. �

Theorem 2.17. — Let G,H be Polish groups, and ϕ : G → H be a Baire-
measurable isomorphism (of abstract groups). Then ϕ is an isomorphism of topo-
logical groups.

Proof. — Being Baire-measurable, ϕ is automatically continuous. So its graph
is closed, and so is the graph of ϕ−1; hence ϕ−1 is Borel, hence Baire-measurable,
hence continuous. �

Thus, if (G, τ) is a Polish group and τ̃ is a Polish group topology on G such that
each τ -open set is τ̃ -Baire-measurable, then necessarily τ = τ̃ .

We now turn to a quick panorama of the Polish groups we will encounter in this
memoir, as well as an example of a seemingly nice group which cannot be made
Polish.

2.3. Isometry groups. Whenever (X, d) is a Polish metric space, one can con-
sider its isometry group Iso(X); it is tempting to turn it into a topological group
by endowing it with the metric of uniform convergence. While this is a perfectly
reasonable thing to do, the resulting topology will often have too many open sets to
be useful - an extreme example of this is obtained when one considers the isometry
group of the space of natural integers endowed with the discrete metric or, equiva-
lently, the group of all permutations of N. Then any two distinct permutations are
at (uniform) distance 1, so the topology of uniform convergence is discrete in that
case.

If uniform convergence is too much to ask, then the next best thing is pointwise
convergence. When endowed with the topology of pointwise convergence, Iso(X) is
a Polish group whenever X is a Polish metric space. Given a countable dense subset
A of X, Iso(X) equipped with this topology is homeomorphic (via the map that
associates to an isometry its restriction to A) to a subset of XA, so the topology is
metrizable and separable. It is easy to check that group operations are continuous
on Iso(X); an abstract way to see that Iso(X) is a Polish group is to notice that the
image of the restriction map from Iso(X) to XA is the set of all elements g ∈ XA

which satisfy:
• ∀a, b ∈ A d(a, b) = d(g(a), g(b))
• ∀ε > 0 ∀a ∈ A ∃b ∈ A d(a, g(b)) < ε.

The first condition expresses that g preserves the distance, and defines a closed
subset of XA; the second condition means that g(A) is dense in X, and is a Gδ
condition. Hence Iso(X) is homeomorphic to a Gδ subset of XA, thus is a Polish
topological space.
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A more down-to-earth way to show the same thing goes as follows: let A =
{an}n<ω, and define a metric ρ on Iso(X) by setting

ρ(g, h) =
∞∑
n=0

min(2−n, d(g(an), h(an)))

This metric induces the topology of pointwise convergence on Iso(X), and is left-
invariant; unfortunately it is not complete in general, but the metric ρ̃ defined by
ρ̃(g, h) = ρ(g, h)+ρ(g−1, h−1) is complete. This is a general phenomenon: while any
Polish group, and indeed any first-countable Hausdorff topological group, admits
a compatible left-invariant metric by the Birkhoff–Kakutani theorem, most Polish
groups do not admit a compatible left-invariant complete metric.

In a sense, isometry groups are all there is when it comes to Polish groups: Gao
and Kechris [43] proved that, given any Polish group G, there exists a Polish metric
space X such that G is isomorphic, as a topological group, to Iso(X) equipped with
the topology of pointwise convergence.

2.4. The unitary group. Consider an infinite-dimensional separable Hilbert space
H and denote by U(H) its unitary group, i.e. the set of all C-linear bijections of
H whose inverse coincides with their adjoint. Equivalently, a map is unitary if
it is a C-linear isometry of H onto itself. As above, the first idea that comes to
mind might be to endow U(H) with the topology induced by the operator norm:
d(g, h) = ‖g−h‖. This is the topology of uniform convergence on the unit ball of H
and, not unexpectedly, is “almost” discrete: letting (ei)i<ω denote a Hilbert basis
of H, any permutation σ of the set of natural integers induces a unitary operator
uσ : ei 7→ eσ(i), and whenever σ 6= τ one has ‖uσ − uτ‖ =

√
2. Thus the topology

induced by the operator norm is certainly not separable (it will play a role later on,
though).

The example of isometry groups discussed above shows that, when endowed with
the pointwise convergence topology with regard to the norm topology on H, the
isometry group of H is a Polish group; being C-linear is closed under pointwise
convergence, so this is a Polish topology on U(H), called the strong topology.
One could equip U(H) with the topology of pointwise convergence with regard to
the weak topology on H; when it comes to unitary operators, the difference is
immaterial since both topologies coincide. This is a hint of a broader phenomenon:
there exists a unique Polish group topology on U(H), a fact first proved by Atim
and Kallman [7] and generalized by Tsankov [123], who proved that U(H) has the
automatic continuity property: any homomorphism from U(H) to a Polish group
is continuous. This is very much related to our concerns, and we will discuss this
phenomenon in some detail later on.

From now on, H will denote an infinite-dimensional, separable Hilbert space,
and U(H) will be its unitary group.

2.5. Measure-preserving automorphisms. The notation (X,µ) will stand for
a standard atomless probability space throughout the text. This is a fancy way of
speaking of the unit interval endowed with the Lebesgue measure; the reason the
more abstract notation (X,µ) is useful is that standard atomless probability spaces
occur in many different guises, for instance any infinite compact metrizable group
endowed with its Haar measure is one.
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The group we are concerned with here is made up of all measure-preserving
bijections of (X,µ), identified if they coincide outside of a set of measure 0; thus
one should really speak of classes of measure-preserving bijections. This abuse of
terminology must be kept in mind, but will not cause us any significant trouble,
and we will simply ignore sets of measure 0 whenever it does not cause confusion
- these sets are called negligible for a reason, after all. We denote this group by
Aut(X,µ), or simply Aut(µ). Again there seem to be several reasonable choices of
topology: one could consider the uniform topology, induced by the metric

du(S, T ) = µ({x : S(x) 6= T (x)}).

This metric is bi-invariant; unfortunately, it is again far from separable - for in-
stance, see (X,µ) as the unit circle with its usual measure; then two rotations with
different angles are at distance 1. One could do even worse: embedding Aut(X,µ)
into the unitary group U(L2(X,µ)) and endowing it with the operator norm, one
obtains a discrete group.

Of course, we know what went wrong: we considered uniform metrics, which
should not be separable; the right choice if one wants to obtain a Polish group is to
consider pointwise convergence. The measure algebra MALGµ of all measurable
subsets of (X,µ) (identified if their symmetric difference has measure 0) is a com-
plete separable metric space when endowed with the distance d(A,B) = µ(A∆B);
and measure-preserving bijections are the same as isometries of MALGµ which fix
∅ (Sikorski, see [74, Theorem 15.9]). Thus one obtains a Polish topology by con-
sidering the topology of pointwise convergence relative to this metric, which is the
topology induced by the maps g 7→ µ(g(A)∆A) as A ranges over all measurable
subsets of X.

As in the case of the unitary group, this is the unique Polish topology on Aut(µ)
which is compatible with its group structure; one of the results presented below is
the fact that Aut(µ) satisfies the automatic continuity property which, combined
with a result of Glasner [50] and the simplicity of Aut(µ) [34], shows that there
are only two second-countable topologies on Aut(µ): the coarse topology, and the
Polish topology we just defined. The fact that there is a unique compatible Polish
group topology on Aut(µ) is due to Kallman [69].

As a general reference regarding Aut(µ), [76] is particularly well-suited to our
purposes.

2.6. Permutation groups. Both U(H) and Aut(µ) are connected, indeed they
are both homeomorphic to an infinite-dimensional separable Hilbert space. Since
both groups have the automatic continuity property, they cannot act nontrivially
on a countable set: the action would have to be continuous with respect to the
discrete topology on the countable set, so by connectedness the action must be
trivial.

Still, groups acting on countable sets are interesting objects. The first example
is the permutation group of the integers, denoted by S∞; we already met it when
discussing isometry groups, and know that it is a Polish group when endowed with
the topology of pointwise convergence relatively to the discrete topology on N -
equivalently, this is a group topology such that the family of subgroups of the form
{σ : ∀x ∈ F σ(x) = x}, where F ranges over all finite subsets of N, is a basis of
open neighborhoods of 1.
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Again, this topology is the unique second-countable group topology on S∞
(Kechris–Rosendal [77], extending a theorem of Gaughan [44]); a Polish group is
isomorphic, as a topological group, to a (necessarily closed) subgroup of S∞ if, and
only if, it admits a basis of neighborhoods of 1 made up of open subgroups. When
this happens, we say that the group is a permutation group.

These groups naturally appear in model theory; we will discuss this in some
detail later on. For now, we simply note that when encountering a countable
“structure”, one can consider its automorphism group, which is made up of all bi-
jections preserving the structure; identifying the universe of the structure with N,
its automorphism group is then a closed subgroup of S∞. Conversely, all Polish
permutation groups are automorphism groups of countable structures. As exam-
ples, one can cite the automorphism group of the random graph, the automorphism
group of a countable free group...

The topology of the permutation group comes from its action on the structure;
in some cases, knowing the topology is enough to recover a lot of information about
the structure (we will also come back to this later). One is then led to wondering
when it is possible to reconstruct the topology when knowing only the algebraic
structure of the group, motivating the study of the automatic continuity properties
of permutation groups.

2.7. Full groups. To close this section, we discuss full groups. To motivate our
interest in those groups, we begin by recalling the more classical notion of full group
of a countable measure-preserving equivalence relation; these equivalence relations
are those that arise from a measure-preserving action of a countable group on a
standard probability space (X,µ); as usual when dealing with measures, we ignore
sets of measure 0.

Given such an action of a countable group Γ, we denote by RΓ the associated
equivalence relation; its full group, denoted by [RΓ], is the group of all measure-
preserving bijections g ∈ Aut(X,µ) such that g(x)RΓx for (almost) all x ∈ X.
These groups were introduced by Dye ([31], [32]); the full group completely remem-
bers the relation, in a way made precise by the following definition and theorem
2.

Definition 2.18. — Consider two countable groups Γ1,Γ2 acting by measure-
preserving bijections on a standard probability space (X,µ). We say that the
associated equivalence relations are orbit equivalent if there exists g ∈ Aut(X,µ)
such that

∀x, y ∈ X xRΓ1y ⇔ g(x)RΓ2g(y).

Orbit equivalence is the natural notion of isomorphism of measure-preserving
equivalence relations: up to an isomorphism of the space, the relations coincide.
Recall that a measure-preserving action is ergodic if it does not admit any nontrivial
invariant sets.

Theorem 2.19 (Dye). — Assume that Γ1,Γ2 are two countable groups act-
ing by measure-preserving transformations on a standard probability space (X,µ),

2The definition of orbit equivalence actually appeared after Dye’s work, in work of Mackey [86]
so Dye’s theorem is formulated differently than the original.
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and that there exists an isomorphism Φ: [RΓ1 ] → [RΓ2 ]. Then there exists g ∈
Aut(X,µ) such that for all h ∈ [RΓ1 ] one has Φ(h) = ghg−1.

In particular, g must realize an orbit equivalence between RΓ1 and RΓ2 - thus
RΓ1 and RΓ2 are orbit equivalent iff their full groups are isomorphic (as abstract
groups).

Thus, full groups are complete invariants for orbit equivalence. Dye’s theorem
is also related to considerations of automatic continuity; to explain this we need to
discuss topologies on full groups of ergodic, probability measure-preserving actions
of countable groups. The first that comes to mind is the topology induced from the
Polish topology of Aut(X,µ); of course this is a second-countable group topology,
but it is never Polish for ergodic relations: indeed, ergodicity of the action Γ y X is
equivalent to the fact that [RΓ] is dense in Aut(X,µ). Not being a closed subgroup,
it cannot be Polish for the induced topology; still, it is never too complicated
a subset of Aut(X,µ): Wei [130] proved that full groups of ergodic actions of
countable groups are always countable intersections of countable unions of closed
subsets of Aut(X,µ), in particular they are Borel subsets of Aut(X,µ).

What about the topology induced from the uniform topology? It is easy to see
that [RΓ] is closed in Aut(X,µ) with respect to the uniform topology; perhaps
more surprisingly, [RΓ] is also separable, so it is a Polish group (see e.g. [76,
Proposition 3.2]). Then, Dye’s theorem implies that an isomorphism between two
full groups is necessarily continuous with respect to their Polish topologies; given
the examples discussed above, the reader will probably not be surprised to learn
that Kittrell and Tsankov [82] proved that full groups of relations induced by an
ergodic action of a countable group have the automatic continuity property.

We turn to full groups in topological dynamics, which for us means the study
of actions of countable groups by homeomorphisms of a Cantor space X. The
analogue of ergodicity in that context is minimality.

Definition 2.20. — Let Γ be a countable group acting by homeomorphisms
on a Cantor space X. The action is said to be minimal if all orbits are dense.

Then one can define the full group of an action Γ y X in the natural way: it
is made up of all the homeomorphisms of X which map each Γ-orbit onto itself.
Similarly, two actions of countable groups Γ1,Γ2 by homeomorphisms of a Cantor
space X are orbit equivalent if there exists a homeomorphism of X which maps
each orbit for the first group’s action onto an orbit for the second group’s action.
The natural analogue of Dye’s theorem holds in that context.

Theorem 2.21 (Giordano–Putnam–Skau [47]). — Assume that Γ1,Γ2 are two
countable groups acting minimally3 by homeomorphisms of a Cantor space X, and
that Φ: [RΓ1 ] → [RΓ2 ] is an isomorphism. Then there exists a homeomorphism g
of X which is such that for all h ∈ [RΓ1 ] one has Φ(h) = ghg−1.

This g must realize an orbit equivalence between RΓ1 and RΓ2 - thus RΓ1 and
RΓ2 are orbit equivalent iff their full groups are isomorphic (as abstract groups).

Now, given an action by homeomorphisms of a countable group Γ on a Cantor
spaceX, we would like to turn [RΓ] into a Polish group; first, what kind of topologies

3The minimality assumption is stronger than what is needed, see [89].
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can one put on the homeomorphism group Homeo(X)? As with the homeomor-
phism group of any compact metric space4, one can use the uniform topology: given
a compatible metric d on X, this topology is induced by the uniform metric du,
defined by

du(g, h) = sup({d(g(x), h(x)) : x ∈ X}).
This metric is not complete, but the metric d̃u defined by d̃u(g, h) = du(g−1, h−1)+
du(g, h) is complete and induces the same topology on Homeo(X). It was proved by
Rosendal and Solecki [112] that Homeo(X), with this topology, has the automatic
continuity property; thus this is the unique Polish group topology on Homeo(X).
Actually, it follows from the simplicity of Homeo(X) [5] and a result of Gamarnik
[41] that this is the unique second-countable group topology on Homeo(X) besides
the coarse topology. It is actually a permutation group topology; Homeo(X) nat-
urally acts on the countable set of all clopen subsets of X, and the permutation
group topology induced by that action is the same as the one we just described; a
basis of neighborhoods of 1 is given by sets of the form

{g ∈ Homeo(X) : ∀A ∈ A g(A) = A}
where A ranges over all finite clopen partitions of X.

Unsurprisingly, the full group of a minimal action of a countable group is not
closed in Homeo(X); in the case of a minimal Z-action, one can describe its closure.
Below we say that an homeomorphism ϕ of a Cantor space X is minimal if the
associated Z-action is minimal, and we denote by [ϕ] the associated full group.
The following is a consequence of a result of Glasner–Weiss [51].

Theorem 2.22 (Glasner–Weiss). — Let ϕ be a minimal homeomorphism of
a Cantor space X. Denote by Mϕ the set of all Borel probability measures on
X which are ϕ-invariant. Then the closure of [ϕ] inside Homeo(X) is equal to
{g ∈ Homeo(X) : ∀µ ∈Mϕ g∗µ = µ}.

This is somewhat analogous to what happens in the measure-theoretic setting
(i.e. the closure of the full group is as large as possible); things already appear to
be more complicated in the topological setting, however: two measure-preserving
ergodic Z-actions are always orbit equivalent (Dye [31]), while the above result
can be used to see5 that there are continuum many pairwise non-orbit equivalent
minimal actions of Z. As far as I know, the closure of the full group of a minimal
action of a countable group is not understood in general, even if the group is abelian.

As in the measure-theoretic context, one might expect that there exists a Polish
topology on the full group; however, if such a topology existed, it should have a
natural definition and none is to be found. This motivated the following result,
obtained in collaboration with T. Ibarlucià.

Theorem 2.23 ([66]). — Let Γ be a countable group acting by homeomor-
phisms on a Cantor space X; assume that for any nonempty open subset U of X

4An open problem (as far as I know): which Polish groups are isomorphic, as a topological
group, to the homeomorphism group of a compact metric space?

5I do not know the exact complexity, in the sense of Borel reducibility theory, of the relation of
orbit equivalence of minimal homeomorphisms; however, it is known to be fairly complicated since
OE for uniquely ergodic homeomorphisms is already not essentially countable as it is bireducible
to =+.
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there exists x ∈ U such that Γ · x intersects U in at least two points. Then [RΓ]
does not admit a compatible Baire, Hausdorff, second-countable group topology.

Sketch of proof. — The idea behind the proof is fairly standard, see for instance
[109]. Assume that Γ y X satisfies the assumption above, and that τ is a Baire,
Hausdorff group topology on [RΓ]. Then, given any clopen U , one can check that
g ∈ [RΓ] is equal to the identity on U if and only if g commutes with all elements
which coincide with the identity on X \ U ; thus

{g : g�U = id�U} =
⋂

h�X\U =id�X\U

{g : gh = hg}

is an intersection of closed subsets of [RΓ], hence it is closed.
Now, given any clopen U and g ∈ [RΓ], one has g(U) ⊆ U iff g−1hg coincides

with the identity on U for any h which coincides with the identity on U ; thus
{g : g(U) ⊆ U} is τ -closed by the same reasoning as above. This means that each
set {g : g(U) = U} is τ -closed, thus the inclusion map from ([RΓ] , τ) to Homeo(X)
endowed with its usual Polish topology is Borel, hence continuous since ([RΓ] , τ)
is assumed to be Baire. We just proved that τ extends the topology induced from
the Polish topology of Homeo(X).

So far, we are in the same situation as in the measure-theoretic context; now, fix
x ∈ X and consider the orbit map g 7→ g(x) from ([RΓ] , τ) to the countable set Γ·x,
which induces a homomorphism from ([RΓ] , τ) to the group Hx of permutations of
Γ · x. What we proved above shows that this homomorphism is Borel when Hx is
endowed with its permutation group topology; using again the fact that τ is Baire,
we obtain that this homomorphism is continuous. Equivalently, each subgroup
{g : g(x) = x} is τ -clopen. With a bit of work one can check that this causes
the existence of too many clopen subgroups for τ to be Lindelöff, so τ cannot be
second-countable. �

It is then tempting to study the properties of the closure of ([RΓ] , τ); we will get
back to this topic later on, in the case when Γ = Z. Given Wei’s result comput-
ing the Borel complexity of full groups of measure-preserving equivalence relations
mentioned above, which shows in particular that those are always Borel subsets of
Aut(µ), it is also natural to wonder how complicated a subset of Homeo(X) [RΓ]
is; I do not know the answer in general, but for minimal Z-actions the answer is
that it is as complicated as possible.

Theorem 2.24 ([66]). — The full group of a minimal Z-action on a Cantor
space X is a coanalytic non Borel subset of Homeo(X).

Let me try to give an idea of our approach. First, recall that a tree on a countable
set A is a subset T of the set A<ω of all finite sequences of elements of A which
is closed under taking initial segments. In particular, any nonempty tree must
contain the empty sequence. The space T (A) of all trees on A may be identified
with a subset of 2A<ω (identifying each tree with its indicator function); endowing
2A<ω with the product topology, we obtain a compact topology on T (A). A tree is
well-founded if it has no infinite branches; one can then define inductively the rank
(relative to T ) ρT (s) of an element s ∈ A<ω as follows:

ρT (s) = sup{ρT (s a a) + 1: s a a ∈ T}.
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In particular, if s does not belong to T or is a terminal node of T , then ρT (s) = 0.
The rank of T , ρ(T ), is the supremum of the ranks of all elements s ∈ A<ω; when
T is nonempty this is equal to ρT (∅). The rank of a countable well-founded tree is
a countable ordinal.

The reason why this is relevant for our purposes is the following observation. Fix
(for the remainder of this section) a minimal homeomorphism ϕ of a Cantor space
X and define, for any g ∈ Homeo(X), a tree T (g) on the countable set Clop(X) of
clopen subsets of X by the following condition:
(U0, . . . , Un) ∈ T (g) ⇔ ∀i 6 n− 1 Ui+1 ⊆ Ui and ∀i 6 n ∀x ∈ Ui g(x) 6= ϕ±i(x).
The map g 7→ T (g) is Borel (for the compact topology on the space of trees on
Clop(X) described above), and g ∈ [ϕ] iff T (g) is well-founded.

Note that T (g) has finite rank if, and only if, there exists a finite clopen partition
U0, . . . , Un of X such that g coincides with a fixed power of ϕ on each Ui or,
equivalently, if g belongs to [ϕ] and {n : ∃x ∈ X g(x) = ϕn(x)} is a finite subset
of Z. The set of all elements satisfying these conditions is a countable subgroup
of [ϕ], which is known as the topological full group of ϕ. Topological full groups
of minimal homeomorphisms are important objects in their own right, though we
will not say much about them (and not prove any results concerning them); let us
simply point out the fact that the rank of T (g) captures whether g belongs to the
topological full group of ϕ as evidence that this rank is a natural and potentially
useful invariant.

It is clear from the definition that [ϕ] is co-analytic: g ∈ Homeo(X) does not
belong to [ϕ] iff

∃x ∈ X ∀n ∈ Z g(x) 6= ϕn(x).
This shows that the complement of [ϕ] is the projection of a Gδ subset of the Polish
space Homeo(X)×X. By Suslin’s theorem, [ϕ] being Borel is then equivalent to it
being analytic, in which case the set Tϕ = {T (g) : g ∈ [ϕ]} is an analytic subset of
the set of all well-founded trees. This is only possible if the ranks of elements of Tϕ
are bounded above by a common countable ordinal (this is a classical, non-trivial
result of descriptive set theory, see [74, 35.23]).

So we need to prove that the ranks of trees of the form T (g) are not bounded
above by a countable ordinal. The usual, simple technique to construct well-founded
trees of arbitrarily large rank is to build them “from the root” — for instance, to
obtain a tree of rank α+ 1 from a tree T of rank α, just copy T below a node that
is linked to the root of the tree, as in the picture below.

Similarly, to obtain a tree of rank greater than sup(αn) from a countable family
of trees of rank αn, just link the root to countably many vertices, each of which is
the root of a tree of rank αn.
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This procedure is not adapted to the way our trees T (g) are defined, because
changing something high up in the tree (i.e. modifying g on some clopen set U)
forces one to also change everything below (g also is modified on any clopen subset
contained in U) , thus completely modifying the tree, so one cannot simply copy
things easily. This makes the work a bit painful, but also points to our salvation: it
is, at least intuitively, possible to modify a tree of the form T (g) “from the bottom”
- namely, take a terminal node, and change what g does on the corresponding
clopen set to make it as complicated as g is on the whole space. Roughly speaking,
this corresponds to replacing a well-founded tree T with a new tree such that any
terminal node of T is now the root of a new copy of T - thus increasing the rank.
The corresponding picture now looks like this.

Note that just adding a vertex below each terminal node of T would not be
enough: it would create a new tree of rank 1 + ρ(T ), which might be equal to ρ(T )
if ρ(T ) is infinite, for instance 1 + ω is equal to ω. The set of countable ordinals α
such that β + α = α for all β < α is unbounded, as is easy to see. So one really
needs to copy a tree of rank at least ρ(T ) below each terminal node to be sure to
increase the rank of T .

This intuitive idea can be turned into a (somewhat messy) proof, thus showing
that [ϕ] is not analytic. The sketch of proof we discussed seems to adapt easily to
any countable group (only the definition of the trees T (g) must be adapted, and
this is is not hard), but I do not know if the actual proof can be made to work:
our main technical tool to do the “copying” is a result of Glasner–Weiss stating
that if A,B are clopen subsets of X such that µ(A) < µ(B) for any ϕ-invariant
measure µ, then there exists an element g in the topological full group of ϕ such
that g(A) ⊂ B (this is also what one needs to prove Theorem 2.22). No analogue
of this is known in general, even for countable amenable groups.

This concludes our panorama of Polish groups, with the exception of one impor-
tant example: the isometry group of the Urysohn space (and its variants), which
we turn to now.

3. Urysohn spaces

3.1. Construction of Urysohn spaces. After proving that `∞(N) contains an
isometric copy of any separable metric space [38], Fréchet [39] asked the following
question: does there exist a separable metric space with the same property? This
provided the impetus for Urysohn’s research and subsequent discovery of the space
which now bears his name, published in the posthumous paper [125]. Right after fin-
ishing the construction of this space, Urysohn drowned while on vacation in France
with Alexandrov; [125] was written by Alexandrov, who along with Brouwer wrote
down a large part of Urysohn’s work after his untimely death (see the introduction
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of [65] for a detailed history of the discovery of the Urysohn space, Urysohn’s death,
and subsequent events; the special volume [84] is a good general reference about
the Urysohn space).

Banach and Mazur [8] shortly thereafter found another space showing that the
answer to Fréchet’s question is positive: they proved that C([0, 1]), the space of
continuous functions on the unit interval, is isometrically universal. They even
proved more, namely, every separable Banach space embeds linearly isometrically
in C([0, 1]), and this might have played a part in keeping the Urysohn space out of
the spotlight, as a nearly-forgotten curiosity. But this space has another remarkable
property: it is characterized up to isometry as being the unique Polish metric space
which is both

• universal, i.e. U contains a copy of every separable metric space (that is
the property Fréchet was interested in).

• homogeneous, i.e. any isometry between two finite subsets of U extends to
a surjective isometry of U.

We will not present Urysohn’s original construction; instead we discuss quickly
a more recent one, due to Katětov [72]. This construction played a large part in
reviving interest in the study of the Urysohn space.

We begin with a convention: by an isometry between two metric spaces X,Y ,
we mean a surjective, distance-preserving map from X to Y . Distance-preserving
maps which are not necessarily surjective will be called isometric embeddings.

Definition 3.1. — Let (X, d) be a metric space. A Katětov map on (X, d) is
a map f : X → R+ such that

∀x, y ∈ X |f(x)− f(y)| 6 d(x, y) 6 f(x) + f(y).

We let E(X) denote the set of all Katětov maps on X.

These maps correspond to one-point metric extensions X∪{z} of X, via the cor-
respondence f(·)↔ d(z, ·). This correspondence was already known to Hausdorff.

One may check that U is characterized among Polish metric spaces by the fol-
lowing property, commonly known as finite injectivity:

∀A finite ⊆ U ∀f ∈ E(A) ∃z ∈ U ∀a ∈ A d(z, a) = f(a).

In words: any abstract one-point metric extension of a finite subset of U is realized
inside U.

As a way to get used to back-and-forth constructions, let us see why a finitely
injective Polish metric space is homogeneous: assume that X is such a space, and
that ϕ : A → B is an isometry between finite subsets of X. Let {xi}i<ω be a
countable dense subset of X. Using finite injectivity, one can build inductively
finite sets An, Bn and isometries ϕn : An → Bn with the following properties:

• A0 = A,B0 = B,ϕ0 = ϕ.
• For all n, An ⊆ An+1, Bn ⊆ Bn+1 and ϕn+1 extends ϕn.
• For all n, xn ∈ A2n+1 (“forth”) and xn ∈ B2n+2 (“back”).

Indeed, assume that the process has been carried out up to some rank n, say
n = 2k (the case n odd is essentially the same). If xk ∈ An we have nothing to do;
else we may set An+1 = An ∪ {xk}. The one thing we need is to define ϕn+1(xk);
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this must be an element x ∈ X which satisfies

∀y ∈ An d(y, xk) = d(ϕn(y), x).

Finite injectivity of X ensures that such an element exists; pick one, call it bn+1,
and set Bn+1 = Bn ∪ {bn+1}.

After ω steps, ∪ϕi : ∪Ai → ∪Bi is a densely-defined isometry with dense range
which extends ϕ, and completeness of X ensures that ∪ϕi extends to an isometry
of X onto itself. As is often the case, the “forth” step ensures that the map we
build is defined everywhere, while the “back” step (which, in this case, is just the
“forth” step applied to ϕ−1) ensures that the map is onto.

Using similar ideas, it is not hard to prove that a finitely injective Polish metric
space is also universal (here only the “forth” step of the construction is needed),
and that any two finitely injective Polish metric spaces must be isometric. Thus,
if such a space exists, it is unique up to isometry. It is also not hard to show that
homogeneity and universality together imply finite injectivity.

All this reduces the proof of existence of the Urysohn space to the construction
of a finitely injective Polish metric space. Katětov’s approach is based on the
existence of a natural metric on E(X). Before introducing this metric, we note that
X naturally embeds in E(X) via x 7→ d(x, ·) (this is the degenerate case where we
“extend” X by adding a point that was already inside it).

Definition 3.2. — The metric on E(X) is defined by the formula

d(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

This is indeed a metric (in particular, it takes only finite values); in geomet-
ric terms, d(f, g) is the smallest possible distance d(zf , zg) in a two-point metric
extension X ∪ {zf , zg} such that d(zf , x) = f(x) and d(zg, x) = g(x) for all x ∈ X.

The map x 7→ d(x, ·) is an isometric embedding from X to E(X) and in what
follows we identify X with the corresponding subspace of E(X). Then, one has the
remarkable relation

∀f ∈ E(X) ∀x ∈ X d(f, x) = f(x).

Unfortunately, E(X) need not be separable even whenX is (see [92] for a detailed
discussion of the conditions on X which ensure that E(X) is separable). Still, all is
not lost: to obtain a finitely injective space, we only care about one-point extensions
of finite subspaces; and if Y ⊆ X and f ∈ E(Y ), then f may be extended to an
element f̂ of E(X) via the following formula (“shortest path through Y ”):

∀x ∈ X f̂(x) = inf{f(y) + d(x, y) : y ∈ Y }.

This leads to the following definitions.

Definition 3.3. — Let (X, d) be a metric space and f ∈ E(X). We say that f
is supported by A ⊆ X, or that A is a support of f , if one has

∀x ∈ X f(x) = inf{f(a) + d(x, a) : a ∈ A}.

Definition 3.4. — We denote by E(X,ω) the subspace of all f ∈ E(X) which
have a finite support.
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By definition, for any finite A ⊆ X and any f ∈ E(A), there exists f̂ ∈ E(X,ω)
extending f . Hence, if one wants to find an element having prescribed distances to
a finite subset of X, then one might do so inside of E(X,ω). It is straightforward
to check that E(X,ω) is separable; the natural embedding from X into E(X) takes
its values in E(X,ω), and any isometry ϕ of X uniquely extends to an isometry of
E(X) defined by

∀f ∈ E(X,ω) ∀x ∈ X ϕ̃(f)(x) = f(ϕ−1(x)).

Then ϕ̃ uniquely extends to the completion ̂E(X,ω) (we take the completion
here to stay inside the domain of Polish metric spaces, but this is inessential), and
the homomorphism ϕ 7→ ϕ̃ is continuous from Iso(X) to Iso( ̂E(X,ω)).

Katětov’s construction of the Urysohn space [72] proceeds as follows: start from
a given Polish metric space (X, d) and set X0 = X. Then define inductively an
increasing sequence of metric spaces Xi by setting Xi+1 = E(Xi, ω). Finally, denote
by X∞ the union of the Xis, and let Y be the completion of X∞.

Then Y is a Polish metric space, and the construction ensures that Y is approx-
imately finitely injective - that is, for any finite subset A of Y , any ε > 0 and any
f ∈ E(Y ), there exists y ∈ Y such that |d(y, a) − f(a)| 6 ε for all a ∈ A. Using
completeness and an approximation process, one can prove that Y must actually
be finitely injective, and we have built a Urysohn space.

This construction is fairly flexible, which is why the title of this section men-
tions Urysohn spaces, plural (see [26] for a full discussion of this flexibility): for
instance, one could have done the previous construction using only metric spaces
of diameter at most 1, obtaining in the limit the so-called Urysohn sphere, which
is the unique Polish space of diameter 1 which is both universal for Polish metric
spaces of diameter at most 1 and homogeneous.

We could have also stayed in the countable realm, considering only finite metric
spaces whose metric takes only rational values, and used Katětov’s tower construc-
tion (without taking a completion at the end!) to build the rational Urysohn space
UQ; this space is the unique countable metric space with rational distances which
is homogeneous and universal for countable rational metric spaces. It was originally
built by Urysohn, who then proved that its completion is isometric to the Urysohn
space; whenever we mention UQ we think of it as sitting densely inside U.

Here we see our first example of a phenomenon that will play an important
role later on: a “continuous” structure (in this case, the Urysohn space) is well-
approximated by a countable substructure (the rational Urysohn space); further,
the automorphism group of the structure is well approximated by the automor-
phism group of the countable substructure, which is a Polish permutation group;
for instance in this case, given any isometry ϕ of U and any ε > 0, there exists an
isometry ψ of UQ such that d(ϕ(x), ψ(x)) < ε for all x (see for instance [20]).

3.2. Isometry groups of Urysohn spaces. Uspenskij [126] was the first to put
to use a very nice property of Katětov’s construction (the notations of which we keep
here): any isometry of X = X0 extends to an isometry of X1 = E(X0, ω), which
extends to an isometry of X2 = E(X1, ω), etc., eventually defining an isometry of⋃
Xi, which in turn extends to its completion, that is as we know isometric to the

Urysohn space.
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In this way, we obtain an isometric copy of X embedded in the Urysohn space
U, with the property that any isometry of X extends naturally to an isometry of
U, and the mapping that assigns to a isometry of X its natural extension to U is
a continuous homomorphism from Iso(X) to Iso(U). Since any Polish group is a
subgroup of the isometry group of some Polish metric space (actually, any Polish
group is the isometry group of some Polish metric space, see [43]), this shows that
any Polish group embeds, as a topological group, into the isometry group Iso(U).
We just sketched the proof of the following theorem.

Theorem 3.5 (Uspenskij [126]). — Iso(U) is a universal Polish group, i.e, it
contains an isomorphic copy of any Polish group.

This result rekindled interest in the Urysohn space, which is now a relatively
well-known object, at least among logicians. Uspenskij [127] subsequently proved
that U is homeomorphic to the Hilbert space; many results have been proved over
the past fifteen years or so, and rather than try to sum all of these up I will simply
refer the reader to the special volume [84] and references therein.

Theorem 3.6 ([94]). — Iso(U) is homeomorphic to a separable Hilbert space.

This is a common feature in large infinite-dimensional groups. Due to a result
of Toruńczyk and Dobrowolski [29], proving this reduces to showing that Iso(U) is
an absolute retract, which in turn follows from the fact that its topology admits
a basis which is stable under taking finite intersections, contains the whole space,
and is such that all its elements have trivial homotopy type (see [128]). The proof
is technical and I will not try to explain it here.

It was recently proved by Tent–Ziegler [120] that Iso(U1) is a simple group;
actually, using model-theoretic methods inspired by stability theory, they proved
that if g ∈ Iso(U1) and n ∈ N are such that there exists a satisfying d(a, g(a)) > 1

n ,
then any element of Iso(U1) can be written as a product of at most n ·29 conjugates
of g and g−1.

In the unbounded case, it is clear that Iso(U) is not simple: the group of bounded
isometries, i.e. all isometries g ∈ Iso(U) such that d(g(x), x) 6 M for some M
and all x, is a nontrivial normal subgroup. Tent and Ziegler [121] showed that
the quotient of Iso(U) by the subgroup of bounded isometries is simple: for any
unbounded isometry g ∈ Iso(U), every other element of Iso(U) is a product of at
most 8 conjugates of g. As far as I know, it is an open problem whether the group of
bounded isometries is simple; it is not very hard to see that Iso(U) is topologically
simple, i.e. has no nontrivial closed normal subgroups. I believe that this fact was
first pointed out by K. Tent; at least, I heard it from her.

An interesting, and poorly understood so far, object is the uniform metric on
Iso(U) (or its bounded counterpart U1), defined by

du(g, h) = sup{d(g(x), h(x)) : x ∈ U}
Of course this might take the value +∞; replace this du by du

1+du
(with the conven-

tion ∞/∞ = 1) if that causes a philosophical problem. This uniform metric was
studied in the last part of [18] (joint work with D. Bilge, part of his PhD thesis for
which E. Jaligot and I were the advisors), the results of which were partly super-
seded by Tent–Ziegler’s work. It was proved in that paper, using Baire category
methods, that any element of Iso(U) (or Iso(U1)) is a commutator and that for all
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n > 2 there exists an element gn of order n in Iso(U) such that any other element of
Iso(U) is a product of (at most) four conjugates of gn. In the case of U1, we proved
that there is a 2-Lipschitz homomorphism F : (R, | · |)→ (Iso(U1, du) which maps
1 to g2; as an immediate corollary, one obtains that (Iso(U1), du) is path-connected
(which of course also directly follows from simplicity of Iso(U1)).

The above technique, while fairly successful in the bounded case, does not apply
to the study of the group of bounded isometries of the Urysohn space U; the main
problem is that this group is not a Polish group (it is a dense, meager subgroup
of Iso(U)). The question of whether this group is simple remains open; more
generally, there are many examples of Polish groups when one knows that there
exists a maximal normal subgroup, which is meager, and investigating its normal
subgroup structure is an interesting and challenging problem. In the case of Iso(U),
a natural candidate for a smaller normal subgroup is the path-connected component
of 1 in (Iso(U), du), motivating the following result.

Theorem 3.7. — The group of bounded isometries of U is a geodesic space
when endowed with the uniform metric (and in particular it is path-connected).

Proof. — Modulo some easy arguments, it is enough to prove that, for any g ∈
Iso(U) with du(g, 1) = 1, there exists h ∈ Iso(U) satisfying du(h, 1) = 1

2 and
d(g(x), h(x)) = 1

2 for all x ∈ U (in particular, we have du(g, h) = 1
2 , and we have

found a midpoint between g and 1 in (Iso(U), du), which is what we need here;
the stronger condition makes the inductive construction that follows easier). To
that end, we follow a back-and-forth construction, building an increasing sequence
of finite subsets An, and isometric maps hn : An → U satisfying the following
conditions:

(1)
⋃
nAn and

⋃
hn(An) are dense, and hn+1 extends hn for all n.

(2) For all n and all a ∈ An, d(hn(a), a) 6 1
2 and d(hn(a), g(a) = 1

2 .
For this construction to be possible, it is enough to be able to start with (A, h)

satisfying the second point above, and any x ∈ U, and extend h to A ∪ {x} in
such a way that the second condition is still satisfied (note that this condition is
symmetric in h and h−1, so the back step and the forth step are essentially the
same). So, we consider f ∈ E(h(A)) defined by f(h(a)) = d(x, a). We first check
that we can realize f inside U by z which is such that d(z, g(x)) = 1

2 ; note that,
since the distance from z to each h(a) is already prescribed, the set of possible
values for d(z, g(x)) is an interval [α, β], with

α = max
a∈A
|d(g(x), h(a))− d(x, a)| = max

a∈A
|d(g(x), h(a))− d(g(x), g(a))|.

Hence α 6 maxa∈A d(h(a), g(a)) = 1
2 ; and similarly

β = min
a∈A

d(g(x), h(a)) + d(x, a) = min
a∈A

d(g(x), h(a)) + d(g(x), g(a)) > 1
2 .

So, it is indeed compatible with the triangle inequality to set d(z, g(x)) = 1
2 . Having

done this, we still need to define the distance of z to x; we want to make it as small
as possible, and for this the best we can do (since we already set d(z, g(x)) = 1

2 ) is
to set

d(z, x) = max(max
a∈A

(|d(x, a)− d(x, h(a)|, |d(x, g(x)− 1
2 |).
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By assumption on h, we know that for all a we have

|d(x, a)− d(x, h(a))| 6 d(a, h(a)) 6 1
2 ;

and since d(x, g(x)) belongs to [0, 1], we also have |d(x, g(x)− 1
2 | 6

1
2 .

So, we can indeed find z ∈ U realizing f over h(A), such that d(z, g(x)) = 1
2 and

d(z, x) 6 1
2 . Setting h(x) = z, we are done. �

3.3. Linearly rigid metric spaces. We turn to the study of a surprising property
of the Urysohn space; we are concerned here with isometric embeddings of metric
spaces into Banach spaces. This type of problem goes back at least to Fréchet; as we
saw above, he proved in [38] that every separable metric space embeds isometrically
in the Banach space `∞(N). We also mentioned Banach–Mazur’s theorem which
states that C([0, 1]) is isometrically universal. They even proved that any separable
Banach space linearly isometrically embeds in C([0, 1]); this fact actually follows
from the existence of an isometric embedding, but this was proved much later by
Godefroy and Kalton [53].

A result analogous to Fréchet’s theorem, due to Kuratowski, states that every
metric space X embeds in Cb(X), the Banach space of all continuous bounded
functions on X endowed with the supremum norm. Such an embedding (often
called Kuratowski embedding) is easy to describe: fix a basepoint x0 ∈ X, and
consider the map from X to Cb(X) defined by

x 7→ (fx : y 7→ d(y, x)− d(y, x0)).
The Kuratowski embedding above depends in a nontrivial way on the choice of

basepoint x0. Another possibility to define an embedding, which was apparently
considered first by Kantorovitch [71] in the context of compact metric spaces, and
then in general by Arens-Eells [6], is to embed X in the so-called Lipschitz-free
Banach space over X. Let us quickly recall one possible definition of this space. It
depends formally on a choice of basepoint x0 ∈ X; to simplify the notation below,
denote by Lip0(X,x0) (or just Lip0(X) when there is no danger of confusion) the
space of all Lipschitz maps f on X such that f(x0) = 0, and denote by K(f)
the Lipschitz constant of f ∈ Lip0(X,x0) (note that K(f) is a complete norm on
Lip0(X,x0)).

Given z1, . . . , zn ∈ X and a1, . . . , an ∈ R, define

‖
n∑
i=1

aizi‖L = sup{
n∑
i=1

aif(zi) : f ∈ Lip0(X,x0), K(f) 6 1}.

This is indeed a seminorm on the vector space of all (formal) combinations of
elements of X, identifying x0 ∈ X with the origin of that vector space. Taking
the completion of that space, we obtain the Lipschitz-free Banach space F(X,x0).
This space is a predual of Lip0(X,x0). Note that, in this case, the dependence on
the choice of basepoint is inessential: if y0 is another choice of basepoint, then the
spaces Lip0(X,x0) and Lip0(X, y0) are isometric via the map f 7→ f(·) − f(y0),
and this induces a canonical isometry of the predual spaces F(X,x0) and F(X, y0).
Accordingly, in the following we shall denote this space simply by F(X).

For more information about Lipschitz-free Banach spaces, we refer the reader
to Weaver’s book [129] and Godefroy–Kalton’s article [53]. Even though it is only
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tangentially related to our concerns here, let us explicitly state the beautiful result
of Godefroy and Kalton [53] alluded to above, the proof of which uses Lipschitz-free
Banach spaces: consider a separable Banach space X and a Banach space Y , and
assume that there exists an isometric embedding from X into Y . Then there must
exist a linear isometric embedding from X into Y . This theorem becomes false if
one no longer assumes X to be separable.

A curious mind may then ask: can there exist a space X such that all these
embeddings coincide? That is, do there exist metric spaces which can be embedded
in a Banach space in a unique way (modulo a choice of basepoint)?

Definition 3.8. — Let (X,x0) be a pointed metric space. We say that X is
linearly rigid if, whenever B,B′ are Banach spaces and ϕ : X → B, ϕ′ : X → B′

are isometric embeddings mapping x0 to 0, one has:

∀a1, . . . , an ∈ R ∀y1, . . . , yn ∈ X ‖
n∑
i=1

aiϕ(yi)‖B = ‖
n∑
i=1

aiϕ
′(yi)‖B′

Note that, if X is linearly rigid, then any Banach space generated by X must
coincide with F(X) under the natural identification, so the choice of basepoint is
again inessential.

The question of existence of linearly rigid spaces does not seem to have been
considered until an example was found by M. Randall Holmes [63]. Working on a
question of Sierpinski [116] concerning isometric embeddings of the Urysohn space
in C([0, 1]), he proved the following remarkable result (reformulated to fit our ter-
minology).

Theorem 3.9 (Holmes [63]). — The Urysohn space is linearly rigid.

The original proof of that result is rather intricate and difficult to follow, in
large part because Holmes was concerned with Sierpinski’s question, and not linear
rigidity. The curious reader may consult [64] to read Holmes’ account of his proof,
how it came about, and the intuition behind it; his result seems to have gone
largely unnoticed for fifteen years or so 6. Then, as interest in the properties of the
Urysohn space grew, Holmes’ paper was finally noticed and studied (L. Nguyen Van
Thé seems to have played a major part in popularizing Holmes’ result; it is him who
told me about it. I think he is also the originator of the terminology Holmes space
to denote the unique Banach space spanned by an isometric copy of the Urysohn
space) and a natural question appeared: can one give a characterization of linearly
rigid metric spaces?

Such a characterization was obtained, simultaneously and independently, by F.
Petrov and V. Vershik on one side, and myself on the other side; this led to the
publication of a joint paper [90], where our two proofs are presented. Below, I will
quickly discuss “my” version of this proof (improved by an anonymous referee).
That proof came about by analyzing and simplifying the arguments of [63].

Definition 3.10. — Let (X,x0) be a pointed metric space and f ∈ Lip0(X,x0).
Let F = {x0, x1, . . . , xn} ⊆ X, and f in the unit ball BF of Lip0(F, x0). We say
that f is extremal if f is an extreme point of BF .

6at the time of writing, there are 13 papers citing [63] in the MathSciNet database. The earliest
of those was published in 2007.
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Remark 3.11. — To understand what this means in terms of metric geometry,
note that extremality of f is equivalent to the fact that, up to reindexing F , there
exists j 6 n such that one of the following things happens:

• f(xi) = d(x0, xi) for all i 6 j, and f(xi) = sup{d(x0, xk)−d(xi, xk) : k 6 j}
for all i > j.

• f(xi) = −d(x0, xi) for all i 6 j, and f(xi) = inf{−d(x0, xk)+d(xi, xk) : k 6
j} for all i > j.

The first line means that f takes values that are as large as possible (given that
f is 1-Lipschitz and f(x0) = 0) on x1, . . . , xj , and then as small as possible (given
the first j values) on xj+1, . . . , xn; the second line means that −f satisfies that
condition.

We are ready to state our characterization of linearly rigid metric spaces.

Theorem 3.12 ([90], Theorem 2). — A pointed metric space X is linearly rigid
if and only if it satisfies the following condition:

For all finite F ⊆ X, and all extremal f ∈ Lip0(F ), there exist c > 0 and z ∈ X
such that

∀x ∈ F d(z, x) = c+ f(x).

It it immediate from the above theorem that U is linearly rigid, indeed we see
that linear rigidity has a Urysohn-type flavor. We also see, however, that there are
many different examples besides U: for instance, the integer-valued Urysohn space
UZ is also linearly rigid, and one can cook up many different examples using the
above characterization and a Katětov-inspired construction.

Let us mention a curious byproduct of the proof. Recall that for x ∈ X we
denote by fx the 1-Lipschitz map defined by fx(y) = d(x, y) − d(x, x0). Then, we
let fx,y = fx−fy

2 . These maps are again 1-Lipschitz, and one may define another
isometric embedding of X in a Banach space by first setting

‖
∑

aixi‖ = sup{
∑

aifx,y(xi) : x, y ∈ X}

and then taking the completion of that normed space. We call this embedding the
two-point embedding, and the corresponding norm the two-point norm. Clearly,
if X is linearly rigid, then the two-point norm and the Lipschitz-free norm must
coincide. Surprisingly, the converse turns out to be true (this is a corollary of the
proof of Theorem 3.12 which we present below).

Theorem 3.13 ([90]). — A metric space X is linearly rigid if, and only if, the
two-point norm and the Lipschitz-free norm coincide.

Hence, to show that all possible norms coincide, one simply must show that
two of them, explicitly defined, coincide. Since the Lipschitz-free norm ‖ · ‖L is the
largest possible norm defining an isometric embedding of X in a Banach space (this
is clear from the Hahn–Banach theorem), its appearance is not surprising. The role
of the two-point norm is more mysterious; in particular, it does not seem to be a
“minimal” compatible norm in any reasonable sense of the word.

A word to the wise: there exist spaces such that the norm corresponding to the
Kuratowski embedding x 7→ fx and the Lipschitz-free norm coincide, yet are not
linearly rigid. This is why we had to consider the two-point norm above; actually it
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is obvious that any 3-point metric space is an example of this phenomenon. My co-
authors also built a family of examples on 4 points, and we conjectured that there
are no other finite examples, which has since been confirmed by Zatitskǐı [132].

The referee of [90] gave a very nice interpretation of the argument I used to
prove Theorem 3.12. The following version of the statement is due to him (her?),
as is the functional-analytic proof below, most notably the use of Milman’s theorem
instead of a cumbersome computation. I am very grateful to the referee for that
nice argument; not knowing his/her name it is unfortunately impossible to give
proper credit. Unfortunately, this argument did not make it into the published
paper, which is part of the reason why I decided to discuss linearly rigid spaces in
detail here: I feel that this is the “right” proof of the result, and to my knowledge
it was never made publicly available.

Theorem 3.14. — Let B denote the unit ball of Lip0(X), and D denote the
weak* closure of {fx : x ∈ X}. Then the following statements are equivalent:

(1) X is linearly rigid.
(2) B is the weak* closed convex hull of D.
(3) The extreme points of B are contained in D.

It is not hard to see, using the Milman and Krein-Milman theorems, that (2)
and (3) are equivalent, and that both are equivalent to the criterion appearing in
Theorem 3.12 (it is worth noting here that each fx is an extreme point of B).

Proof. — The proof uses in an essential way the fact that Lip0(X) is the dual
of F(X) (via the natural identification : 〈f,

∑
aixi〉 =

∑
aif(xi)).

Let us begin by proving that (1) implies (3). Since X is linearly rigid, the norm
on F(X) must coincide with the two-point norm. Then we must have, for all
ϕ ∈ F(X), that

sup{〈f, φ〉 : f ∈ B} = sup{〈fx − fy2 , φ〉 : x, y ∈ X}.

This means (via a standard application of the Hahn–Banach theorem) that the
closed convex hull of 1

2 (D − D) is equal to B, and then Milman’s theorem (see
e.g [28, p.151]) implies that the set of extreme points of B must be contained in
1
2 (D−D). Since each fa is an extreme point, we see that fa ∈ −D, hence 1

2 (D−D)
is a subset of the convex hull of D, and (3) holds.

Now, let us see why (2) implies (1). To that end, letX be isometrically embedded
in a Banach space Z in such a way that x0 is mapped to 0 and Z is the closed linear
span of X. We identify X with its image in Z (and x0 with 0 ∈ Z).

Denoting by δx the element corresponding to x in the natural embedding of X
in F(X), we must show that the map T : δx 7→ x is an isometry. This is equivalent
to showing that its adjoint map is a surjective isometry; in other words, we want
to prove that every 1-Lipschitz map f on X such that f(x0) = 0 is the restriction
to X of some z∗ belonging to the unit ball of Z∗. Since we are assuming that (2)
holds, we must simply show that this is true for every fx, x ∈ X.

Fix x ∈ X. Since −fx is extremal, we must have −fx ∈ D. Fix some finite
F ⊆ X containing 0, and ε > 0; we may find y ∈ X such that

∀z ∈ F ∪ {x} |fx(z) + fy(z)| 6 ε.
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Applying this to z = x, we obtain ‖x‖ + ‖y‖ 6 ‖x − y‖ + ε (recall that fx(z) =
‖z − x‖ − ‖x‖).

Hence we have, for all z ∈ F :

‖z − x‖+ ‖z − y‖ 6 ε+ ‖x‖+ ‖y‖ 6 ‖x− y‖+ 2ε.

Consequently,

∀z ∈ F ‖z − x‖+ ‖z − y‖ − ‖x− y‖ 6 2ε.

Using the Hahn–Banach theorem, we may pick ϕF ∈ Z∗ such that ‖ϕF ‖ = 1 and
ϕF (y − x) = ‖x− y‖.

We claim that |ϕF (z)− fx(z)| 6 2ε for all z ∈ F . To see this, we use the fact
that ϕF is 1-Lipschitz, linear, and that points of F look like they are “between” x
and y. We have ϕF (z) 6 ϕF (x) + ‖z − x‖, which yields

ϕF (z)− fx(z) 6 ϕF (x) + ‖x‖.

Similarly, ϕF (z) > ϕF (y)− ‖y − z‖, and this gives

ϕF (z)− fx(z) > ϕF (y)− ‖z − y‖+ ‖x‖ − ‖z − x‖.

Hence we have

ϕF (z)− fx(z) > (ϕF (y − x)− ‖z − y‖ − ‖z − x‖) + ‖x‖+ ϕF (x)
= (‖y − x‖ − ‖z − y‖ − ‖z − x‖) + ‖x‖+ ϕF (x)
> ‖x‖+ ϕF (x)− 2ε

We have obtained the following inequalities, valid for any z ∈ F :

‖x‖+ ϕF (x)− 2ε 6 ϕF (z)− fx(z) 6 ‖x‖+ ϕF (x).

This is in particular true for z = 0, so that 0 6 ‖x‖ + ϕF (x) 6 2ε, and we
have proved as promised that, for any finite F ⊆ X and any ε > 0, we may find
ϕF ∈ Z∗ with ‖ϕF ‖ = 1 and such that |ϕF (z) − fx(z)| 6 2ε for all f ∈ F . Using
the compactness of the unit ball of Z∗ for the weak topology, we obtain ϕ ∈ Z∗ of
norm 1 and such that ϕ�X = fx. �

The unique Banach space spanned by an isometric copy of the Urysohn space
seems to be known now as the Holmes space, in honor of M.R Holmes. A con-
sequence of the Godefroy–Kalton theorem mentioned above is that this space is
linearly isometrically universal for all separable Banach spaces; it would be in-
teresting to know more about its geometry, but the definition makes it hard to
approach, and Lipschitz-free Banach spaces are notoriously difficult to understand.

One can use our characterization to show that no bounded metric space can
be linearly rigid; as a consequence, the Urysohn sphere is not linearly rigid. Still,
from the explicit computations used in my original proof, one sees that it is in
some sense “locally” rigid: given any finite set A of sufficiently small diameter (an
explicit constant can be computed, 1/10 works, for instance), the norm of any linear
combination of elements of A is uniquely determined.
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4. Baire category in the space of actions

We now turn to a different type of question, viewing actions of countable groups
on some structures via the prism of Baire category. We fist concern ourselves with
the problem of extending a measure-preserving action of a subgroup to a measure-
preserving action of a larger group, and explain how it fits into a more general
framework.

Answering a question of Halmos, Ornstein proved in [101] that there exist el-
ements of Aut(µ) without a square root. The proof involved the construction of
aperiodic transformations which only commute with their powers; it is clear that
such transformations cannot have roots of any order. Different examples, with un-
countable centralizer, were subsequently found [40]. Still the question remained: is
this a generic phenomenon? Or does a generic element of Aut(µ) admit a square
root? King [81] provided a positive answer to that question; his proof is fairly long
and technical, but was made considerably more accessible shortly thereafter by de
la Rue and de Sam Lazaro [24], who built on King’s ideas to show that a generic
element of Aut(µ) embeds in a flow.

The search for n-th roots is part of a more general type of problems. Indeed, con-
sider a countable group Γ, and a subgroup ∆ 6 Γ. It is natural to wonder whether
a ∆-action on (X,µ) (or any other mathematical structure) can be extended to a
Γ-action. If Γ = Z and ∆ = 2Z, this is the same question as asking whether the
generator of a given 2Z-action admits a square root. The Baire-category version of
that question also makes sense once one has introduced the right definitions, which
we recall now.

Given a Polish group G, and a countable group Γ, the space Hom(Γ, G) of all
homomorphisms from Γ to G is a closed subspace of GΓ, thus is a Polish space in its
own right. When G is the automorphism group of some mathematical structure,
Hom(Γ, G) coincides with the space of actions of Γ on that structure. One can
consider Baire category notions inside this space; it will be important for us that
G acts naturally on Hom(Γ, G) by conjugacy:

(g · π)(γ) = gπ(γ)g−1.

When Γ = Fn is a free group on n generators, Hom(Γ, G) may be identified
with Gn; when Γ = Zd, Hom(Γ, G) can be identified with the set Cn(G) of all
commuting n-tuples of elements of G:

Cn(G) = {(g1, . . . , gn) ∈ Gn : ∀i, j gigj = gjgi}.

Under these identifications, the conjugacy action of G on Hom(Γ, G) coincides with
the diagonal conjugacy action of G on Gn and Cn(G):

g · (g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

Below, we will use the notation C(G) to denote C2(G), i.e. the set of commuting
couples of elements of G. We also denote by C(g) the centralizer of an element
g of G; whenever A is a subset of a Polish group G, we let 〈A〉 denote the closed
subgroup generated by A.

Before discussing in more detail questions related to extensions of generic actions,
and studying generic properties of monothetic subgroups, we need to expand our
Baire category toolbox.
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4.1. Some more Baire category notions.

Definition 4.1. — Let X be a topological space, and G be a group acting on
X by homeomorphisms. The action is said to be topologically transitive if, for any
nonempty open subsets U, V of X, there exists g ∈ G such that gU ∩ V 6= ∅.

When X is a second-countable Baire space, topological transitivity of the action
Gy X is equivalent to the existence of a dense G-orbit: indeed, the assumption of
topological transitivity is the same as saying that, for any nonempty open U ⊆ X,
the set {x : G · x ∩ U 6= ∅} is dense, and this set is open since the action is by
homeomorphisms. Thus, taking the intersection of all these sets as U ranges over
a basis for the topology of X, one obtains a dense Gδ set, each element of which
has a dense orbit.

Using the fact that a Baire-measurable, non meager subset of a Polish space X
must be comeager in a nonempty open set, one obtains the following fact.

Theorem 4.2 (first 0−1 topological law). — Let X be a Polish space, and Gy
X be a topologically transitive action. Then, any Baire-measurable, conjugacy-
invariant subset A of X is either meager or comeager.

Whenever G is a topological group acting on a topological space X, we will make
the assumption that the maps g 7→ g ·x and x 7→ g ·x are continuous; when G and X
are Polish, this is equivalent to the map (g, x) 7→ g ·x being continuous (see e.g. [74,
9.14]). From the first 0−1 topological law, we see that if G is a Polish group acting
continuously and topologically transitively on a Polish space X, then the G-orbits
are either meager or comeager (orbits are clearly analytic, thus Baire-measurable;
actually orbits are Borel in this setting but we do not need this here).

Now seems like a good time to mention an important result of Effros [33].

Theorem 4.3 (Effros [33]). — Let X be a Polish space, and G be a Polish
group acting continuously on X. Then the following are equivalent, for any x ∈ X:

(1) G · x is comeager in G · x.
(2) G · x is a Gδ subset of X.
(3) The map g 7→ g · x is an open map from G to G · x.

The fact that the third item above implies the second is a consequence of a
theorem of Hausdorff stating that a continuous, open, metrizable image of a Polish
space is also Polish.

Now, let us come back to our first concern in this section: given countable groups
∆ 6 Γ and a Polish group G, does a generic ∆-action extend to a Γ-action? In
the cases we will consider, the action G y Hom(∆, G) has a dense orbit; we are
asking whether the image of the restriction map Res: Hom(Γ, G)→ Hom(∆, G) is
comeager and, since this set is analytic and conjugacy-invariant, this is equivalent
to proving that it is not meager.

A common approach, popularized by King [80], is via the so-called Dougherty
lemma.

Definition 4.4. — Let X,Y be topological spaces, and f : X → Y be a con-
tinuous map. An element x ∈ X is said to be a point of local density for f if, for
any neighborhood U of x, f(x) belongs to the interior of f(U).
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Lemma 4.5 (“Dougherty’s lemma”). — Assume that X,Y are Baire topological
spaces, f : X → Y is continuous and the set of elements of X which are points of
local density for f is dense. Then f(X) is not meager.

As a partial converse, if one assumes additionally that X is second-countable,
the image of {x ∈ X : x is not a point of local density of f} is meager; thus points
of local density must exist for f(X) to be nonmeager.

Definition 4.6 ([97]). — Let X,Y be Polish spaces. We say that f : X → Y
is category-preserving if it satisfies one of the following equivalent conditions:

(1) For any comeager A ⊆ Y , f−1(A) is comeager.
(2) For any nonempty open U ⊆ X, f(U) is not meager.
(3) For any nonempty U ⊆ X, f(U) is somewhere dense.
(4) {x ∈ X : x is a point of local density of f} is dense in X.

This definition was introduced in a joint work with T. Tsankov [97], using
only the first three items of the list above; the equivalence with the fourth item
(and the fact that this notion was fairly classical) was only noticed in [95]. The
term “category-preserving” is meant to recall the classical notion of “measure-
preserving”maps. This choice is motivated by the following result, which is to
the measure disintegration theorem the same as the Kuratowski–Ulam theorem is
to the Fubini theorem.

Theorem 4.7 ([97]). — Let X,Y be Polish spaces, and f : X → Y be a
category-preserving map. Let also A be a subset of X with the property of Baire.
Then the following assertions are equivalent:

(1) A is comeager in X.
(2) {y : A ∩ f−1(y) is comeager in f−1(y)} is comeager in Y .

Using symbols:
(∀∗x ∈ X A(x))⇔ (∀∗y ∈ Y ∀∗x ∈ f−1(y) A(x)).

This result seems to have been formulated for the first time in [97], which is a bit
surprising since it is both useful (as we will soon see) and not very hard to prove.
Particular cases of if appear in various places in the literature. The proof works
by showing that, if f : X → Y is a category-preserving map from a Polish space
to another, then there exists a dense Gδ subset A of X such that f : A → f(A) is
open; f(A) must be comeager since f is category-preserving, and is Polish since it
is a continuous, open image of a Polish space. Noting that the proof of the classical
Kuratowski–Ulam theorem as presented for instance in [74] extends to continuous,
open maps between Polish spaces, one obtains the desired result.

4.2. Centralizers of generic elements. The most basic infinite, countable group
is certainly Z; understanding actions of Z on some structure is of course the same
thing as understanding elements of the automorphism group of that structure.
In this section we describe an approach to proving that, in some Polish groups,
centralizers of generic elements are as small as possible. This phenomenon first
appeared in work of Chacon–Schwartzbauer [21], who proved that, for a generic
g ∈ Aut(µ), the centralizer of g coincides with 〈g〉 - in other words, a generic
monothetic subgroup of Aut(µ) is maximal abelian (recall that we only consider
closed subgroups here). It is easy to prove that the same is true in U(H), using
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spectral theory; T. Tsankov and I also managed to establish the same result for
Iso(U) [97]. Let us discuss a general simple approach that can be used to prove
this type of result for a Polish group G.

Our approach uses properties of category-preserving maps; crucially, we establish
that the restriction map P : C(G) → G (identified with the projection on the first
coordinate) preserves category as soon as

{(g, h) : 〈g〉 = 〈g, h〉} is dense in C(G). (4.1)
Indeed, assume (4.1) holds, and let O be dense and open in G. Let U be a

nonempty open subset of C(G); we may find (g1, g2) ∈ U such that 〈g1〉 = 〈g1, g2〉,
so for some n we have (g1, g

n
1 ) ∈ U . Using the density of O and the continuity

of group operations, there must exist g close to g1, belonging to O, and such
that (g, gn) ∈ U . This shows that P−1(O) is dense. Hence, assuming (4.1), the
restriction map from C(G) to G preserves category.

Clearly, (4.1) holds as soon as the set of all (g, h) generating a finite cyclic
group with g as a generator is dense, or (since the map (g, h) 7→ (gh, h) is a
homeomorphism of C(G)) as soon as

{(g, h) : g, h have coprime finite orders}is dense in C(G). (4.2)
This property is satisfied both for G = Aut(µ) and G = Iso(U); this is a conse-
quence of a multi-dimensional version of Rokhlin’s lemma in the first case [22], and
of a modification of a construction of Pestov and Uspenskij in the second case (see
[106] for the original result and [97] for the required modification). Note in passing
that (4.2) is very unlikely to hold in a permutation group, so this technique can
only be successfully applied in “continuous” structures.

Let us explain now why (4.1) implies that the centralizer of a generic element
coincides with the closure of its powers; assume that G is a Polish group satisfying
the condition. Then we have

∀∗(g, h) ∈ C(G) h ∈ 〈g〉.
From this, and the fact that the restriction map is category-preserving, we deduce
that

∀∗g ∈ G ∀∗h ∈ C(g) h ∈ 〈g〉.
The above sentence says that, for a generic g ∈ G, the closed subgroup generated
by g is comeager in the centralizer of g - thus the two must coincide, and we have
proved that the centralizer of g coincides with 〈g〉. Let us sum up.

Theorem 4.8 (reformulation of ideas from [97]). — Let G be a Polish group
such that {(g, h) ∈ C(G) : 〈g〉 = 〈g, h〉} is dense in C(G). Then the centralizer of
a generic element of G coincides with the closed subgroup it generates - in other
words, a generic monothetic subgroup of G is maximal abelian.

The groups Aut(µ), U(H) and Iso(U) all satisfy these conditions.

4.3. Extensions of generic actions. Fix a Polish group G, a countable group Γ
and a subgroup ∆ 6 Γ. As we saw, one cannot expect in general that any element
of Hom(∆, G) extends to an element of Hom(Γ, G) - for instance, we saw that there
exist elements of Aut(µ) without square roots, and I proved in [92] that the same
is true for Iso(U). Here we focus on the question of whether generic elements of
Hom(∆, G) can be extended to generic elements of Hom(Γ, G); we describe a way
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to tackle this kind of problem when Γ is abelian, and G is a Polish group such that
there exist dense conjugacy classes in Hom(Γ, G) for any abelian Γ. This problem
usually reduces fairly easily to the case when Γ is finitely generated, simply because
open sets in Hom(Γ, G) only impose conditions on finitely many elements of Γ, so
we add the assumption that Γ is finitely generated. Then one can use the structure
theory of finitely generated abelian groups to decompose the problem into easier
sub-problems.

First, one needs to understand the case when ∆ is finite; for G = Aut(µ) or
Iso(U), this is easy: there exists an element π0 with comeager conjugacy class in
Hom(∆, G) for any finite abelian ∆, and this element can be extended to an action
of any finitely generated abelian supergroup of ∆. From this one obtains that the
restriction map Res: Hom(Γ, G) → Hom(∆, G) is category-preserving: given any
nonempty open U in Hom(Γ, G), the Effros theorem implies that Res(U)∩G ·π0 is
open and nonempty in the comeager set G·π0, so it cannot be meager in Hom(∆, G).

Next comes the case where ∆ = nZ and Γ = Z; as we saw when discussing
King’s theorem, we are asking whether the map g 7→ gn is category-preserving. To
my knowledge, we lack efficient general techniques to solve this type of question;
King’s theorem shows that this property holds for G = Aut(µ), and it is an open
problem for G = Iso(U).

Then, one needs to understand what happens when ∆ = Zd, Γ = Zk. Using the
same argument as when we studied the restriction map from C(G) to G, one sees
that the restriction map from actions of Zk to actions of Zd preserves category as
soon as

{(g1, . . . , gk) : 〈g1, . . . , gk〉 = 〈g1〉} is dense in Ck(G). (4.3)

If (4.3) is satisfied, then a similar line of reasoning enables us to deal with the
case of Res: Hom(Zk × F,G)→ Hom(Zd × F,G) for d 6 k and F a finite abelian
group (we skip the details).

We turn to the case Zd 6 Zd ×F . An obvious necessary condition for an action
π of Zd to extend to an action of Zd × F is that there exists a copy of F in the
centralizer of π(Zd); thus this has to be true for a generic π ∈ Hom(Zd, G) if we are
to hope that the restriction map Res: Hom(Zk×F,G)→ Hom(Zd, G) is category-
preserving. It follows from the conditions we have imposed thus far on our group
that a generic π(Zd) is the same as a generic π(Z), so we need to know that a
generic π(Z) contains infinitely many elements of order n for all n > 2. This is
known to hold for Aut(µ) [118]. Using the fact that a generic action in Hom(Zk, G)
is free ergodic, and that the conjugacy class of such an action is dense (see e.g. [76]
for details), one sees that the image of Res being nonmeager is enough to ensure
that Res is category-preserving in that case.

The final step is to understand Zd × F1 6 Zd × F2, where F1 6 F2 are finite
abelian groups. It is not hard (using Theorem 4.7) to see that the corresponding
restriction map preserves category as soon as a generic π(Zd) is divisible, which is
equivalent under our current assumptions to a generic π(Z) being divisible. This
follows from assumptions we already made on the group, namely that the restriction
map from Z2 to Z preserves category, and that a generic element admits roots of
any order. As another example of application of Theorem 4.7, let us give details of
this proof.
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Our starting assumption is that, for any integer n,

∀∗g ∈ G ∃f ∈ G g = fn.

We know that, for a generic pair (g, h) ∈ C(G), we have 〈g, h〉 = 〈g〉 = 〈h〉, so we
can write

∀∗(g, h) ∈ C(G) C(g) = C(h) = 〈g〉 and ∃f ∈ G h = fn

The f in the above line must belong to C(h), and using category-preservation we
may write the above line as

∀∗g ∈ G (∀∗h ∈ 〈g〉 ∃f ∈ 〈g〉 h = fn) .

Thus, for a generic g, the homomorphism f 7→ fn of the abelian Polish group 〈g〉
has a comeager range, hence it is surjective, proving that 〈g〉 is divisible.

Let us sum up the properties of G that were used to prove that the restriction
map Res: Hom(Γ,Aut(µ)) → Hom(∆,Aut(µ)) preserves category for any pair of
finitely-generated abelian groups ∆ 6 Γ:

• {(g1, . . . , gk) : 〈g1〉 = 〈g1, . . . , gk〉} is dense in Ck(G) for all k.
• The map g 7→ gn preserves category for all n > 1 (which, along with the
previous assertion, is enough to obtain that a generic π(Z) is divisible and
coincides with the centralizer of π(1))

• The centralizer of a generic element contains a copy of any finite abelian
group (equivalently it contains infinitely many elements of order n for any
integer n > 2).

For a general Polish G, the third condition might be too weak to show that the
restriction map Res: Hom(Zd × F,G)→ Hom(Zd, G) preserves category for every
finite F . I believe that in “natural” cases this condition (along with the two others)
should be sufficient.

These three conditions all hold for Aut(µ), and the first is known to hold for
Iso(U) while the other two are open. These questions essentially reduce to un-
derstanding the maps g 7→ gn in Iso(U); a proof that these maps are category-
preserving would probably lead to a complete positive solution of the problem.

In the case of G = Aut(µ), we obtain the following result.

Theorem 4.9 ([95]). — Let Γ be a countable abelian group and ∆ be a finitely-
generated subgroup of Γ. Then the restriction map Res: Hom(Γ, G)→ Hom(∆, G)
is category-preserving.

I asked in [95] whether this result extends to non-finitely generated ∆; Ageev [2]
shows that such is not the case. Given a countable abelian group G, he completely
described the set of its subgroups H for which it is true that a generic H-action can
be extended to a free G-action (in particular, his results extend the results of [95]).
Also, one cannot expect such a result to hold in general outside of the domain of
abelian groups; for instance, Ageev [1] proved that a generic element of Aut(µ) is
not conjugate to its inverse7. Hence, a generic measure-preserving Z-action cannot
be extended to an action of a nontrivial semidirect product Z o F .

7I only recently noticed that this also follows from an earlier result of del Junco, who proved
that the powers of a generic transformation form a disjoint family [25].



120 J. Melleray

In [95], I also pointed out an example (found with the help of B. Sévennec) of
a polycyclic group Γ with a central subgroup ∆ ∼= Z such that a generic measure-
preserving ∆-action cannot be extended to a Γ-action. This example depends on
the result of Chacon–Schwartzbauer [21] stating that the centralizer of a generic
g ∈ Aut(µ) coincides with {gn : n ∈ Z}.

4.4. Extreme amenability. A topological group G is extremely amenable if any
continuous action of G on a compact space has a global fixed point. The first
examples of extremely amenable groups, obtained in 1975 by Herer–Christensen
[58] , were examples of abelian “exotic” groups, which do not admit strongly con-
tinuous unitary representations; note that exotic groups are amenable iff they are
extremely amenable, and all abelian groups are amenable. The question of the ex-
istence of extremely amenable groups was first raised by Mitchell [98]). In the early
eighties Gromov and Milman proved that U(H) is extremely amenable, as a conse-
quence of the phenomenon of concentration of measure on euclidean spheres of large
dimensions, an avatar of the isoperimetric inequality [55]. Since then, many large
topological groups have been proved to be extremely amenable, for instance Aut(µ)
(Giordano–Pestov [45]) and Iso(U) (Pestov[104]). A comprehensive discussion of
extremely amenable Polish groups may be found in Pestov’s book [105].

Definition 4.10. — Let K be a compact metrizable group, and (X,µ) a stan-
dard probability space. The group L0(K) is the group of all measurable maps from
(X,µ) to K, identified if they coincide outside of a set of measure 0, endowed with
the topology of convergence in measure, which in this case is induced by the metric

d(f, g) =
∫
X

d(f(x), g(x))dµ(x).

(d is any compatible distance on K)

Then L0(K) is a Polish group, and Azuma’s inequality may be used to prove
that L0(K) is a Lévy group (Glasner [49]; Furstenberg–Weiss), which implies that
it is extremely amenable (for the definition of a Lévy group and other facts related
to extreme amenability that we do not discuss in detail, see e.g. [105]).

Definition 4.11. — A Polish group G is said to be monothetic if there exists
g ∈ G such that 〈g〉 is dense. We say that G is generically monothetic if this holds
for a generic g ∈ G.

It follows from a classical result of Halmos–Samelson [57] stating that any com-
pact abelian connected metrizable group is generically monothetic, that L0(K) is
generically monothetic for any such K ([49] for K = T). This can be proved with
a simple Baire category argument similar to one that can be found in [76, p.26].
Along the same lines, L0(K) is topologically 2-generated whenever K is compact,
metrizable and connected, this time as a consequence of the same Baire category
argument and the fact that any such K is topologically 2-generated (Schreier–Ulam
[115]). The fact that L0(T) is monothetic was first noticed by Glasner [49].

The starting point of the work that led to [97] was the following observation.

Theorem 4.12 ([97]). — Let G be a Polish group, and Γ be a countable group.
Then the set

{π ∈ Hom(Γ, G) : π(Γ) is extremely amenable}
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is Gδ in Hom(Γ, G).
Sketch of proof. Fix a compatible left-invariant metric d on G. It follows from

([105], 2.1.11) and an easy argument that π(Γ) is extremely amenable if, and only
if, the following condition is satisfied:

∀ε > 0 ∀A finite ⊆ Γ ∃B finite ⊆ Γ ∀c : B → {0, 1}
∃i ∈ {0, 1} ∃γ ∈ Γ ∀a ∈ A ∃δ ∈ c−1(i) d(π(γa), π(δ)) < ε.

At first glance, there are too many quantifiers involved for this to be a Gδ
condition; however this intuition is false, because many of the quantifiers range
over finite sets. �

Corollary 4.13. — Assume that G is a Polish group such that
{(gn) : 〈(gn)〉 is extremely amenable }

is dense in Gω. Then G is extremely amenable.
Actually, to show that G is extremely amenable, it is enough to prove that
{(gn) : 〈(gn)〉 is contained in an extremely amenable subgroup of G}

is dense in Gω.
Sketch of proof. The set {(gn) : 〈(gn)〉 = G} is dense Gδ in Gω for any Polish

G, so if the first assumption is satisfied the Baire category theorem along with
Theorem 4.12 for actions of the free group on countably many generators give the
desired conclusion.

Now, assume that the second, weaker assumption holds, and U is a nonempty
open subset of Gω. Without loss of generality, we may assume that U = V × Gω
where V is open in some Gm. Our assumption gives us (g0, . . . , gm−1) ∈ V which
generate a subgroup contained in an extremely amenable H 6 G. Let (hi)i<ω be
dense in H. Then the sequence (g0, . . . , gm−1, h0, h1, . . .) is dense in H and belongs
to V . �

This enabled T. Tsankov and I to give in [97] a new proof of the extreme
amenability of Iso(U), U(H) and Aut(µ). The same scheme applies in all three
cases, and the most complicated fact used in the proofs is the extreme amenability
of groups of the form L0(K) where K is compact metric. For instance, let us give
a proof along those lines of the extreme amenability of U(H).

Sketch of proof of the extreme amenability of U(H). It is enough to show that
{(g1, . . . , gn) : 〈g1, . . . , gn〉 is contained in an isomorphic copy of some L0(U(m))}
is dense in U(H)n for all n. So we start by picking a nonempty open O ⊆ U(H)n;
we fix a Hilbert basis (ei) of H. One can find (g1, . . . , gn) ∈ O and m < ω such
that (g1, . . . , gn) acts trivially on H(m)⊥ = Span(ei)i>m, and any element of U(H)
which agrees with (g1, . . . , gm) belongs to O; we identify U(m) with the pointwise
stabilizer of H(m)⊥.

The action U(m) y H(m) extends to an action L0(U(m)) y L2(H(m)), and
the latter is a Hilbert space, which we can identify with H in such a way that
constant functions in L0(H(m)) are identified withH(m). The image of (g1, . . . , gm)
under this identification is an element (h1, . . . , hm) of U(H) which coincides with
(g1, . . . , gm) on H(m), thus belongs to O, and 〈(h1, . . . , hm) is contained in an
isomorphic copy of L0(U(m)). �
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4.5. Generic monothetic subgroups. The fact that extreme amenability is a Gδ
condition naturally leads one to wonder whether a generic element of some fixed
Polish group G generates an extremely amenable subgroup.

Recall that a countable, abelian group is unbounded if there is no upper bound
on the order of its elements.

Theorem 4.14 ([97]). — Let Γ be a countable, unbounded abelian group and
G be one of Aut(µ), U(H) or Iso(U). Then the set {π : π(Γ) ∼= L0(T)} is dense in
Hom(Γ, G); therefore, the generic π(Γ) is extremely amenable.

Actually, the above result holds in somewhat greater generality, and one can
write down an algebraic condition such that the extreme amenability of a generic
π(Γ) holds (for Γ abelian) exactly when Γ satisfies this condition, and Γ cannot
densely embed in an extremely amenable group if this condition fails. I will not go
into this level of detail here and focus on the case of Z below.

The “therefore” part above follows from the facts that extreme amenability is
a Gδ condition, and that L0(T) is extremely amenable. In each case, the proof
proceeds by showing first that {π : π(Γ) is contained in a closed copy of L0(T)} is
dense, then by perturbing slightly π so that π(Γ) becomes dense in L0(T).

In the case of U(H), using spectral theory, we actually proved a much more pre-
cise result: if Γ is unbounded abelian, then the set {π : π(Γ) ∼= L0(T)} is comeager
in Hom(Γ, U(H)) (we will see a different proof of this fact below). This leads to the
following question (and now, we focus, as promised, on the case Γ = Z for clarity
of the exposition): what can one say about the generic properties of monothetic
subgroups of G, when G is Aut(µ) or Iso(U)?

We already know that, in all three cases, a generic monothetic subgroup is max-
imal abelian and extremely amenable. In U(`2), this completely characterizes the
group up to isomorphism: the spectral theorem tells us that a maximal abelian
subgroup of U(`2) must coincide with the unitary group of a separable abelian von
Neumann algebra, and only one of those is extremely amenable: the unitary group
of L∞(X,µ) when (X,µ) is atomless, and this group is isomorphic to L0(T). Thus,
we obtain in a fairly soft way (much more painlessly than in our original proof of
this result, at any rate) that a generic monothetic subgroup of U(H) is isomorphic
to L0(T).

Question 1. — Does the same property hold in Aut(µ)?
Evidence towards a positive answer to that question was recently found by Solecki

[117], who proved that the closed subgroup generated by a generic element of Aut(µ)
is a continuous homomorphic image of a closed subspace of L0(R), and contains
an increasing chain of finite-dimensional tori whose union is dense.

One could also ask whether the same property holds in Iso(U); we do not even
know whether a generic monothetic subgroup is divisible, a property which is pre-
sumably much easier to establish. However, it was pointed out by C. Rosendal
(private communication) that a generic element of Iso(U) does not generate a copy
of L0(T). To see why, first recall that a Polish group has property (OB) if, when-
ever it acts by isometries on a metric space (X, d) such that for all x the map
g 7→ gx is continuous, then every orbit is bounded (in the case of Polish groups,
this is equivalent to saying that all continuous isometric actions on separable metric
spaces have bounded orbits).
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Let me sketch Rosendal’s argument: to prove that L0(T) has property (OB),
it follows from [111] that we need to prove that for any neighborhood V of 1
there exists a finite subset F and an integer n such that G = (FV )n. A basis of
neighborhoods of 1 in L0(T) is given by sets of the form

Vε = {g : µ({x : d(g(x), 1) > ε}) < ε}.
Now, it is easy to see, by cutting (X,µ) into n pieces each of measure < ε, that for
such an n one has L0(T) = V nε .

However, a generic isometry of the Urysohn space has unbounded orbits (for
instance, because for any fixed x and N the set {g ∈ Iso(U) : ∀nd(x, gn(x)) 6 N}
is closed and has empty interior, so the set of isometries for which the orbit of x
is bounded is meager in Iso(U)), thus generates a group which does not satisfy
property (OB). Hence a generic element of Iso(U) does not generate a subgroup
isomorphic to L0(T); this property might hold for Iso(U1), as far as I know, but
there is no compelling evidence towards that being true (again, one should first
understand whether a generic monothetic subgroup is divisible in that case).

Above, it was essential for us that the maximal abelian subgroups of U(H) are
easy to classify; the same would be true in unitary groups of separable von Neu-
mann algebras: the point is that when the spectral theorem holds it is very useful,
unfortunately it is specific to von Neumann algebras (though I. Farah pointed out
to me that a weaker form of spectral theorem holds for general C∗-algebras). This
leads to the following, probably hopeless, problem.

Question 2. — Can one classify the maximal abelian subgroups of Aut(X,µ)?
Of Iso(U)?

While there may be a faint glimmer of hope that something can be said in
Aut(X,µ), I would not be surprised if the situation in Iso(U) were extremely wild
- for instance, if any (noncompact?) abelian Polish group were isomorphic to a
maximal abelian subgroup of Iso(U).

We have not addressed perhaps the simplest, most natural question about Baire
category in Hom(Γ, G): when are conjugacy classes meager? When do comeager
classes exist? It turns out that this is harder to investigate than it looks at first; we
will come back to this at the end of the next section, after introducing the language
of metric model theory and some related ideas.

5. First-order logic and Polish groups

5.1. Classical first-order logic and Fraïssé classes.

5.1.1. Basics of classical first-order logic. What is a mathematical structure? Cer-
tainly, it is a set, along with various operations or relations of particular interest.
For instance, a graph could be defined as a set, along with a binary relation (which
is, say, irreflexive and symmetric); a group is a set, endowed with operations of
multiplication and inverse, and perhaps it makes sense to distinguish the neutral
element too.

Definition 5.1. — A first-order structure is a tuple M = (M, (Ri)i∈I , (fj)j∈J)
where:

• M, I, J are sets.
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• Each Ri is a subset of some Mni .
• Each fj is a function from some Mkj to M .

The Ri’s are called relations, and the fj ’s are called functions. Of course, one
might also want to consider functions from some Mk to some M l, but considering
their coordinates these functions reduce to M -valued functions. Also, one might
want to consider distinguished constants (for instance, the neutral element of a
group); we consider them as functions from M0 to M . So, above, ni is to be
understood as being a positive integer, while kj is a nonnegative integer.

Definition 5.2. — A first-order language is a tuple L=((Ri,mi)i∈I ,(fj ,kj)j∈J)
where

• I is a set, and each mi is a positive integer.
• J is a set, and each kj is a nonnegative integer.

Each Ri is called a relation symbol, and each fj is called a function symbol; in the
particular case when kj = 0 we say that fj is a constant symbol

Given a structure M, one can then consider its language; conversely, given a
language L, one can introduce the class of L-structures, which are all the first-
order structures whose language is equal to L.

Given a language L, a L-structure M and a symbol belonging to L, we call the
corresponding relation or function on M the interpretation of that symbol. We
always assume that our languages contain a special binary symbol, which is inter-
preted by the equality relation, and will not mention that symbol in our notations.

Note that there is a choice of language to be made when deciding how to turn a
mathematical structure into a first-order structure; for instance, as we pointed out
above, one might want to include a particular symbol to denote the neutral element
of a group, or be content with symbols for multiplication and inverse, or even just
for multiplication. Why would one make one choice rather than the other? This is
where semantics come into play - so far, our discussion is purely on a syntactical
level.

Definition 5.3. — Let L be a first-order language. Formulas are built induc-
tively; first one defines terms as follows:

• Any variable symbol is a term.
• Any expression f(t1, . . . , tn) is a term, where f is a n-ary function symbol

of L, and t1, . . . , tn are terms.
(in particular constant symbols are terms)

• If R is a n-ary relational symbol and t1, . . . , tn are terms then R(t1, . . . , tn)
is a formula.

• For any formula ϕ, its negation ¬ϕ is a formula.
• For any formulas ϕ,ψ their conjunction ϕ ∧ ψ and disjunction ϕ ∨ ψ are
formulas.

• For any formula ϕ and any variable symbol x, ∀x ϕ and ∃x ϕ are formulas.

Here, what matters most is that we do not allow quantification on subsets of the
structure, or on “external” objects, such as the integers for instance, nor do we allow
infinite conjunctions and disjunctions. So, while the formula ∃i ∈ {1, . . . , N} gi = 1
is a valid first-order formula in the language of groups (once it is written in the form
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i = 1), ∃i ∈ N∗ gi = 1 is not. This is a crucial point for the development of
first-order logic and the validity of the compactness theorem; we will not really use
any first-order logic (except as a guide for intuition), so I will not go into detail here
(see [61], [108] or [119] for an introduction to first-order logic and model theory).

There is a natural notion of meaning of a formula inside a model, defined in-
ductively; for instance, consider the formula in the language of groups (×,−1, e)
ϕ(x, y) : x× y = e. This formula (with two free variables x, y) is true in the group
(Z,+,−, 0) when x = 2, y = −2; we write (Z,+,−, 0) |= ϕ(2,−2). It is false for
instance for x = 14, y = 3. So one can express the fact that x and y are inverses
of one another by the first-order formula ϕ. If a formula has no free variables,
for instance the formula ψ: ∀x x2 = 1, then this formula will simply be true (or
satisfied) or false in any given L-structure. The formula ψ above is satisfied by a
group exactly when all elements of that group have order 2. We write M |= ϕ if ϕ
is true in M.

The choice of language clearly influences which formulas one can write in a first-
order way, thus affecting the theory of a L-structure M, which is the set of all
first-order formulas (without free variables) which are true in M.

We can also define what a substructure of a first-order structure M is: N is
a substructure of M if the universe of N is contained in the universe of M, both
structures have the same language, and the relations and functions of N are the
restrictions of the relations and functions of M. Here again, the choice of language
influences what substructures are: if we include inverse and neutral element along
with multiplication in the language of groups, for instance, then a substructure
of a group is exactly a subgroup; this is no longer true if we remove one of these
symbols.

This concludes the first part of our crash-course on first-order logic; mostly what
needs to be remembered from the above are the notions of language, structure, and
substructure. Now we come to the reason why we are interested in first-order
structures here: their automorphism groups.

Definition 5.4. — Let M = (M, (Ri)i∈I , (fj)j∈J) be a first-order structure.
An automorphism of M is a bijection g : M →M such that:

• For all i ∈ I, for all m̄ = (m1, . . . ,mk) such that ni = k, one has M |=
Ri(m̄)⇔M |= Ri(g(m̄)) (where g(m̄) = (g(m1), . . . , g(mk)).)
• For all j ∈ J , for all m̄ = (m1, . . . ,mk) such that kj = k, one has fj(m̄) =
fj(g(m̄)).

These groups are of particular interest to us when the structure is countable,
that is, when it universe is. Below we use the word countable to mean an infinite
set equinumerous with ω; we say that a set is at most countable if it is finite or
countable.

Definition 5.5. — Let M be a countable first-order structure. The permuta-
tion group topology on its automorphism group Aut(M) is the topology of pointwise
convergence with respect to the discrete topology on M; explicitly, a basis of open
neighborhoods of the identity is given by subsets of the form

{g ∈ Aut(M) : ∀a ∈ A g(a) = a}

where A ranges over all finite subsets of M .
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When M is (N,=), the corresponding automorphism group is the permutation
group of the integers S∞, endowed with the topology we discussed in the first
section of this text. In general, one may always assume that M = N. Since any
automorphism must induce a bijection of the universe, the automorphism group
Aut(M) is then a subgroup of S∞; the permutation group topology is the topology
on Aut(M) that is induced from the Polish topology on S∞. It is easy to check
that Aut(M) is a closed subgroup on S∞ or, equivalently, that Aut(M) endowed
with this topology is a Polish group in its own right.

Theorem 5.6 (folklore). — Let G be a closed subgroup of S∞. Then there
exists a first-order structure M (with a countable language) such that G is iso-
morphic, as a topological group, to Aut(M) endowed with its permutation group
topology.

Proof. — As a subgroup of S∞, G naturally acts on N and more generally on
any Nk. For any integer k > 1, let Ok = {Ok,i}i∈Ik

be an enumeration of all
orbits of the action Gy Nk. Then consider a language with exactly |Ik| relational
symbols Rk,i for each k, and turn N into a L-structure M by setting

M |= Rk,i(n̄)⇔ n̄ ∈ Ok,i.

Clearly, G is a subgroup of Aut(M). Consider a finite set A = {n1, . . . , nk} ⊆ N and
an automorphism f of M. Then (n1, . . . , nk) ∈ Ok,i for some i, and f(Ok,i) = Ok,i,
which means exactly that there exists g ∈ G such that g(n̄) = f(n̄). We have just
shown that, given any finite subset A of N and any f ∈ Aut(M), there exists g ∈ G
which coincides with f on A. In other words, G is dense in Aut(M); since G is
closed in S∞ it is also closed in Aut(M), so G = Aut(M). �

Automorphism groups of first-order structures actually are nonarchimedean Pol-
ish groups, which means that the neutral element admits a basis of open neighbor-
hoods made up of open subgroups. This is clearly not true for all Polish groups
(for instance, a connected Polish group cannot have a nontrivial open subgroup),
so not all Polish groups are isomorphic, as topological groups, to automorphism
groups of first-order structures. But those are actually completely characterized by
being Polish and nonarchimedean: a Polish nonarchimedean group naturally em-
beds into S∞ (for any open subgroup V of G, one can consider the natural action
of G on G/V , and glue all these actions along each other as V ranges over a basis
of neighborhoods of 1; the corresponding action of G on a countable set gives us
the desired embedding).

Note that one could still wonder whether any Polish group is isomorphic, as an
abstract group, to a subgroup of S∞; this question was asked by Ulam [124] for
SO(3,R) and more generally for Lie groups; the answer was proved to be positive for
many matrix groups by Kallman [70]; see also Thomas [122]. Now we know plenty
of examples of Polish groups which do not admit any nontrivial homomorphism to
S∞, and we will see some of those later on.

One last remark before forging ahead: there are many ways to turn a nonar-
chimedean Polish group into the automorphism group of a countable first-order
structure; some properties of the structure will be independent of this choice, but
others will not, which is important to keep in mind.
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5.1.2. Fraïssé classes. It is often the case that “universal” structures have very
large automorphism groups. One way to quantify this “largeness” is via the action
of the group on the structure.

Definition 5.7. — A first-order structure M is said to be homogeneous if any
isomorphism between two finitely generated substructures extends to an isomor-
phism of the whole structure.

When the structure is relational (that is, there are only relation symbols in its
language), finitely generated structures are always finite; this is false in general
when the language contains functions. For instance, the substructure of (Z,+, 0)
generated by 1 is N; the substructure of (Z,+,−, 0) generated by 1 is Z.

A crucial observation, due to Fraïssé, is that one can characterize homogeneous
first-order structures by properties of their finitely generated substructures.

Definition 5.8. — Let L be a countable first-order language, and K be a class
of finitely generated L-structures. We say that:

• K is countable if it contains only countably many elements up to isomor-
phism.

• K is hereditary if, whenever B belongs to K and A is a finitely generated
L-structure which embeds in B, A must belong to K.

• K has the joint embedding property (JEP) if any two elements of K embed
in a third one.

• K has the amalgamation property (AP) if, given A,B,C ∈ K and em-
beddings α : A → B, β : A → C, there exists D ∈ K and embeddings
i : B→ D, j : C→ D such that i ◦ α(a) = j ◦ β(a) for all a ∈ A. Schemat-
ically, the following diagram commutes.

B

i   
A

α

>>

β   

D

C
j

>>

A class satisfying all the properties above is called a Fraïssé class.

The amalgamation property is probably the most mysterious at first glance; note
that it does not necessarily imply the joint embedding property, because we are not
assuming that the empty structure belongs to K, or even that K contains an initial
object. Let us discuss a simple example: the class of finite graphs, which for us
are structures in a language with a binary relation symbol R which is irreflexive
and symmetric. Countability and hederitarity are obvious in that case; we allow
graphs to be empty so the amalgamation property will imply the joint embedding
property in that case. It is easy to amalgamate two graphs Γ1,Γ2 over a common
subgraph ∆: simply form the disjoint union Γ1 t Γ2, then identify both copies of
∆; keep the edges of Γ1 and Γ2 and add no new ones.
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Amalgamating groups over a common subgroup is somewhat more complicated,
but of course the amalgamated free product is the construction we need in that case.
However, there are uncountably many finitely-generated groups up to isomorphism,
so they do not form a Fraïssé class. Finite groups do, however, and the reader is
invited to think up a good way to amalgamate finite groups in such a way that the
amalgam remains finite and, more generally, to try to come up with examples of
Fraïssé classes of her own.

Definition 5.9. — Let M be a countable first-order structure, with language
L. The age of M is the class of all L-structures which are isomorphic to a finitely
generated substructure of M.

Clearly, the age of any countable structure is countable, hereditary and satisfies
the joint embedding property.

Theorem 5.10 (Fraïssë [37]). — The age of a homogeneous countable structure
is a Fraïssé class.

Proof. — We only need to check the amalgamation property; let A, B and C be
three elements of the age of K and α, β be embeddings from A to B,C respectively.
We may assume that A,B,C are substructures of K, and (by homogeneity) that
α, β are restrictions to A of automorphisms of K, which we still denote by α, β.

Then, let D denote the substructure of K generated by α−1(B) and β−1(C). D
is finitely generated, and is an amalgam of B,C over A. �

Using a back-and-forth construction, Fraïssé proved a converse of the above
result, in the following strong sense.

Theorem 5.11 (Fraïssë [37]). — Let K be a Fraïssé class in a countable lan-
guage L. Then there exists a L-structure K which is homogeneous and whose age
is equal to K. This structure is unique up to isomorphism and is called the Fraïssé
limit of K.

Uniqueness up to isomorphism is easy to obtain from countability and homo-
geneity. The structure K is characterized by the following property, which should
make more or less clear how to construct K via repeated embeddings and amal-
gamations (recall Katětov’s construction of the Urysohn space): for any finitely
generated substructure A of K, any B ∈ K, and any embedding i : A → B, there
exists B̃ ⊆ K containing A and an isomorphism from B̃ to B which coincides with
i on A.

This characterization is sometimes called Alice’s restaurant axiom: everything
you can imagine is already there.

Let us consider again the class of finite graphs: the Fraïssé limit of the class
of finite graphs is the Radó graph R, which is characterized among all countable
graphs by the following property: for any disjoint subsets A,B of R, there exists
an element x of R such that there is an edge from x to every element of A and
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to no element of B. This is the translation of Alice’s restaurant axiom for graphs;
interestingly, there is also a probabilistic construction of this object. Consider a
graph on N built in the following way: for each i < j, flip a coin; if the coin lands
on heads, put an edge between i and j, and do not put an edge otherwise. Clearly,
with probability 1, the axiom we just wrote down will be satisfied, because, once
we only consider j > max(A,B), the probability to put an edge between j and
all elements of A and no element of B is a fixed strictly positive number, hence
such a j will appear with probability 1. In general, one cannot hope for such simple
probabilistic constructions of Fraïssé limits, but this is still an interesting area, with
some promising recent developments which unfortunately fall outside the scope of
this text.

We saw other examples of homogeneous structures: Urysohn spaces. For in-
stance, the rational Urysohn space UQ may be seen as a homogeneous structure in
the language with countably many binary relational symbols (dq)q∈Q+ , by setting

UQ |= dq(x, y)⇔ d(x, y) = q.

We let the reader think of how one can amalgamate metric spaces.
In the end of this section, we will discuss some other examples. Going back to

Polish groups for a moment, we note that the construction of Theorem 5.6 actually
shows that, for any nonarchimedean Polish group G, there exists a homogeneous
countable structure M, in a countable relational language, such thatG is isomorphic
(as a topological group) to Aut(M).

5.1.3. Free amalgams. There is a situation where amalgams are particularly simple:
free amalgamation. In this section, we assume that all languages are relational and
countable; the material discussed here comes from [18].

Definition 5.12. — Let L be a countable relational language, A,B,C be three
L-structures and α : A→ B, β : A→ C be two embeddings. The free amalgam of
B,C over α, β is the structure M, where:

• The universe M of M is the quotient of the disjoint union B t C by the
equivalence relation which identifies α(a) and β(a) for all elements of A
(and identifies only those elements)

• Relations in M come only from tuples entirely contained in B and tuples
entirely contained in C, and are such that the natural inclusion maps from
B,C to M induce embeddings of L-structures.

Informally: glue together the two copies of A, copy the relations from B and C,
and add no other relations. Below we will simply say that this structure is the free
amalgam of B, C over A (the embeddings should always be clear from the context).
Using the same idea, we can freely amalgamate any family of L-structures over a
common substructure A.

Some classes are stable under free amalgamation (we say that they satisfy the free
amalgamation property), for instance the class of all graphs is; the amalgamation
procedure we described to show that the class of finite graphs is a Fraïssé class was
exactly free amalgamation. Most classes are not stable under free amalgamation:
for instance, the class of finite rational metric spaces certainly is not, since there
must be a distance between any pair of elements, so we must add relations between
elements of B \A and C \A.
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Free amalgamation behaves very well with respect to automorphisms, in the
sense that it enables one to glue automorphisms together (which is also possible
for rational metric spaces, and indeed in many cases where there exists a “natu-
ral” amalgamation procedure). It turns out to be possible to reproduce Katětov’s
construction of the Urysohn space in any free amalgamation class.

Definition 5.13. — Let K be a Fraïssé class in a countable relational language
L, with the free amalgamation property. We let Kω denote the class of all at most
countable L-structures whose age is contained in K.

For instance, if K is the class of all finite graphs, then Kω is the class of all (at
most) countable graphs. Assuming that K has the free amalgamation property, it
is easy to check that Kω is also stable under free amalgamation.

Definition 5.14. — Let A,B be L-structures such that B = A ∪ {b}. The
quantifier-free type of b over A is the set of all formulas ϕ with at most one free
variable x, with parameters in A, such that B |= ϕ(b).

A quantifier-free type (q.f type for short) over some L-structure A is a set of
formulas with at most one free variable x such that there exists a structure B
containing A and an element b of B such that our set of formulas is exactly the q.f
type of b over A.

We recall that all our Fraïssé classes are assumed to be infinite. In particular,
for any A ∈ K, there exists at least one q.f type over it which does not come from
an element of A. To each q.f type p over A one can associate a unique L-structure
whose universe is of the form A ∪ {b}, where b realizes the q.f. type we started
from; we call this the structure associated to p (if p contains a formula x = a for
some a ∈ A, then B = A, otherwise A is strictly contained in B).

For A ∈ Kω, we say that a q.f. type p over A is finitely induced if there exists
a finite substructure M of A and a q.f. type q over M such that the structure
associated to p is the free amalgam over M of A and the structure associated to
q. Note that there are only countably many finitely induced q.f. types over a given
A ∈ Kω.

Definition 5.15. — Let K be a Fraïssé class of L-structures with the free
amalgamation property, and A ∈ Kω. We let E(A) denote the L-structure obtained
by forming the free amalgam over A of the structures associated to all the finitely
induced q.f. types over A.

There is an obvious natural embedding of A into E(A), and we always see A
as a substructure of E(A) via this embedding. Now, given a Fraïssé class K with
the free amalgamation property, we can simply mimic Katětov’s construction of
the Urysohn space: start from any A ∈ K, and construct a tower of elements in
Kω by setting M0 = A, Mi+1 = E(Mi). The limit M∞ = ∪Mi must then be the
Fraïssé limit of K. It is clear that automorphisms of M extend to automorphisms of
M∞, and one can check that this induces a continuous embedding of permutation
groups. Let us sum up.

Theorem 5.16 ([18]). — Let K be a Fraïssé class with the free amalgama-
tion property, with Fraïssé limit K, and M be a countable structure whose age is
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contained in K. Then there exists an embedding i : M→ K such that all automor-
phisms of M extend to automorphisms of K, and this extension map can be taken
to be a continuous group embedding from Aut(M) to Aut(K).

This construction can be tweaked a little bit. For instance, at each step, we
could let Mi+1 be the free amalgam of two copies of E(Mi) over Mi; then any
automorphism of Mi extends uniquely to an automorphism of Mi+1 that swaps
the two copies of E(Mi). This idea can be used to prove the following result.

Theorem 5.17 ([18]). — Let K be a Fraïssé class with the free amalgamation
property, with Fraïssé limit K, M be a countable structure whose age is contained
in K, and n > 2 an integer. There exists an automorphism ϕM of K such that
ϕnM = 1, and the set of fixed points of ϕM is isomorphic to M.

The construction ensures that M and N are isomorphic iff ϕM and ϕN are con-
jugate; the mapM 7→ ϕM can be turned into a Borel reduction of the isomorphism
relation of elements of Kω to the relation of conjugacy in Aut(K).

We do not discuss definitions of Borel reducibility, and refer the reader to [9],
[42], [59] or [75] for background. The remainder of this section (that is, until 5.1.4)
can be safely skipped by readers unfamiliar with this theory. Let us note that the
above result implies that the relation of conjugacy among, say, involutions of the
random graph, is universal among Borel actions of S∞; the same result is true if
one replaces the random graph by any one of the Henson graphs. The reason this
holds is that, in each of these cases, the isomorphism relation among elements of
Kω is universal for actions of S∞, and the above result gives us a reduction of this
relation to the conjugacy relation of involutions in Aut(K) (involutions could be
replaced by elements of any fixed finite order, of course). The fact that the relation
of conjugacy in the automorphism group of the random graph is universal among
Borel actions of S∞ was originally proved, differently, by Coskey–Ellis–Schneider
[23].

The main reason why I discussed the constructions above in some detail is that
they lead to a question I find intriguing: what are the possible complexities for the
relation of isomorphism of elements of Kω?

Question 3. — Let K be a Fraïssé class with the free amalgamation property.
Is it true that the relation of isomorphism of elements of Kω is either smooth or
universal for Borel actions of S∞?
5.1.4. An example: good measures. Fraïssé classes may appear in somewhat unex-
pected places; we discuss an intriguing example related to topological dynamics.
First, consider the class of all finite boolean algebras, say in the language with con-
stant symbols for the emptyset and the whole space, as well as function symbols
for union, intersection and complement. This is a Fraïssé class - the amalgamation
procedure may be checked by using product algebras, for instance: indeed, let A
be a common subalgebra of two finite boolean algebras B,C. Then D = B×C is a
finite boolean algebra, and the diagonal embedding a 7→ (a, a) amalgamates B and
C over A. The limit of this class is easily seen to be the countable atomless boolean
algebra B∞, whose Stone space is a Cantor space X (the Boolean algebra of clopen
subsets of X is isomorphic to B∞). So, the automorphism group Aut(B∞) and the
homeomorphism group Homeo(X) are isomorphic as topological groups.

Now, let us increase the complexity of our class a little bit.
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Definition 5.18 (Akin [4]). — Let X be a Cantor space. A good measure on
X is a Borel measure µ which is atomless, has full support, and is such that for
any clopen A,B such that µ(A) 6 µ(B), there exists a clopen C ⊆ B such that
µ(A) = µ(C).

It follows from a result of Glasner–Weiss [51, Proposition 2.6] we already men-
tioned that, whenever ϕ is a uniquely ergodic homeomorphism of a Cantor space
X, the unique ϕ-invariant measure is a good measure. A beautiful theorem of Akin
[4] states that the converse is also true: given a good measure µ on a Cantor space
X, there exists a homeomorphism ϕ on X such that µ is the unique ϕ-invariant
measure.

Definition 5.19. — Given µ a good measure on a Cantor space X, we define
its clopen value set V (µ) as the set of all values µ(V ) as V ranges over clopen
subsets of X.

Whenever V is the clopen value set of a good measure, it is easy to see that V is
countable, contains 0 and 1, is the intersection of a subgroup of R and [0, 1], and
is dense in [0, 1]. Any such set will be called a good value set.

Akin pointed out in [4] that for any good value set V there exists a good measure
µ such that V = V (µ). Let us see this from the point of view of Fraïssé theory:
fix a good value set V , and consider the language LV made up of the language of
boolean algebras expanded by unary relational symbols µr for all r ∈ V . We may
then consider the class of LV -structures A which are finite Boolean algebras and
are such that, when one sets (µ(a) = r) iff A |= µr(a), one defines a probability
measure on A. One can check that this defines a Fraïssé class, the limit of which is
a countable atomless Boolean algebra endowed with a probability measure whose
set of values is equal to V . Looking at the Stone space, one can see the limit as a
Cantor space endowed with a good measure µ such that V (µ) = V . We thus see
that to any good value set corresponds a good measure.

Using back-and-forth as usual, it is straightforward to check that, if µ is a good
measure on a Cantor space X and A,B are finite subalgebras of clopen subsets
of X, any isomorphism from A to B extends to a homeomorphism of X which
preserves µ. Hence the algebra of clopen sets on X endowed with the measure µ is
the Fraïssé limit of the class of finite boolean algebras endowed with a probability
measure taking its values in V (µ). In particular, two good measures with the same
clopen value set must be isomorphic, a fact which is proved very differently in [4].

As we saw earlier, there is no Polish topology on the full group of a minimal
homeomorphism of a Cantor space X; for Z-actions, the closure of the full group
is still a complete invariant for orbit equivalence (this is pointed out in [66], and
follows easily from results of Giordano–Putnam–Skau [46]), thus a natural object
to study.

We focus on the case of a uniquely ergodic homeomorphism ϕ of a Cantor space
X, call µ the unique ϕ-invariant measure, and Hµ the group of all homeomorphisms
of X which preserve µ. Then the same argument we used to prove that there is no
Polish group topology on [ϕ] shows that the Polish group topology on Hµ is unique;
it follows from the arguments of [17] that any nontrivial normal subgroup of Hµ

contains its derived subgroup, so to decide whether Hµ is simple as an abstract
group we need to know whether every element of Hµ is a product of commutators.
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A case where this is particularly easy to prove is when Hµ has a comeager conjugacy
class: assume that such is the case, call Ω the comeager class, and let k be any
element of Hµ. Then kΩ ∩Ω must be nonempty, so there exists g ∈ Ω and f ∈ Hµ

such that kfgf−1 = g, or k = gfg−1f−1, i.e. k is a commutator. Using an argument
due to Rosendal and Solecki [112], one can also see that when Hµ has a comeager
conjugacy class then it has the automatic continuity property.

We are led to the question of whether Hµ has a comeager conjugacy class; this
is a well-studied question for Polish groups in general, well-understood in the case
of subgroups of S∞ since work of Kechris–Rosendal [77] extending a study initiated
by Hodges–Hodkinson–Lascar–Shelah [62] . Kechris and Rosendal approached this
problem using a Fraïssé-theoretic point of view: let K be a Fraïssé class with limit
K, and denote by Kaut the class made up of all pairs (A, ϕ) such that A is an
element of K and ϕ is a partial automorphism of A. Then the existence of a dense
conjugacy class in G = Aut(K) is equivalent to saying that Kaut satisfies the joint
embedding property. Intuitively, pairs (A, ϕ) encode basic open sets in G, and the
joint embedding property says that any two basic open sets have conjugates which
intersect, equivalently, that there exists a comeager set of elements with a dense
orbit.

The existence of a comeager conjugacy class may similarly be expressed in terms
of the class Kaut, but is a bit trickier; say that a class F of finite structures has
the weak amalgamation property if, given any A ∈ F , there exists an embedding
i : A → B ∈ F such that any two superstructures of B belonging to F can be
amalgamated over A - the corresponding diagram is as follows.

C

  
A

i
// B

>>

  

E

D

>>

Kechris–Rosendal [77] proved that there exists a comeager conjugacy class in
Aut(K) if, and only if, Kaut satisfies both the joint embedding and weak amalga-
mation properties. The weak amalgamation property is sometimes easy to check in
presence of the following phenomenon: when, given any (A, ϕ) ∈ Kaut, there exists
(B, ψ) ∈ Kaut in which (A, ϕ) embeds and such that ψ is a global automorphism of
B. We then say that K has the weak extension property. When looking at things
from the angle of the action of Aut(K) on K, the weak extension property says that
elements with finite orbits are dense in K. Typically, the weak extension property
is difficult to prove or just plain false, while the joint embedding property holds in
many examples. The following result was proved in joint work with T. Ibarlucia.

Theorem 5.20. — Let µ be a good measure on a Cantor space X. Then the set
of elements of finite order is dense in the group of homeomorphisms which preserve
µ.

Using Akin’s theorem linking good measures and minimal homeomorphisms, this
result can be considerably reinforced, as was pointed out by K. Medynets.
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Theorem 5.21 (Essentially Grigorchuk–Medynets [54]). — Let ϕ be a minimal
homeomorphism. Then [ϕ] contains a dense locally finite subgroup.

The proof of the above theorem uses in an essential way the existence of Kaku-
tani–Rokhlin partitions (and the fact that, up to replacing ϕ by another minimal
homeomorphism which is orbit equivalent to it, one can always assume that [[ϕ]] is
dense in [ϕ]).

Going back to the existence of dense/comeager conjugacy classes in the automor-
phism group of a good measure, the previous theorems tell us that the extension
property always holds; unfortunately, the joint embedding property is not always
satisfied, as the following simple example shows.

Examples 5.22. — Assume that µ is a good measure, that 1/n ∈ V (µ), and
that α is a cyclic permutation of atoms of measure 1/n. Let B be any clopen set
different from the empty set and the whole space, and let β be an automorphism
fixing B and X \B. Assume that the partial automorphisms α, β jointly embed in
some µ-preserving automorphism δ; identify B with its image via this embedding.
Since α embeds in δ, B must be split up in n subsets of equal measure (the trace
on B of the atoms which are permuted by α); thus µ(B)/n must belong to V (µ).

Thus, we see that if Hµ satisfies the joint embedding property, then 1/n ∈
V (µ)⇒ V (µ)/n = V (µ). This condition is clearly not always satisfied; for instance,
it fails when V is the smallest good value set containing 1/2 and 1/π and µ is the
good measure such that V (µ) = V .

Analyzing the counterexample above, one can give a characterization, in terms
of the structure of V (µ), of exactly when there exists a dense conjugacy class in Hµ.
This is satisfied in particular when V (µ) is the intersection of a Q-vector subspace
of R and [0, 1], (in which case there is a comeager conjugacy class, a fact already
proved by [4]) or of a subring of R and [0, 1].

In most cases I am aware of, the conjunction of the joint embedding property
and the weak extension property is sufficient to obtain the weak amalgamation
property (usually, one can produce a class of finite structures endowed with a
global automorphism which is cofinal in the class of finite structures with a partial
automorphism, and satisfies the amalgamation property); it appears not to be the
case in Fraïssé classes of measures.

One can also use the density of elements of finite order and results of [17] to
show that Hµ is always topologically simple, or, more generally, that the closure of
the full group of any minimal homeomorphism is topologically simple (hence, the
same is true for the full group itself), see [66]. The following problem remains open.

Question 4. — Is the full group of a minimal homeomorphism a simple group?
What about its closure in Homeo(X)?

There are other intriguing questions; we already mentioned Akin’s theorem stat-
ing that for any good measure µ on a Cantor space X there exists a minimal
homeomorphism ϕ of X such that µ is the unique ϕ-invariant measure. Can this
result be recovered using the Fraïssé-theoretic approach we used here? Can it be
extended to more general situations?
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Question 5. — Given a Cantor space X, can one give a characterization of all
the compact, convex sets of measures K such that there exists a minimal homeo-
morphism of X for which K is the set of all ϕ-invariant measures?

By a result of Downarowicz [30], any abstract Choquet simplex can be obtained
in such a way - so the question is about how the Choquet simplex sits inside the
set of measures on the Cantor space (a natural candidate is to ask for a “goodness”
condition as in the case of singletons, as well as asking that the extreme points of
the simplex be mutually singular; Dahl [27] obtained such a characterization for
finite-dimensional simplices in her thesis).

5.2. Metric structures and Fraïssé classes.

5.2.1. Moving from the discrete to the continuous setting. As we saw, Fraïssé the-
ory provides a fairly versatile tool to approach structures with somewhat different
flavors, the unifying feature being homogeneity. However, the class of Polish groups
one can capture using classical Fraïssé theory is limited to nonarchimedean Polish
groups, so for instance connected Polish groups look unapproachable in this way.
Still, at least in an intuitive sense, many classical structures of analysis look just
as homogeneous as those from first-order logic: for instance, think of a Hilbert
space, or of the Urysohn space... A way to use Fraïssé-theoretic ideas to study the
automorphism groups of such structures goes through the formalism of continuous
first-order logic, or metric model theory. This formalism had a precursor in Hen-
son’s work on logics adapted to the study of Banach spaces, and was introduced
by Ben Yaacov and Usvyatsov in its current form [16]; its basic properties were
developed in [11].

We will not actually be using any tools from logic, (most notably, no compactness
theorem), so our definitions are fairly relaxed.

Definition 5.23. — Ametric structure is a tuple M = ((M,d),(Ri)i∈I ,(fj)j∈J)
such that

• (M,d) is a complete metric space.
• Each Ri : Mki → R is a Lipschitz map.
• Each fj : Mnj →M is a Lipschitz map.

When (M,d) is separable, we say that M is a Polish metric structure.

As in the discrete setting, 0-ary functions are considered as named constants. A
continuous language is then what one would expect, with the added wrinkle that
the language includes a Lipschitz constant for each Ri and each fj . For instance,
the language of real Banach spaces could be written as (0,+, (·λ)λ∈R) where 0
is a constant, + is a 2-Lipschitz map, and each ·λ is |λ|-Lipschitz. The distance
function plays the same role as equality does in the classical, or discrete, setting;
in particular, we always assume that the distance is part of our language, as a
distinguished binary 1-Lipschitz predicate.

Many definitions (substructure, embedding ...) extend seamlessly from the dis-
crete setting to the continuous one.

Definition 5.24. — Let M = ((M,d), (Ri)i∈I , (fj)j∈J) be a metric structure.
An automorphism of M is a bijection g of M onto itself such that
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• For all m̄ ∈ Mk and each i such that ki = k, Ri(m̄) = Ri(g(m̄)). In
particular, g must be an isometry of (M,d).

• For all m̄ ∈Mk and each j such that nj = k, fj(m̄) = fj(g(m̄)).

The automorphism group Aut(M) of a Polish metric structure M is then a closed
subgroup of the isometry group of (M,d) (endowed with the pointwise convergence
topology), so is a Polish group itself.

When M is a metric structure and (a1, . . . , an) is a finite tuple of elements of
M , we denote by 〈a1, . . . , an〉 the substructure of M generated by a1, . . . , an.

Definition 5.25. — We say that a Polish metric structure M is homogeneous
when it is true that, for any a1, . . . , an ∈ M , for any ε > 0, and for any em-
bedding f : 〈a1, . . . , an〉 → M, there exists an automorphism g of M such that
d(g(ai), f(ai)) < ε for all i.

In other words: an isomorphism between finitely generated substructures of M
can be approximated arbitrarily well by an automorphism of M, the approximation
taking place on the images of the generators of the first substructure. Naming
generators is a price to pay when dealing with structures whose language includes
functions; of course this is not necessary when the language is relational, since
finitely generated substructures of M must then be finite. Controlling what happens
on finitely many elements is really just a way of saying that we are working with
the pointwise convergence topology on Aut(M).

Then, the same argument as for discrete structures leads to the following obser-
vation.

Theorem 5.26 ([93]). — Let G be a Polish group. There exists a homogeneous
Polish metric structure M such that G is isomorphic, as a topological group, to
Aut(M).

Here, one can wonder to what extent the ε in the definition of homogeneity is
important: it seems natural to ask for exact homogeneity. Very recently, I. Ben
Yaacov answered a question of mine and proved that there exist Polish groups (even,
Roelcke precompact) which cannot act transitively, continuously and isometrically
on a complete metric space; such a group cannot be realized as the automorphism
group of an exactly homogeneous metric structure. Also, there are natural examples
of homogeneous metric structures which are not exactly homogeneous (for instance,
the Gurarij space, which we will discuss later on), and it certainly seems that
accepting the intrusion of ε here is the right thing to do. We will see shortly
that this is crucial when working with Fraïssé classes in the metric setting, via the
example of the Gurarij space.

For now, let us recall that, when considering topologies on isometry groups,
we pointed out two choices: the pointwise convergence topology, and the uniform
convergence topology. Given any Polish metric structure M, one can endow its
automorphism group G with the metric of uniform convergence du, defined by

du(g, h) = sup{d(g(x), h(x)) : x ∈M}

(truncated for instance at 1 if allowing infinite distances causes moral issues). This
du is always complete and bi-invariant (i.e. it is impervious to multiplications on
the left and the right), which are certainly desirable qualities. But it is in general
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not separable, and often close to discrete (or outright discrete), and it might seem
at first glance that it cannot give much information. It turns out that this metric
can sometimes be used in conjunction with the Polish topology; let us make an
abstract definition to describe the corresponding object.

Definition 5.27. — A Polish topometric group is a triple (G, τ, ∂), where
(1) (G, τ) is a Polish group.
(2) ∂ is a bi-invariant distance on G, refining τ .
(3) ∂ is τ -lower semicontinuous, i.e. each set {(g, h) : ∂(g, h) 6 r} is τ -closed.

These assumptions (which imply that ∂ is complete) are satisfied when G is
the automorphism group of a Polish metric structure, endowed with the topology
of pointwise convergence and the metric of uniform convergence. Actually, what
matters is not really the metric ∂ but the uniformity it generates, but we will
describe everything in metric terms (the reader should keep in mind that replacing
δ by an equivalent metric, as long as the third assumption remains satisfied, is of
no consequence). Starting from any Polish group G, there exists a left-invariant
metric d inducing the topology of G (this d is usually not complete, as we saw; any
two such distances generate the same uniformity, called the left uniformity). Then
one can define a metric ∂ by setting

∂(g, h) = sup{d(gk, hk) : k ∈ G}.

Clearly ∂ is τ -lower semicontinuous, bi-invariant, and refines τ . One can also show
that ∂ is always complete when (G, τ) is Polish (one says that Polish groups are
Raikov-complete). Thus (G, τ, ∂) is a Polish topometric group, and ∂ induces the
coarsest uniformity among all metrics turning (G, τ) into such a structure. Most
of the time we will be working with this ∂. We call the uniformity generated
by ∂ the minimal bi-invariant uniformity, and will abuse notation somewhat by
calling minimal bi-invariant metric any metric which generates this uniformity (and
satisfies the third topometric axiom).

Two remarks are in order here.
• Given a Polish group (G, τ), we saw in Theorem 5.26 that there exists a
Polish metric structure M whose automorphism group, endowed with the
topology of pointwise convergence, is isomorphic to G. If one builds this
structure in the same way as we did earlier in the discrete case, then the
uniform metric on Aut(M) induces a minimal bi-invariant metric on G.

• If (G, τ) is a Polish group isomorphic to Aut(M) for some Polish metric
structure M, then the uniform metric on Aut(M) is not necessarily min-
imal. For instance, given G = Sω∞, one can embed G into S∞, and then
make G act on N; the associated uniformity is discrete. But it is easy to
see that the minimal bi-invariant uniformity on G is the trace on G of the
product of the discrete uniformities on each factor, which is not discrete.

Mostly out of curiosity, let us note the following problem.

Question 6. — Let (G, τ, ∂) be a Polish topometric group. Under which con-
dition does there exist a metric structure M such that (G, τ, ∂) is isomorphic, as a
topometric group, to Aut(M) endowed with the topology of pointwise convergence
and the metric of uniform convergence?
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As far as I am aware, it is not even excluded that all Polish topometric groups
have this property, even though that seems highly unlikely to me.

Let us now describe what Fraïssé classes become in the metric setting; metric
Fraïssé classes were first considered in [114], but our presentation follows a more
streamlined and efficient approach presented in [14]; what we present here is more
restrictive than what can be found in [14] but is sufficient for our purposes.

As in the classical, discrete setting, we consider a class K of finitely generated
metric structures in some fixed metric language L, and we want to state conditions
on K that are equivalent to being the age of a homogeneous structure (the age
of a continuous structure being defined exactly as in the discrete setting). Some
properties must be satisfied by the age of any structure.

Definition 5.28. — Let K be a class of finitely generated metric structures in
some metric language L. We say that

(1) K satisfies the hereditary property (HP) if any finitely generated substruc-
ture of an element of K belongs to K.

(2) K satisfies the joint embedding property (JEP) if any two elements of K
embed in a third one.

So far, so good; but we need a condition that bounds the size of K, so that K
can be the age of a separable structure. In the discrete world that condition was
countability, clearly in the metric world it must be separability for an appropriately
chosen metric. To introduce this metric, and since we allow functions in our lan-
guages, it is useful to make the following convention: whenever we write A = 〈ā〉,
we mean that A is generated by the tuple ā = (a1, . . . , an); repetitions are allowed
in the enumeration (a1, . . . , an) (and the order in which elements are enumerated
matters).

Definition 5.29. — Let K be a class of finitely generated metric structures
in some metric language L, satisfying (JEP). We denote by Kn the class of all
structures 〈a1, . . . , an〉 belonging to K, and define dn on Kn ×Kn by setting

dn(〈ā〉, 〈b̄〉) = inf
(α,β)

sup
i=1,...n

d(α(ai), β(bi))

where (α, β) ranges over all pairs of embeddings of 〈ā〉, 〈b̄〉 into a common structure
C ∈ K.

The assumption that (JEP) holds ensures that dn takes finite values; dn measures
how close two elements of Kn can be mapped to one another, and saying that
dn(〈a〉, 〈b〉) = 0 does mean as expected that the two structures are isomorphic;
the fact that the Lipschitz constants of the functional symbols are imposed by
the language is useful to check this when functions are present. Intuitively, dn
should be a pseudometric, but the triangle inequality need not be satisfied under
the assumptions we are working with so far: given a structure witnessing that 〈ā〉,
〈b̄〉 are close, and another structure witnessing that 〈b̄〉, 〈c̄〉 are close, one can not
necessarily produce a structure witnessing that 〈ā〉, 〈c̄〉 are close - unless one can
glue together in some way the copies of b̄ appearing in both structures.

Definition 5.30. — Let K be a class of finitely generated metric structures in
some metric language L. We say that K satisfies the near-amalgamation property
(NAP) if the following condition is satisfied:
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For any ε > 0, any A = 〈ā〉 ∈ K, and any embeddings α : A → B ∈ K,
β : A → C ∈ K, there exists D ∈ K and embeddings i : B → D and j : C → D
such that d(i ◦ α(ai), j ◦ β(ai)) < ε for all i.

When the class K satisfies both (JEP) and (NAP), it is easy to check that each
dn is a pseudometric.

Definition 5.31. — Let K be a class of finitely generated metric structures
in some metric language L, satisfying (JEP) and (NAP). We say that K has the
Polish property (PP) if each dn is separable and complete.

We have finally listed all the properties characterizing the age of a homogeneous
Polish metric structure.

Definition 5.32. — Let K be a class of finitely generated metric structures in
some metric language L. We say that K is a Fraïssé class if K satisfies (HP), (JEP),
(NAP) and (PP)

The following is not hard to prove.
Theorem 5.33. — The age of any homogeneous Polish structure is a Fraïssé

class.
The converse is harder, especially if one allows functions; Ben Yaacov’s proof [14]

introduces an interesting formalism (leading to a formal weakening of the notion of
Fraïssé limit in the metric context), which we do not discuss here.

Theorem 5.34 ([14]). — Let K be a Fraïssé class of finitely generated metric
structures in some metric language L. Then there exists a unique homogeneous
Polish metric structure whose age is equal to K. We call this structure the Fraïssé
limit of K.

The simplest non-discrete example of a Fraïssé class is given by the class of all
finite metric spaces, whose limit is the Urysohn space. Going in the other direction,
the infinite-dimensional, separable Hilbert space H is certainly homogeneous, so its
age is a Fraïssé class. The same goes for a standard atomless probability algebra,
which is the Fraïssé limit of all finite probability algebras. In all these cases, one can
replace near amalgamation by exact amalgamation, and the limit is homogeneous in
a stronger sense than what we asked for, namely one can set ε = 0 in the definition
of homogeneity; this is not always possible. One of only two examples of this that I
know at the moment is the Gurarij space, which we discuss now (the other example
is Lp lattices which we will not discuss).

Let us consider the class of all finite-dimensional normed vector spaces, in a
language whose symbols (besides the norm/distance) are 0, +, and (·λ)λ∈Q (with
the appropriate Lipschitz constants). As pointed out in [14], this is a Fraïssé class;
let us see why (NAP) holds in this case. Consider three finite-dimensional normed
vector spaces X,Y, Z and isometric embeddings i : X → Y and j : X → Z. Then
endow the direct sum Y ⊕ Z with the l1-norm:

‖(y, z)‖ = ‖y‖+ ‖z‖.
Next, let N denote the closed subspace {(i(x),−j(x)) : x ∈ X} of Y ⊕ Z, and let
E be the space (Y ⊕ Z)/N , with the quotient norm

‖(y, z)‖ = inf{‖(y, z) + (i(x),−j(x))‖ : x ∈ X}.
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Then Y isometrically embeds in E via α : y 7→ [(y, 0)], Z isometrically embeds in
E via β : z 7→ [(0, z)], and for any x ∈ X one has

α ◦ i(x) = [(x, 0)] = [(0, x)] = β ◦ j(x).
Hence the class of finite-dimensional normed vector spaces satisfies (NAP), actually
one even has exact amalgamation. Joint embedding follows immediately (take
X = {0}), and separability of each (Kn, dn) is an immediate consequence of the
existence of a universal separable Banach space. The fact that each (Kn, dn) is
complete is easy once one knows how to compute the distance between structures:
given E = 〈a1, . . . , an〉 and F = 〈b1, . . . , bn〉, C. Ward Henson (see [13]) proved that

dn(E,F ) = sup{
∣∣∣‖∑ riai‖ − ‖

∑
ribi‖

∣∣∣ :
∑
|ri| = 1}.

So the class of finite-dimensional Banach spaces is a Fraïssé class. Its limit is the
unique universal homogeneous separable Banach space, an object which was built
by Gurarij [56] and whose uniqueness up to isometry was proved by Lusky [85]. A
simple proof of existence/uniqueness of the Gurarij space was published recently
by Kubis–Solecki [83]. Note that the usual Banach-theoretic characterization of the
Gurarij space G is not quite the same as the Fraïssé-theoretic version one obtains
via the Fraïssé-theoretic approach, see [14].

An interesting point here is that, while the class of finite-dimensional spaces
amalgamates exactly, no universal Banach space can be exactly homogeneous: this
is because the norm must have points of differentiability (this is true in any sep-
arable space by a classical result of Mazur [88]), while universality implies that
it cannot be differentiable everywhere. A linear isometry cannot map a point at
which the norm is differentiable to a point at which it is not; so the group of linear
isometries of G cannot act transitively on one-dimensional subspaces, showing that
G is not homogeneous (this line of reasoning was explained to me a long time ago
by G. Godefroy). This shows that allowing for small errors in the definition of
homogeneity is useful to capture some natural examples.

As a Fraïssé limit, the Gurarij space is certainly analogous, in the setting of
Banach spaces, to the Urysohn space; this analogy was taken further by Ben Yaacov
[10], who adapted Katětov’s construction of U, showing in the process that any
separable normed space embeds in G in such a way that all its isometries extend,
and the extension map can be taken to be a group homomorphism. Consequently
Aut(G) is a universal Polish group. This analogy with the Urysohn space, and the
fact that the Urysohn space generates a unique Banach space (the Holmes space,
discussed at the end of the second section), makes it tempting to believe that the
Holmes space and the Gurarij space are one and the same. Surprisingly, this turns
out to be false, see [35].

5.2.2. Hjorth’s oscillation theorem revisited. Hjorth’s oscillation theorem is the first
example that made me realize that continuous logic could be used to translate
results known to hold for closed subgroups of S∞ to the context of general Polish
groups; this process was initiated by a suggestion of S. Solecki while I was a postdoc
in the University of Illinois at Urbana-Champaign. The results of this section were
published in [93].

In [73], Kechris, Pestov and Todorcevic established a link between topological
dynamics and combinatorics, relating the so-called finite oscillation stability of
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subgroups G of S∞ with combinatorial properties of a Fraïssé class of which G
is the automorphism group (we will get back to this in the next section). This led
them to formulate a notion of oscillation stability for isometric actions of topological
groups. The discussion below is mostly taken from [105].

Definition 5.35. — Let G be a metrizable topological group with a compatible
left-invariant distance δ. The left-completion of G, denoted by Ĝ, is simply the
metric completion of (G, δ).

Note that G naturally acts on Ĝ by isometries; Ĝ does not depend on the choice
of left-invariant metric δ, in the sense that any two left-invariant metrics on G

(compatible with its topology) will produce isomorphic Ĝ. This happens because, as
we already mentioned, Cauchy sequences are the same for all left-invariant distances
(it would probably be more natural to work with uniformities here, since what we
are really using is the left uniformity of G).

Also, Ĝ is in general not a group but is always a semigroup in which multipli-
cation is jointly continuous. By a right ideal of Ĝ we mean a subset of Ĝ which is
invariant under multiplication on the right.

If (X, d) a Polish metric space and G is a subgroup of the isometry group of
(X, d), one can naturally view Ĝ as a semigroup of isometric embeddings of (X, d)
into itself.

Definition 5.36. — Let G be a Polish group, and f : G → R be a left-
uniformly continuous function, which one may then uniquely extend to Ĝ. Say
that f is oscillation stable if for every ε > 0 there exists a right ideal I of Ĝ such
that the oscillation of f on I is less than ε.

Definition 5.37. — Let a Polish group G act continuously and by isometries
on a Polish metric space X. Say that the action of G is oscillation stable if every
Lipschitz function f : X → R is oscillation stable. If the action ofG is not oscillation
stable, say that it has distortion.

For instance, saying that the action of the unitary group U(`2) on the unit
sphere of `2 has distortion turns out to be equivalent to Odell and Schlumprecht’s
celebrated solution to the distortion problem for `2 [100] (note, however, that `2
is the only separable Banach space in which the notion of distortion as presented
here and the classical functional-analytic notion of distortion coincide).

It is then natural to ask, given some action of a Polish group G, whether it
has distortion or not. In particular, Kechris, Pestov and Todorcevic asked whether
there exists a nontrivial group G such that the action of G on Ĝ does not have
distortion. Answering this question, Hjorth proved the following result.

Theorem 5.38 (Hjorth [60]). — Let (X, d) be a complete separable metric
space, and G 6 Iso(X, d) be a group of cardinality bigger than one. Then there
exists x0, x1 ∈ X and uniformly continuous

f : {(π.x0, π.x1) : π ∈ G} → [0, 1]

such that for any ρ ∈ Ĝ there exist
(y0, y1), (z0, z1) ∈ {

(
ρ(π(x0)), ρ(π(x1))

)
: π ∈ Ĝ}

with f(y0, y1) = 0 and f(z0, z1) = 1.
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As was pointed out by Hjorth, this theorem has as an easy corollary the fact
that for any non-trivial Polish group G the left-translation action of G on Ĝ has
distortion.

In the same paper, Hjorth proves a version of this theorem for automorphism
groups of first-order countable relational structures.

Theorem 5.39 (Hjorth [60]). — LetM be a homogeneous relational countable
first-order structure such that |Aut(M)| > 1. Then there exist a function f : M2 →
{0, 1} and (a0, a1) ∈ M2 such that for any morphism ρ : M → M one can find
(b0, b1) and (c0, c1) in the image of ρ2, with the same quantifier-free type as (a0, a1)
and such that f(b0, b1) = 1 while f(c0, c1) = 0.

After stating Theorem 5.39, Hjorth points out that “a weaker form can be derived
from the final theorem 8, [and] its proof is easier” . Looking at Theorem 5.39 with
continuous logic in mind, it is tempting to formulate the following statement.

Theorem 5.40. — LetM be a homogeneous relational Polish metric structure
such that |Aut(M)| > 1. Then there exist a uniformly continuous f : M2 → [0, 1]
and (a0, a1) ∈ M2 such that for any morphism ρ : M → M one can find (b0, b1)
and (c0, c1) in the image of ρ2, with the same quantifier-free type as (a0, a1) and
such that f(b0, b1) = 1, f(c0, c1) = 0.

(Actually, one can take f to be Lipschitz in the above statement and in Hjorth’s
theorem, but I stick to uniform continuity since this was Hjorth’s original formula-
tion).

It is clear that this result implies Theorem 5.39: given an homogeneous count-
able first-order relational structureM, one may use the same idea as in the proof
of Theorem 5.6 to turn it into a homogeneous relational Polish metric structure
(denoted byMmet) by endowing the universe ofM with the discrete metric and,
for any relation symbol R of the language ofM, introducing a {0, 1}-valued pred-
icate symbol Rmet defined by Rmet(m1, . . . ,mk) = 0 ↔ M |= R(m1, . . . ,mk).
ThenMmet satisfies the assumptions of Theorem 5.40, and morphisms ofM and
Mmet are the same. If f is the function yielded by Theorem 5.40, then f̃ defined
by f̃(m,m′) = 0 if f(m,m′) < 1, and 1 otherwise, shows that the conclusion of
Theorem 5.39 holds.

It is also easy to see that Theorem 5.38 implies Theorem 5.40. We do not detail
the proof here, but it is a straightforward consequence of the fact that, when M
is approximately homogeneous, the left-completion of Aut(M) coincides with the
set of morphisms fromM into itself, and morphisms preserve quantifier-free type.
Perhaps more interestingly, Theorem 5.40 implies Theorem 5.38: indeed, assume
that we are in the situation of Theorem 5.38. Then, one may find a countable family
of predicates (Ri) such that (X, d, (Ri)) becomes an approximately homogeneous
Polish metric structureM, with G as its automorphism group, and Theorem 5.40
enables one to show that the conclusion of Theorem 5.38 holds.

To sum up this brief discussion: Theorem 5.40, whose statement is just the con-
tinuous logic translation of Theorem 5.39, unsurprisingly implies Theorem 5.39 and
turns out to be equivalent to Hjorth’s oscillation theorem. Interestingly, one may
combine Hjorth’s ideas from his proof of Theorem 5.39, and some of his arguments

8i.e, Theorem 5.38 in our notation.
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to establish Theorem 5.38, to provide a proof of Theorem 5.40 which is simpler
(at least, shorter) than the original proof. I will not go into detail here; work on
Hjorth’s theorem is what convinced me that the language of metric structures could
be useful to study properties of Polish groups.

5.3. Extremely amenable Polish groups. Recall that a Polish group is ex-
tremely amenable if any continuous action of G on a compact space has a fixed
point. Earlier, we gave a proof that extreme amenability of a countable group was
a Gδ condition (in the right framework); this was based on an intrinsic characteri-
zation of extreme amenability of a Polish group G in terms of the left translation
of G on itself.

Definition 5.41. — Let G be a group acting by isometries on a metric space
(X, d), and let f be a function from X to R. We say that f is finitely oscillation
stable if for every finite F ⊆ X and every ε > 0 there exists g ∈ G such that the
oscillation of f on gF is less than ε.

We say that the action G y X is finitely oscillation stable if every bounded
Lipschitz function f : (X, d)→ R is finitely oscillation stable.

Theorem 5.42 (Pestov [105]). — Let G be a Polish group, and {di}i∈I be
a directed collection of left-invariant pseudometrics inducing the topology of G.
Then G is extremely amenable if, and only if, each action G y (G, di) is finitely
oscillation stable.

Of course, one could simply consider one left-invariant metric in the character-
ization above; but, if G is the automorphism group of some metric structure M,
then there is a natural collection of pseudometrics inducing the topology of G.

Definition 5.43. — Let M be a Polish metric structure and G be its auto-
morphism group. For any finite A ⊆ M we define a pseudometric dA on G by
setting

dA(g, h) = sup{d(g(a), h(a)) : a ∈ A}.
The family {dA}, as A ranges over finite subsets of M , induces the topology of G.

One could let A vary only over some dense subset ofM and still induce the topol-
ogy of G. What matters to us is that extreme amenability of Aut(M) depends on
how Aut(M) acts on its finitely generated substructures; when M is homogeneous,
this means that one can expect a characterization of extreme amenability in terms
of the properties of the age of M. In the discrete setting, such a characterization
was obtained in the seminal [73], following earlier work of Pestov. To see in action,
in a simple setting, some of the ideas behind that work, let us discuss a striking
combinatorial proof of extreme amenability of a Polish group.

Theorem 5.44 (Pestov [103]). — The automorphism group of (Q,6) is ex-
tremely amenable.

Proof. — Let G = Aut(Q,6), and A be a finite subset of Q, of cardinality n. We
need to show that the left-translation action of G on (G, dA) is finitely oscillation
stable; (G, dA) naturally identifies with the set X of all n-element subsets of Q,
endowed with the discrete metric, and on which G acts diagonally. Since we are
looking at Lipschitz functions on a discrete set, we may as well focus on functions
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taking values in {0, 1}; so, what we are aiming to prove is that, for any map
f : X → {0, 1}, and any finite subset F of X, there exists g ∈ G such that f is
constant on gF .

Let B denote the (finite) union of all the elements of F , and denote its cardinality
by m. The map f is a coloring of all subsets of Q of cardinality n, with two colors,
and the finite version of the Ramsey theorem tells us that there exists N such that,
whenever we color n-elements subsets of an N element set with two colors, there
exists a m-element subset which is monochromatic. Let B be any subset of Q of
cardinality N ; there exists a subset B̃ of B of cardinality m such that f is constant
on subsets of B̃ with cardinality n. One can pick g ∈ G such that gF = B̃, and f
is constant on gF , as desired. �

The appearance of the Ramsey theorem in the proof above, and of maps defined
on the space of copies of a given finitely generated substructure, is not a coincidence:
indeed, if K is a Fraïssé class with limit K, and G = Aut(K), then the oscillation
stability of each action G y (G, dA) is equivalent to a Ramsey-theoretic property
of K.

Definition 5.45. — Let K be a Fraïssé class of discrete finitely generated struc-

tures. Given A,B ∈ K, we let
(

B
A

)
denote the set of substructures of B which are

isometric to A.
Say that K has the Ramsey property if, for any A 6 B ∈ K, and any k ∈ N,

there exists C ∈ K such that, for any map c :
(

C
A

)
→ {1, . . . , k}, there exists

B0 ∈
(

C
B

)
such that c is constant on

(
B0
A

)
.

The map c above is usually called a coloring; the Ramsey property could be
stated equivalently using colorings with only 2 colors instead of any finite number
of colors.

Whenever G 6 S∞ is a closed subgroup, G acts on the compact set of orders on
N; so, if G is extremely amenable, then G must fix an ordering on N since the space
of orderings is a compact space on which G acts continuously. In particular, S∞ is
not extremely amenable, a fact which was first observed in [103]. This observation
also implies that, whenever G = Aut(K), where K is the Fraïssé limit of some
Fraïssé class K, all elements of K must be rigid, i.e. have trivial automorphism
group, and one may as well assume that the language of K contains a binary symbol
≺ which is interpreted by a total ordering in K. Following [73], we then say that
K is a Fraïssé order class. One of the main results of [73] is the following.

Theorem 5.46 ([73]). — Let G be a closed subgroup of S∞. Then G is ex-
tremely amenable if, and only if, G = Aut(K), where K is the Fraïssé limit of a
Fraïssé order class with the Ramsey property.

As pointed out in [73], every Fraïssé order class such that G is the automorphism
group of its limit must have the Ramsey property, so the above result does not
depend on the way G is represented as the automorphism group of a Fraïssé limit.
One could replace the statement that K is an order class by asking that K is made
up of rigid structures.
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Now, our task is to translate Theorem 5.46 to the context of general Polish
groups. At first glance, something seems to go awry: many natural metric Fraïssé
limits whose automorphism group is known to be extremely amenable (the standard
atomless probability algebra, the separable infinite-dimensional Hilbert space, the
Urysohn space ...) are made up of very much non-rigid structures, and no ordering
is to be found. As it turns out, the ordering, which plays a very important role in
the discrete setting, is a bit of a red herring here: what one needs to understand is
that, if A is a rigid structure, then the set of copies of A inside B is the same thing
as the set of embeddings from A to B. So, the Ramsey property could be restated
in terms of embeddings.

Definition 5.47. — Let K be a metric Fraïssé class. For any A,B ∈ K, let
AB denote the set of all embeddings from A to B, and turn it into a metric space
by setting

∀α, β ∈ AB, d(α, β) = sup{d(α(a), β(a)) : a ∈ A}.
A coloring of AB is a 1-Lipschitz map from AB to [0, 1].

The fact that colorings are asked to take values in [0, 1], and to be 1-Lipschitz, is
somewhat inessential - all that really matters is that they take value in a compact
metric space and their behavior is controlled by the metric on embeddings.

Definition 5.48. — Let K be a metric Fraïssé class, and A,B,C be elements
of K. For any β ∈ BC, set

AC(β) = {β ◦ α : α ∈ AB}

the set of embeddings of A in C which factor through β.

Once we agree that we should be coloring embeddings when working in the
continuous setting, the analogue of finding a copy B0 of B in C such that a coloring

is constant on
(

B0
A

)
is finding β ∈ BC such that a coloring has small oscillation

on AC(β). With this in mind, the Ramsey property naturally translates to the
following.

Definition 5.49. — Let K be a metric Fraïssé class. We say that K has the
approximate Ramsey property for embeddings (ARP) if the following condition is
satisfied:

For any A 6 B ∈ K, and any ε > 0, there exists C ∈ K such that, for any
coloring c of AC, there exists β ∈ BC such that the oscillation of c on AC(β) is
less than ε.

When the class is made up of discrete structures, we are just reformulating the
Ramsey property in terms of embeddings rather than substructures. When the class
is made up of rigid structures, we recover the usual Ramsey property; however, the
Ramsey property for embeddings is stronger, since it actually forces the structures
to be rigid.

As in the discrete setting, this condition turns out to be a reformulation of the
finite oscillation stability of the action of (Aut(K), dA) for any finite A ⊆ K, and
we obtain the following result (unpublished joint work with T. Tsankov).
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Theorem 5.50 ([91]). — Let K be a metric Fraïssé class, and G be the auto-
morphism group of its limit. Then G is extremely amenable if, and only if, K has
the approximate Ramsey property.

Taking advantage of the continuous setting, one can formulate a formal weak-
ening of the approximate Ramsey property which is equivalent to it (for instance,
this enables one to work with a dense subclass of K rather than the whole of K).
Unfortunately, even this weakening seems very hard to prove, and we were unable
to use Theorem 5.50 to obtain interesting new examples of extremely amenable
Polish groups. One obvious candidate would seem to be the automorphism group
of the Gurarij space; while I failed to prove that it is extremely amenable, this was
recently achieved by Bartošová, Lopez-Abád and Mbombo, who proved that the
class of finite-dimensional Banach spaces has the approximate Ramsey property.

Theorem 5.51 (Bartosova –Lopez Abad –Mbombo9). — The automorphism
group of the Gurarij space is extremely amenable.

It is not clear to me whether Theorem 5.50 can really be useful; it was of some
use as a guide towards obtaining the following result, joint with Nguyen Van Thé
and Tsankov.

Theorem 5.52 ([96]). — Let G be a Polish group. Then the following are
equivalent.

(1) The universal minimal flow of G is metrizable and has a comeager orbit.
(2) There exists a closed subgroup G∗ such that the right uniformity on G/G∗ is

precompact, and the universal minimal flow of G is the action Gy Ĝ/G∗.

Shortly after we proved this theorem, Andy Zucker [133] announced results that
imply in particular that in the important case of subgroups of S∞ one can remove
the assumption of existence of a comeager orbit in the first item above; that is,
this assumption is always satisfied for nonarchimedean Polish groups when their
universal minimal flow is metrizable. It is an open problem whether one can do
away with this assumption in general. One could also wonder whether some of the
ideas presented above could be used to make Zucker’s approach work for general
Polish groups; there appear to be significant difficulties to overcome before achieving
this.

5.4. Ample generics. When looking at the question of simplicity of full groups
of minimal homeomorphisms, and their closures, we already noticed that the exis-
tence of an element with a comeager conjugacy class was a desirable, and strong,
property for a Polish group G to have. This property is usually not satisfied (for
instance P. Wesolek [131] recently proved that no nontrivial locally compact Polish
group can have a comeager conjugacy class); it can be particularly enlightening
when one thinks of G as the automorphism group of some structure. Indeed, the
action of the generic element on the structure should be intimately linked with the
structure’s properties, despite the fact that having a comeager orbit is expressible
purely in terms of the group. Actually, as was first noted by Hodges–Hodkinson–
Lascar–Shelah [62] , existence of generic tuples in Gn for all n provides a tool to

9While public announcements of this result were made a while ago, there seems to be no
preprint or published reference at the time of publication of the current paper.
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reconstruct the structure from its automorphism group as an abstract group (in a
model-theoretic sense that I will not go into; this also depends on earlier results of
Ahlbrandt–Ziegler [3]).

Definition 5.53 ([77]). — Let G be a Polish group. We say that G has ample
generics if for all n ∈ N there exists (g1, . . . , gn) ∈ Gn such that the diagonal
conjugacy class {(kg1k

−1, . . . , kgnk
−1) : k ∈ G} is comeager in Gn.

The notion above was introduced, using a somewhat more flexible (and opaque to
me) definition, in the context of permutation groups in [62] ; the above formulation,
which makes sense for general Polish groups, comes from [77].

Recall that a Polish group G has the automatic continuity property if, whenever
H is a separable topological group, any homomorphism from G to H must be
continuous. Any Polish group with the automatic continuity property must have
a unique Polish topology compatible with its group structure (since an abstract
group isomorphism between Polish groups which is continuous must also have a
continuous inverse), and automatic continuity is a strictly stronger property. To
see that the two properties are different, one can for instance note that Kallman [68]
proved that the group of p-adic integers has a unique Polish topology compatible
with its group structure; but, as observed in [110, Example 1.6], any uncountable
abelian compact Polish group admits a non-continuous homomorphism into S∞.
Indeed, any infinite abelian group has a subgroup of countable, infinite index; if
the ambient group G is compact then this subgroup cannot be open, and the left-
translation action of G on the coset space produces a discontinuous action of G on
a countable set, which is the same thing as a non-continuous mapping from G into
S∞.

It was proved in [62] that, whenever G is a closed subgroup of S∞ with ample
generics, G must satisfy the small index property, i.e. any subgroup of G with
countable index must be open. This last property is equivalent to saying that any
homomorphism from G to S∞ is continuous (in one direction, use the fact that the
topology of S∞ has a basis consisting of open subgroups, which are of countable
index; in the other direction, look at the action of G on its quotient by some
countable subgroup). The following stronger result is due to Kechris and Rosendal
[77].

Theorem 5.54 (Kechris–Rosendal [77]). — Let G be a Polish group with ample
generics. Then G satisfies the automatic continuity property.

Using the weak amalgamation property we mentioned in an earlier section,
Kechris and Rosendal also provided a Fraïssé-theoretic characterization of closed
subgroups of S∞ with ample generics. These appear to be fairly common among
automorphism groups of highly homogeneous discrete structures - for instance, S∞
has ample generics (which is easy to show by hand), as do the automorphism group
of the random graph, the isometry group of the rational Urysohn space...

It is only very recently that examples of Polish groups with ample generics and
which are not isomorphic to a subgroup of S∞ have been discovered, by Malicki [87]
and Kaïchouh–Le Maître [67]. In the automorphism groups of nondiscrete metric
structures that we encountered so far, conjugacy classes are meager. For Iso(U)
this is a result of Kechris (published in a paper of Glasner–Weiss [52]). For U(H),
one can find a proof of meagerness of conjugacy classes in [52], while Kechris [76]
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refers to Nadkarni’s book ([99], Chapter 8); I do not know who first proved the
result. For Aut(µ), [52] points out that meagerness of conjugacy classes follows
from a result of del Junco [25], and Kechris [76] attributes meagerness of conjugacy
classes there to Rokhlin.

So, automatic continuity via ample generics seems to be a non-starter in those
cases. However, these groups do have dense conjugacy classes, at least (Kechris–
Rosendal [77] for Iso(U), Rokhlin for Aut(µ)); and we already noticed that the
uniform metric could be of interest - in analysis, one is used to neglecting small,
uniformly controlled errors, or at least to working with them.

Definition 5.55. — Let (G, τ, ∂) be a Polish topometric group, and A be a
subset of G. We set

(A)<ε = {g ∈ G : ∃a ∈ A ∂(g, a) < ε}.

Then, the next best thing after a conjugacy class is the uniform closure of a
conjugacy class. To make notation a bit simpler below, we denote by Conj(ḡ) the
diagonal conjugacy class of ḡ ∈ Gn.

Definition 5.56. — Let (G, τ, ∂) be a Polish topometric group. We say that
G has ample generics if, for any ε > 0 and any n, there exists ḡ ∈ Gn such that
(Conj(ḡ))<ε is comeager.

If (G, τ) is a Polish group, ∂ is the coarsest bi-invariant distance refining τ , and
(G, τ, ∂) has ample generics then we say that (G, τ) has metric ample generics.

Note that saying that (G, τ, ∂) has ample generics iff there exists ḡ such that the
uniform closure of Conj(ḡ) is comeager; we call such elements metric generics.

It seems somewhat unlikely at first that G might have metric ample generics if it
does not have ample generics to start with: indeed, if we assume that there exists a
dense conjugacy class, then the fact that ∂ is τ -Baire measurable and bi-invariant
imposes that there exists some r > 0 such that {(g, h) : ∂(g, h) = r} is comeager.
Thus ∂ looks to be almost constant (and discrete) from the point of view of τ .
Also, if there are dense conjugacy classes and no comeager one, then they are all
meager; so, we are hoping to take a meager set, expand it by taking an arbitrarily
small tubular neighborhood for an almost discrete metric, and obtain something
comeager. As it turns out, this can actually happen, as shown by the following
examples.

Theorem 5.57 ([12]). — The Polish groups Aut(µ), U(H) and Iso(U) all have
ample metric generics.

The key point to prove this is that, in each case, there is a countable substructure
sitting inside the continuous one, whose automorphism group has ample generics
(when endowed with its permutation group topology) and is a very good approxima-
tion of the automorphism group of the continuous structure. One way to formalize
this is as follows.

Definition 5.58. — Let M be a Polish metric structure, and N be a (classical)
countable structure. We say that N is a good approximating substructure if the
following conditions are satisfied:

• The universe of N is a countable dense subset of the universe of M.
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• Any automorphism of N extends to an automorphism of M and (under the
obvious identification) Aut(N) is dense in Aut(M).

• For every open subset U of Aut(N) (in its permutation group topology)
and any ε > 0, (U)<ε is open in Aut(M).

For instance, the countable atomless rational probability algebra (the Fraïssé
limit of all finite probability algebras with measure taking only rational values) is
a good approximating substructure of the standard atomless probability algebra;
the rational Urysohn space is a good approximating substructure of the Urysohn
space. By playing Banach-Mazur games, one can then show the following result,
which implies in particular that, if N is a good approximating substructure of M,
and Aut(N) has ample generics as a permutation group, then Aut(M) has ample
metric generics.

Theorem 5.59. — Let N be a good approximating substructure of a Polish
metric structure M. Then, whenever A ⊆ Aut(N) is comeager (for the permutation
group topology of Aut(N)), the uniform closure of A is comeager in Aut(M) (for
the Polish topology of Aut(M)).

So far, all our examples of Polish groups with ample metric generics come from
structures with a good approximating substructure, making one wonder whether
this is a general phenomenon. This might simply be a consequence of our lack of
examples.

Ample metric generics for a Polish topometric group can be used, in some sense,
to translate questions about the topology to (formally easier, and trivial when the
metric is discrete) questions about the metric. For instance, using the ideas of [77]
and some additional work to take care of the ε’s, we proved the following result in
[12].

Theorem 5.60. — Let (G, τ, ∂) be a Polish topometric group with ample gener-
ics, H be a separable topological group, and ϕ : (G, ∂)→ H be a continuous homo-
morphism. Then ϕ : (G, τ)→ H is continuous.

This applies in particular to Iso(U), U(H) and Aut(µ). We claimed earlier that
the uniform metric in these groups was almost discrete; since it should not be hard
to prove continuity of homomorphisms starting from an almost discrete group, we
look well on our way to proving automatic continuity for these groups. The situation
is actually somewhat more complicated.

Theorem 5.61. —
(1) The group Aut(µ) has the automatic continuity property ([12]).
(2) The group U(H) has the automatic continuity property (Tsankov [123]).
(3) The group Iso(U) has the automatic continuity property (Sabok [113]).

In the first two cases, the original proof uses Theorem 5.60 (even though, as
was pointed out to me by M. Malicki, one could bypass the notion of ample met-
ric generics and work directly with the good approximating substructure and the
uniform metric; still, the interplay of metric and topology is fundamental in this ar-
gument) to reduce the question to continuity of homomorphism to separable groups
when the source Polish group is endowed with its uniform metric. In the case of
Aut(µ), it turns out to be not too hard to obtain the desired result, by following an
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argument of Kittrell–Tsankov [82] which they used to prove automatic continuity of
full groups of ergodic, probability-measure-preserving actions of countable groups.
The case of U(H) requires more ingenuity and technical skill, and was dealt with
by T. Tsankov [123].

Automatic continuity for the isometry group of the Urysohn space was proved
very recently by Sabok [113], using a different method; his method can be used
to obtain automatic continuity for Aut(µ) and U(H) as well, though this leads to
more complicated, less transparent proofs (to my tastes at least). Still, his technique
appears to be more versatile, in that it captures the example of the Urysohn space;
both techniques seem powerless to tackle some natural classes of candidates for the
automatic continuity property, for instance, full groups of aperiodic, non-ergodic
probability-measure-preserving equivalence relations with countable classes.

Once one is convinced that metric generic elements are interesting objects, it
becomes worthwhile to try and give an “intrinsic” characterization of them. Rather
than try to define formally what I mean here, let me recall the following theorem
of Effros, which answers that question for generic elements.

Theorem 5.62 ([33]). — Let G be a Polish group acting continuously on a
Polish space X. Let x ∈ X have a dense orbit. Then, the following are equivalent:

(1) The orbit G · x is comeager in X.
(2) The orbit map g 7→ g · x is an open map from G to G · x.
(3) The orbit G · x is a Gδ subset of X.

The characterization we are interested in, for metric generic elements, is similar
to the equivalence of the first two items above. The last item is interesting in its
own right, in that it shows that the set of generic elements is Gδ; one may then
wonder whether the same is true of metric generic elements in a Polish topometric
group.

The second condition above says that, for any open U ⊆ G, the set U · x is open
in G · x. The natural analogue of U · x in the topometric setting is given by sets of
the form (U · x)<ε; G · x could be left unchanged, replaced by its uniform closure,
or, more ambitiously, replaced by (G · x)ε. So we have three somewhat natural
candidates for a generalization of the Effros theorem to the topometric setting.

The use of ε’s threatens to be cumbersome, so it is useful to subsume all of them
into a single object: the distance function. Instead of g ∈ G, what we are really
working with is the distance function ∂(g, ·), and g being a metric generic element
is a property of the orbit of that function under the natural shift action of G. It
turns out to be possible to think of ∂(g, ·) as being a point, in a setting where ∂
plays the role of the diagonal. We turn to a discussion of this approach before going
back to the promised topometric version of the Effros theorem.

5.5. Grey sets. Material in this section comes from [15], joint with I. Ben Yaacov.

Definition 5.63. — Let X be a set. A grey subset of X is a function A : X →
[0,+∞].

Given A,B two grey subsets, we write A v B to mean that B(x) 6 A(x) for all
x ∈ X.

The terminology is meant to evoke scales of grey: rather than dealing with sets,
where things are black or white (belonging to the set or not), we want to deal with
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distance to sets, where one can be more or less close to belonging. Of course, subsets
can be seen as grey subsets, via their zero-indicator functions: given A ⊆ X, define

0A(x) =
{

0 if x ∈ A
∞ else.

We use “square” versions of usual set-theoretic symbols when working in the grey
setting; thus, t denotes the infimum operation (analogous to the union), while u
denotes the sup (and, unfortunately, this runs contrary to the usual symbols ∨ for
max and ∧ for min).

The plan is to introduce a variant of descriptive set theory where subsets are
replaced with grey subsets, in order to avoid getting bogged down in epsilon-
tracking during proofs taking place in the topometric setting. When applied to
zero-indicators, the new notions should boil down to the usual notions. An ob-
vious problem with this approach is that there is no complementation operation
when dealing with grey subsets; this can be overcome but makes a few definitions
somewhat awkward.

5.5.1. Grey topology. Throughout, we assume that X is a completely metrizable
topological space.

A subset is open iff its zero-indicator is upper semi-continuous, closed iff its
zero-indicator is lower semi-continuous, and we have our first definition.

Definition 5.64. — Let A be a grey subset of X. We say that A is open
(respectively, closed) if it is upper (respectively, lower) semi-continuous. We write
A vo X when A is an open grey subset of X.

It is straightforward to check that a union of open grey subsets is open, an
intersection of closed grey subsets is closed; consequently one can define the interior
A◦ and closure Ā of a grey subset A, and check the formulas

∀x ∈ X A◦(x) = lim sup
y→x

A(y) and Ā(x) = lim inf
y→x

A(y).

Definition 5.65. — A grey subset A v X is meager if there exists r > 0 such
that ∀∗x ∈ X A(x) > r. It is comeager if ∀∗x ∈ X A(x) < r for all r > 0,
equivalently, if A(x) = 0 for a comeager set of x.

In the above definition we feel the effect of the lack of a complementation opera-
tion, as we cannot say that a grey subset is meager iff its complement is comeager,
and the two definitions have a somewhat different flavor.

We write A v∗ B to mean that ∀∗x ∈ X A(x) > B(x), similarly for w∗, =∗. To
do descriptive set theory, we want to define Baire-measurable grey subsets; they
should be those which coincide almost everywhere (in the sense of Baire category)
with open sets.

Definition 5.66. — Let A be a grey subset of X. Define

U(A) =
⊔
{O vo X : O v∗ A}

Then, as in usual descriptive set theory, it is always the case that U(A) v∗ A,
and we define A to be Baire-measurable if the reverse inclusion holds, namely,
A v∗ U(A). It is not hard to see that this is equivalent to the existence of an open
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grey subset B such that A =∗ B and, perhaps more interestingly, also equivalent
to the fact that A is a Baire-measurable function from X to [0,+∞]. I see this
as a hint that our definitions are the right ones; of course, an equally viable point
of view is that our definitions have so far only enabled us to recover a well-known
concept that certainly did not need grey subsets to be introduced.

Similarly, one could define a Gδ grey subset either as the (grey) intersection of
countably many open sets, or a function A : X → [0,+∞] such that A6r is Gδ for
all r. Again, the two definitions coincide.

There is a notion of a grey subset being dense in another: simply say that A v B
is dense if Ā w B; similarly, one can define the relative closure of A in B as being
equal to Ā u B. These notions have the expected properties; it is more tedious to
define what a relative open subset is, again due to the fact that there is no notion
of “grey complement” of a grey subset, so one cannot simply dualize the notion of
relative closure. However, a definition can be made to work: define the relative
interior of A v B as being equal to (A − B)◦ + B. Then one can say that a grey
subset of B is relatively open if it coincides with its relative interior; the important
example to keep in mind here is that, if U is an open grey subset of the ambient
space, then B + U is a grey open subset of B.

Armed with these definitions, we now can state (and prove rather straightfor-
wardly) a grey version of the Baire category theorem: a countable intersection of
dense open grey subsets of a Gδ grey subset B of a complete metric space is dense
in B.

All this leads to a new version of the Kuratowski–Ulam theorem. Below, when
(Y, τ, ∂) is a Polish topometric space, X is a Polish space and f : X → Y is a
continuous map, we define for all y ∈ Y and all A v X a grey subset Ay of X (the
“fibre of A above y”) by setting Ay(x) = A(x) + ∂(f(x), y) . Similarly, we define a
topometric variant of the image of A under f , by setting

(f(A))∂(y) = inf
x
A(x) + ∂(f(x), y) = inf

x
Ay(x).

In the particular case where f is the identity map from Y to itself, we simply denote
(id(A))∂ by (A)∂ . When A is a “true” subset of X this is equal to the ∂-distance
to A.

Theorem 5.67 ([15]). — Let (Y, τ, ∂) be a Polish topometric space, X a Polish
space, and π : X → Y a continuous map. Assume that:

• Whenever U v X is open, (πU)∂ is open in Y .
• Whenever V v Y is open in Y , (V )∂ is open in Y .

Then the following conditions are equivalent, for a Baire-measurable A v X:
(1) The grey set A is comeager in X.
(2) The set {y ∈ Y : Ay is comeager in Xy} is comeager in Y .

The above Kuratowski–Ulam theorem is, so far, the main payoff of grey topology
for us; when trying to prove an analogue of the Effros theorem in the topometric
setting, it is useful to understand how the uniform metric and Baire category in-
teract (recall that, initially, it seemed unlikely that ample metric generics could
even exist outside of “usual” ample generics), in particular one needs to show that,
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whenever A is comeager in an open set O of a Polish group G and r is some posi-
tive real, then (A)<r is still comeager in (O)<r. This is the content of the following
corollary of our grey Kuratowski–Ulam theorem.

Corollary 5.68. — Let (X, τ, ∂) be a Polish topometric space, and assume
that (V )∂ is open for any open V v X. Assume also that A v U v X, where U is
open and A is comeager in U . Then (A)∂ is comeager in (U)∂ .

In particular, if A v X is 1-Lipschitz (relative to ∂), then U(A) is also 1-
Lipschitz.

Note that the compatibility assumption between topology and metric featured
above is automatically satisfied in a Polish topometric group.

Now we focus on grey subsets of (completely metrizable, not necessarily separa-
ble) groups.

Definition 5.69. — Let G be a group. For A,B v X, we define
A ∗B(g) = inf

hk=g
A(h) +B(k) , A−1(x) = A(x−1).

The ∗ operation is a form of convolution, and extends to grey subsets the group
operation of G as applied to subsets of G (identified with their zero-indicator func-
tion). One can then extend to the grey context several classical, and useful, prop-
erties of grey subsets of completely metrizable groups.

Lemma 5.70 (Pettis’ theorem for grey subsets). — Let A,B be grey subsets of
a completely metrizable group G. Then U(A) ∗ U(B) v A ∗B.

Now, let us go further, and try to see what a “grey subgroup” should be. A
subset H of a group G is a subgroup if the following conditions are satisfied: H is
nonempty, and HH−1 ⊆ H.

Thus, a grey subgroup H v G should be a grey subset such that inf H = 0, and
H ∗ H−1 v H. Explicitly, this last condition says that H(x) + H(y) > H(xy−1)
for all x, y ∈ G. These two conditions imply that H(1) 6 infxy=1H(x) +H(y−1) =
2 inf(H) = 0, from which the fact that H ∗H−1 v H yields H = H−1; finally we
see that the conditions are equivalent to writing H(1) = 0, H(g−1) = H(g) and
H(gh) 6 H(g) + H(h) for all g, h. In other words, our grey subgroups are simply
seminorms on G, which are themselves in natural bijection with left-invariant pseu-
dometrics on G. So the grey analogue of a subgroup is a left-invariant pseudometric;
hence one should expect that results concerning subgroups of permutation groups
should translate, using the topometric formalism, to results about left-invariant
pseudometrics.

One example of this phenomenon is the translation of the small index property.
Recall that a subgroup G of S∞ has the small index property if any subgroup of G
of index strictly below the continuum is open. We know by now that this property
implies that any homomorphism from G to S∞ is continuous (and really, for that
one only cares about subgroups of countable index). Let us now try to translate the
small index property in the grey context. Thinking of a left-invariant pseudometric
as the counterpart of a subgroup, the obvious analogue of “index strictly below the
continuum”, that is, “cardinality of G/H strictly below the continuum”, is “the den-
sity character of the metric space associated to the pseudometric is strictly below
the continuum”. Since “open” translates to ”continuous”, we have a first candidate:
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“any left-invariant pseudometric on G of density character strictly below 2ℵ0 is con-
tinuous”; equivalently, any homomorphism from G to a metrizable group of density
character strictly below 2ℵ0 is continuous. This implies that any homomorphism
from G to a separable group is continuous (what we called earlier the automatic
continuity property); in the discussion above it would also make sense to replace
all instances of the words “strictly below 2ℵ0” by the word “countable”, and the
proposed analogue of the (very) small index property is then exactly the automatic
continuity property. There is something wrong in this picture, however: we are not
taking the topometric structure into account at all. Some compatibility between
the pseudometric under consideration, and the uniform metric on our topometric
group, should be assumed.

Definition 5.71. — Let (G, τ, ∂) be a Polish topometric group. We say that
(G, τ, ∂) has the small density property if, whenever d is a left-invariant pseudo-
metric such that the density character of (G, d) is < 2ℵ0 , and d is Baire measurable
with respect to ∂, d must be continuous.

Equivalently: any homomorphism from G to a metrizable group of density char-
acter < 2ℵ0 which is ∂-Baire measurable is τ -continuous.

In the definition above, one would not change anything if one replaced ∂-Baire
measurability with ∂-continuity.

Theorem 5.72 ([15]). — Let (G, τ, ∂) be a Polish topometric group with ample
generics. Then (G, τ, ∂) has the small density property.

This is essentially a variant of the automatic continuity theorem proved in [12],
though the approach via grey sets makes the proof neater and probably easier to
comprehend.

5.5.2. A topometric version of Effros’ theorem.

Theorem 5.73 ([15]). — Assume that (X, τ, ∂) is a Polish topometric space,
and that G is a Polish group acting continuously on X by τ -homeomorphisms which
are also ∂-isometries. Assume further that, for any U open in X and any r > 0,
the set (U)<r is open. Assume also that x ∈ X is such that G · x is dense. Then
the following conditions are equivalent:

(1) G · x∂ is Gδ.
(2) G · x∂ is comeager.
(3) For any open subset U of G and any r > 0, (U · x)<r is open in G · x∂ .
(4) There exists y ∈ G · x∂ such that, for any open subset U of G and any

r > 0, (U · y)<r is open in G · y.

Note that all the assumptions above are satisfied when X = (G, τ, ∂) is a Polish
topometric group (or a power thereof) and G acts by (diagonal) conjugacy.

The only interesting implications here are (2)⇒ (3) and (4)⇒ (1). As it turns
out, to close the implication diagram once one has proved the implication (2)⇒ (3)
it is simpler to prove that (4) ⇒ (2) and (3) ⇒ (1); these implications are both
instances of a topometric variant of a well-known theorem of Hausdorff stating that
a metrizable space which is a continuous, open image of a Polish space is Polish
itself. I will only discuss the proof of (2)⇒ (3).
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Proof of (2) ⇒ (3). — Denote by π the orbit map g 7→ g · x. Fix a countable
basis (On)n<ω for the topology of G; for any n (πOn)∂ is Baire-measurable and 1-
Lipschitz (relative to ∂). Then 5.68 shows that Un = U((πOn)∂) is also 1-Lipschitz.
Let Ω = {y : ∀n(πOn)∂(y) = Un(y)}. This is a τ -comeager, ∂-closed subset. Also,
for any O vo G, (πO)∂ u 0Ω vo 0Ω.

Now, let B = {y : ∀∗g ∈ G g · y ∈ Ω}. This set is G-invariant, τ -comeager, and
∂-closed. The first point is obvious, the second follows from the (usual) Kuratowski-
Ulam theorem, and to see why the third holds assume that bi ∈ B and b ∈ X are
such that ∂(bi, b)→ 0. Then there exists a comeager set of g ∈ G such that g ·bi ∈ Ω
for all i, so since Ω is ∂-closed we get g · b ∈ Ω for all such g, i.e. b ∈ B.

It follows that G · x∂ is contained in B; to conclude, it is enough to prove that
for all U vo G (πU)∂ u0B vo 0B . To that end, let bi ∈ B converge to b ∈ B; there
exists g ∈ G such that g · b ∈ Ω and g · bi ∈ Ω for all i.

Since (πgU)∂ u 0Ω vo 0Ω, we have lim sup(πgU)∂(g · bi) 6 (πgU)∂(gb), equiva-
lently lim sup(πU)∂(bi) 6 (πU)∂(b). �

5.6. Meagerness of conjugacy classes in the space of actions. We conclude
this text by discussing a topometric approach to proving that conjugacy classes are
meager in Hom(Γ, G) for some countable groups Γ and Polish groups G - so far this
approach only really works when G is the isometry group of the Urysohn space.

Assume that M is a Polish metric structure, and that G is its automorphism
group, which we turn into a Polish topometric group in the usual way. For any
finite A ⊂M , denote by GA the pointwise stabilizer of A, and assume that for any
ε > 0 the set (GA)<ε contains 1 in its interior. This is true for instance in the
standard atomless probability algebra, the Urysohn space or the Urysohn sphere;
the assumption is a bit stronger than what we really need but simplifies exposition
somewhat.

Fix a countable group Γ. We may endow Hom(Γ, G) with a very strong uniform
metric d∞, defined by d∞(π, σ) = supg∈Γ du(π(g), σ(g)). Here du denotes the
uniform metric on G = Aut(M); note that even if Γ = Z d∞ is much finer than du,
since we are taking a supremum over all elements of Z. In the case of Aut(µ), this
metric is considered in [76], where it is proved that conjugacy classes are clopen in
the topology induced by d∞.

Now, assume that π0 ∈ Hom(Γ, G) has a comeager conjugacy class. Then, for
any neighborhood U of 1, π0 must belong to the interior of U · π0 (where closure is
relative to the Polish topology on Hom(Γ, G), and · denotes the conjugacy action
of G on Hom(Γ, G)). Thus, under our assumption on M, π0 must belong to the
interior of the closure of (GA)<ε · π0 for any finite A ⊂M and ε > 0.

Let us focus on V = (GA)<ε · π0 for a moment: assume that π belongs to this
set; then there exists h ∈ GA and g ∈ (1)<ε such that π = gh · π0. Thus for any
a, b ∈ A and γ, δ ∈ Γ we have that |d(π(γ)a, π(δ)b)− d(π0(γ)a, π0(δ)b)| is equal to

|d(ghπ0(γ)h−1g−1a, ghπ0(δ)h−1g−1b)− d(π0(γ)a, π0(δ)b)|
6 2ε+ |d(hπ0(γ)h−1a, hπ0(δ)h−1b)− d(π0(γ)a, π0(δ)b)|
= 2ε+ |d(hπ0(γ)a, hπ0(δ)b)− d(π0(γ)a, π0(δ)b)| = 2ε.
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So for any π ∈ V , we have for all γ, δ ∈ Γ and all a, b ∈ A that
|d(π(γ)a, π(δ)b)− d(π0(γ)a, π0(δ)b)| 6 2ε.

Note that the set of all π satisfying these conditions is closed in Hom(Γ, G), while
we know that the closure of V contains π0 in its interior: hence there exists an open
neighborhood W of π0 in Hom(Γ, G) such that

∀π ∈W ∀γ, δ ∈ Γ ∀a, b ∈ A |d(π(γ)a, π(δ)b)− d(π0(γ)a, π0(δ)b)| 6 2ε.
In other words, the map π(γ)a 7→ π0(γ)a must be an isomorphism from π(Γ)A to
π0(Γ)A up to a prescribed error 2ε: the finite number of constraints imposed by
the open set W must control the whole orbit π(Γ)A up to a prescribed error. This
seems to be a very strong condition that is unlikely to hold when Γ is infinite.

Theorem 5.74. — For any infinite, countable group Γ, conjugacy classes are
meager in Hom(Γ, Iso(U)) and Hom(Γ, Iso(U1)).

Proof. — One can use the above criterion with A a singleton to derive a con-
tradiction. Let us give the proof for Iso(U): assume for a contradiction that
π0 ∈ Hom(Γ, Iso(U)) has a comeager conjugacy class. There must exist an open
subset W of Hom(Γ, Iso(U)) containing π0 and such that, for all π ∈ W and all
γ ∈ Γ, one has

|d(π(γ)a, a)− d(π0(γ)a, a)| 6 1.
This implies that all elements of W have bounded orbits, or all elements of W have
unbounded orbits (depending on how π0 behaves).

Thus to derive a contradiction it is enough to prove that Γ-actions with bounded
orbits and Γ-actions with unbounded orbits are both dense in Hom(Γ, Iso(U)). This
is easy to do. Indeed, let

O = {π : ∀a ∈ A∀γ ∈ F d(π(γ)a, σ(γ)a) < ε}
be an open subset (with A,F finite, ε > 0). Then consider the supremum M
of all distances between elements of {σ(γ)a : γ ∈ F , a ∈ A}; let (X, d) be the
metric space σ(Γ)A. One can endow it with a new metric ρ = min(d,M); Γ
still acts isometrically on (X, ρ), which may be embedded in Iso(U); denote this
new action by π. Using the homogeneity of U, and the fact that ρ, d agree on
elements {σ(γ)a : γ ∈ F , a ∈ A} we obtain that π belongs to O, and has bounded
orbits. Thus the set of elements with bounded orbits is dense in Hom(Γ, G) for any
countable group Γ.

Now, let ρ be an unbounded left-invariant metric on Γ (this exists because
Γ is countable infinite). The left-translation Γ y (Γ, ρ) extends to an action
π : Γ y U with unbounded orbits; thus we obtain two pseudometrics on Γ × A
which are invariant when Γ acts on Γ × A by left-translation on the first coor-
dinate: d1((γ, a), (δ, b)) = d(σ(γ)a, σ(δ)b) and d2((γ, a), (δ, b)) = d(π(γ)a, π(δ)b).
For any r > 0 d1 + rd2 is a pseudometric on Γ × A which is invariant under the
left-translation action, and elements have unbounded orbits for d1 + rd2 under this
action. As r goes to 0, the values of d1 + rd2 on F ×A get arbitrarily close to the
values of d1 on F ×A, so for r small enough, using the homogeneity of U, we obtain
an action of Γ that belongs to O and has unbounded orbits. This concludes the
proof for Iso(U). One can use similar ideas to deal with Iso(U1) (looking at the
behaviour of d(π(γ)a, a) as γ goes to ∞), though I will not give details here. �
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It would be much more interesting to be able to prove the same result for
G = Aut(µ); this is related to questions about complexities of some classification
problems. It is known since work of Foreman and Weiss [36] that conjugacy classes
are meager in Hom(Γ,Aut(µ)) for any infinite amenable Γ. They used entropy for
amenable actions as an invariant that contradicts the possibility of a comeager con-
jugacy class. This makes it tempting to believe that, using the notion of entropy for
measure-preserving actions of sofic groups (see e.g. [19] and [78]), one could extend
their result to all sofic groups. But entropy for sofic groups is significantly more
complicated than for amenable groups and at the moment I do not know whether
this approach can be fruitful in this generality.

While the approach discussed above leads to some partial results, it does not seem
to be powerful enough to solve the problem of existence of comeager conjugacy
classes for all countable groups. In particular, it seems powerless to prove that
conjugacy classes are meager in the case of infinite groups with property (T) (or,
maybe, it suggests that groups with property (T) are a good place to look for
examples of groups for which there exists a comeager conjugacy class in the space
of measure-preserving actions).

I did not discuss the case of the unitary group in this section - this is because
Kerr–Li–Pichot [79] proved that conjugacy classes are meager in Hom(Γ, U(H)) for
any countable infinite group Γ. They actually prove more, using an approach based
on operator algebras; maybe the approach discussed above can be used to give a
simpler proof than theirs in the case of countable groups.
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