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MODELS OF TWO-PHASE FLUID DYNAMICS À LA
ALLEN-CAHN, CAHN-HILLIARD, AND ... KORTEWEG!

HEINRICH FREISTÜHLER AND MATTHIAS KOTSCHOTE

Abstract. One purpose of this paper on the Navier-Stokes-Allen-Cahn (NSAC), the
Navier-Stokes-Cahn-Hilliard (NSCH), and the Navier-Stokes-Korteweg (NSK) equations con-
sists in surveying solution theories that one of the authors, M. K., has developed for these
three evolutionary systems of partial differential equations. All three theories start from
a Helmholtz free energy description of the compressible two-phase fluids whose dynamics
they describe in various ways. While a diphasic fluid composed from two constituents of
individually constant density is still compressible as long as these two densities are different
from each other, the abovementioned solution theories for NSAC and NSCH do not apply
in this “quasi-incompressible” case, as the Helmholtz-energy framework degenerates. The
second purpose of the paper is to present an observation made by both authors together that
shows how to fill these gaps. As ‘by-products’ one obtains (a) in the case that the phases
can transform into each other, a justification of NSK, and (b) in the case that they cannot,
a new Korteweg type system with non-local ‘viscosity’.

Pensez à REDESSINER !
This paper is dedicated to DENIS SERRE on the occasion of his 60th birthday

1. Three models of two-phase fluid dynamics
We begin by recapitulating three systems of evolutionary partial differential

equations that have been proposed for describing the dynamics of two-phase fluids.

1.1. The Navier-Stokes-Allen-Cahn system. The Navier-Stokes-Allen-Cahn
system has the form

∂tρ+∇·(ρu) = 0,
∂t(ρu) +∇·(ρu⊗ u−T) = 0,

∂tE +∇·((EI−T)u)−∇·(β∇θ) = 0,
∂t(ρχ) +∇·(ρχu)− J = 0,

(1.1)

where ρ > 0 and u ∈ R3 are the two-phase fluid’s density and velocity, χ ∈ (0, 1)
denotes the concentration of one of the phases, and

E ≡ ρ(E + 1
2 |u|

2) and T ≡ −pI + C + S

are the total energy and the total Cauchy stress. In this and the next subsection,
we assume that the fluid posseses a Helmholtz energy

F (τ, θ, χ,∇χ) = F̌ (τ, θ, χ, |∇χ|2) (1.2)
which satisfies

∂2
τF > 0 and ∂2

θF > 0; (1.3)
in particular, the internal energy E can be obtained from F through the Legendre
transform

E(τ, S, χ,∇χ) ≡ F (τ, θ, χ,∇χ) + θS

with temperature θ and specific entropy S = −∂θF as dual variables. Viscous stress

S = η(Du)s + ζ∇·u I, (Du)s ≡ 1
2(Du+ (Du)>)

Math. classification: 76N10, 35Q35, 82B24, 82B26, 35M10.
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58 H. Freistühler & M. Kotschote

and heat flux, −β∇θ, are quantified by means of the coefficients η, ζ, β of shear
viscosity, bulk viscosity, and thermal conductivity, functions of ρ, θ, χ, and |∇χ|2,
that satisfy

η, 2η + ζ, β > 0 for all values of (ρ, θ, χ,∇χ) ∈ (0,∞)× (0,∞)× [0, 1]× Rn.

Obviously, the first three equations in (1.1) express the conservation of mass, mo-
mentum, and energy. The forth equation, in view of the first equivalent to its
counterpart

∂t(ρ(1− χ)) +∇·(ρ(1− χ)u) + J = 0

for the other phase, encodes the exchange between the phases.
The Navier-Stokes-Allen-Cahn equations1 (NSAC) are now obtained by closing

the system through specifying C and J in terms of F as

C = CE , J = JAC (1.4)

with 2

CE = −∇χ⊗ ∂

∂∇χ
(ρF ) and JAC = θ

ε

(
− ∂

∂χ

(
ρ

θ
F

)
+∇·
(

∂

∂∇χ

(
ρ

θ
F

)))
. (1.5)

Here

ε = ε(ρ, θ, χ, |∇χ|2) > 0, (ρ, θ, χ,∇χ) ∈ (0,∞)× (0,∞)× [0, 1]× Rn

is a relaxation time.
The Navier-Stokes-Allen-Cahn equations seem to have first been formulated by

Blesgen [6].

1.2. The Navier-Stokes-Cahn-Hilliard system. Mathematically, the Navier-
Stokes-Cahn-Hilliard equations3 (NSCH) are just another closure of system (1.1).
They are obtained by letting

C = CE , J = JCH ≡ ∇·J (1.6)

with CE as above and

J = γ∇
(1
θ
µ
)

(1.7)

with mobility

γ = γ(ρ, θ, χ, |∇χ|2) > 0, (ρ, θ, χ,∇χ) ∈ (0,∞)× (0,∞)× [0, 1]× Rn

and
ρ

θ
µ = ∂χ

(ρ
θ
F
)
−∇·

(
∂∇χ

(ρ
θ
F
))

. (1.8)

Physically speaking, the principal difference between NSAC and NSCH is — in di-
rect analogy to the difference between the Allen-Cahn and the Cahn-Hilliard models
of phase dynamics without convection [2, 7]— that NSAC permits transformations
between the phases while the divergence form of J in NSCH represents spatial
redistribution without transformation.

The Navier-Stokes-Cahn-Hilliard equations, though in a version from which ours
differs4, have been formulated by Lowengrub and Truskinovsky [22].

1In the other case η = ζ = β = 0, system (1.1) is referred to as the Euler-Allen-Cahn equations.
2CE is the Ericksen tensor [10].
3or, in the other case η = ζ = β = 0, Euler-Cahn-Hilliard equations
4For a discussion of this difference, see [13].
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1.3. The Navier-Stokes-Korteweg system. Differently from both NSAC and
NSCH, the Navier-Stokes-Korteweg equations (NSK) do not have a concentration
variable, but only the density ρ as an ‘order parameter’. They read

∂tρ+∇·(ρu) = 0,
∂t(ρu) +∇·(ρu⊗ u− T̄) = 0,

∂tĒ +∇·((ĒI− T̄)u)−∇·(β∇θ) = 0,
(1.9)

with
Ē ≡ ρ(Ē + 1

2 |u|
2) and T̄ ≡ −pI + K + S.

Based on Korteweg’s classical idea, capillarity is now reflected in the fluid’s Helm-
holtz energy

F̄ (ρ, θ,∇ρ) = ˇ̄F (ρ, θ, |∇ρ|2), (1.10)
and its internal energy Ē,

Ē(ρ, S,∇ρ) ≡ F̄ (ρ, θ,∇ρ) + θS, S ≡ −∂θF̄ ,

by their dependence on ∇ρ. While S is the same viscous stress as above and β > 0
again the thermal conductivity5, the ‘Korteweg tensor’ should be chosen as

K = θ

[
ρ∇·
(
∂∇ρ

(ρ
θ
F̄
))

I−∇ρ⊗ ∂∇ρ
(ρ
θ
F̄
)]
. (1.11)

Going back to Korteweg [15], the Navier-Stokes-Korteweg equations have been
intensely studied by Dunn and Serrin [9], though with an interesting difference6

regarding K.

2. Solution theories

2.1. Solution theory for NSAC. Let Ω ⊂ Rn be a bounded domain with
compact boundary Γ := ∂Ω of class C2 decomposing disjointly as Γ = Γd

.
∪ Γs,

where each set may be empty. The outer unit normal of Γ at position x is denoted
by ν(x). Further, let J = [0, T ], T ∈ (0,∞], be a time interval. The partial
differential equations (1.1) have to be complemented by initial conditions

ρ(0, x) = ρ0(x), u(0, x) = u0(x), θ(0, x) = θ0(x), χ(0, x) = χ0(x), x ∈ Ω,
(2.1)

and boundary conditions. Two natural boundary conditions are of interest for u,
namely the non-slip condition

u(t, x) = 0, (t, x) ∈ J × Γd (2.2)

and the pure slip condition

(u(t, x) | ν(x)) = 0, Q(ν(x))S(t, x) · ν(x) = 0, (t, x) ∈ J × Γs (2.3)

with (· | ·) denoting the inner product of Rn. The matrix Q(ν(x)) := I−ν(x)⊗ν(x)
projects a vector field on the boundary Γ to its tangential part. As for boundary
conditions for θ and χ, we prescribe

θ(t, x) = gd(t, x), χ(t, x) = ld(t, x), (t, x) ∈ J × Γd, (2.4)

and
(∇θ(t, x) | ν(x)) = 0, (∇χ(t, x) | ν(x)) = 0, (t, x) ∈ J × Γs. (2.5)

5In the other case η = ζ = β = 0, one calls (1.9) the Euler-Korteweg eqautions.
6For a discussion of this difference, see [13].



60 H. Freistühler & M. Kotschote

We are looking for solutions (ρ, u, θ, χ) of problem (1.1), (1.4), (2.1)-(2.5) in the
regularity class Z1(J)× Z2(J)× Z3(J)× Z4(J), where these spaces are defined by

Z1(J) := H2
p(J ; H−1

p (Ω)) ∩ C1(J ; Lp(Ω)) ∩ C(J ; H1
p(Ω)), H−1

p (Ω) := (
◦

H1
p(Ω))′,

Z2(J) := Z(J ;Rn), Z3(J) := Z(J ;R), Z4(J) := Z(J ;R),
Z(J ;E) := H1

p(J ; Lp(Ω;E)) ∩ Lp(J ; H2
p(Ω;E)), E ∈ {Rn,R}, p ∈ (1,∞).

Here and in the sequel, Hs
p denote the Bessel potential spaces and W s

p the Slo-
bodeckij spaces (W s

p ≡ Bspp Besov spaces), see [23], [24]. We shall also need the
function spaces
Yj,k(J ;E) := W1−j/2−1/2p

p (J ; Lp(Γk;E)) ∩ Lp(J ; W2−j−1/p

p (Γk;E)), j = 0, 1, k = d, s.

(2.6)

The Helmholtz energy F is assumed to be of class C3, the coefficients η, ζ, β, ε
of class C2.

Theorem 2.1 ([18]). — Assume the situation described in Subsection 1.1 and
the hypotheses above. Then, for each initial data (ρ0, u0, θ0, χ0) in
V := {(%, υ, ϑ, c) ∈ H1

p(Ω)×W2−2/p

p (Ω;Rn)×W2−2/p

p (Ω)×W2−2/p

p (Ω) :
(υ(y) | ν(y)) > 0 ∀y ∈ Γ, %(x) > 0, ϑ(x) > 0, c(x) ∈ [0, 1] ∀x ∈ Ω}

and boundary data
gd, ld ∈ Y0,d(J ;R), gd(t, x) > 0, ld(t, x) ∈ (0, 1), ∀(t, x) ∈ J × Γd,

satisfying the compatibility conditions
u0|Γd

= 0, (u0 | ν)|Γs
= 0, QS|t=0 · ν|Γs

= 0,
θ0|Γd

= gd|t=0, χ0|Γd
= ld|t=0, (∇θ0 | ν)|Γs

= 0, (∇χ0 | ν)|Γs
= 0,

(2.7)

there is a unique solution (ρ, u, θ, χ) of (1.1),(1.4),(2.1)-(2.5) on a maximal time
interval, which is J∗ = [0, T ∗), T ∗ := T ∗(ρ0, u0, θ0, χ0) ∈ (0, T ]. The solution
(ρ, u, θ, χ) belongs to the class Z1(J∗)×Z2(J∗)×Z3(J∗)×Z4(J∗) for each interval
J∗ = [0, T∗], 0 < T∗ < T ∗. If finite, the maximal time T ∗ is characterised by the
property:

lim
t→T∗

(ρ, u, θ, χ)(t) does not exist in V.

In the autonomous case, the solution map (ρ0, u0, θ0, χ0) 7→ (ρ, u, θ, χ)(t) generates
a local semiflow on the phase space

Vp := {ϕ := (ρ0, u0, θ0, χ0) ∈ V : ϕ satisfies (2.7)}.

2.2. Solution theory for NSCH. Let J = [0, T ] as before and Ω ⊂ Rn be
a bounded domain with compact boundary Γ := ∂Ω of class C4 decomposing
disjointly as Γ = Γ0

.
∪ Γs, where each set may be empty. For the velocity field

u, natural boundary conditions are the non-slip and pure slip condition
u = 0, on J × Γ0,

(u | ν) = 0, QS · ν = 0, on J × Γs,
(2.8)

where by (· | ·) , ν, and Q mean the same as above. Note that in view of the
boundary conditions the total mass and the total phase are conserved,∫

Ω
ρ(t, x) dx =

∫
Ω
ρ(0, x) dx, ∀t ∈ J,∫

Ω
(ρχ)(t, x) dx =

∫
Ω
ρ(0, x)χ(0, x) dx, ∀t ∈ J.

(2.9)

As for boundary conditions for θ, one can prescribe both Dirichlet and Neumann
boundary conditions. We therefore assume that Γ also splits as

Γ = Γd ∪̇Γn (2.10)
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and require

θ = gd, (t, x) ∈ J × Γd, (∇θ | ν) = gn, (t, x) ∈ J × Γn. (2.11)

Finally, we consider the following boundary conditions for χ(
∇
(1
θ
µ
)
| ν
)

= 0, (∇χ | ν) = 0, (t, x) ∈ J × Γ, (2.12)

meaning that no diffusion through the boundary occurs and a possibly present
diffuse interface is orthogonal to the boundary of the domain. We also note that in
case of Γd = ∅ and gn ≡ 0, also the total energy is conserved.

We are interested in strong solutions, now to (1.1) with (1.6), in the Lp-setting.
More precisely, we are looking for solutions (ρ, θ, χ, u) ∈ E1 × E2 × E3 × E4 with

E1 := H2+1/4
p (J ; Lp(Ω)) ∩ C1(J ; H2

p(Ω)) ∩ C(J ; H3
p(Ω)),

E2 := H1
p(J ; Lp(Ω)) ∩ Lp(J ; H3

p(Ω)),
E3 := H1

p(J ; Lp(Ω)) ∩ Lp(J ; H4
p(Ω)),

E4 := H3/2
p (J ; Lp(Ω;Rn)) ∩H1

p(J ; H2
p(Ω;Rn)) ∩ Lp(J ; H4

p(Ω;Rn)),

(2.13)

and

p ∈ (p̂,∞), p̂ := max {4, n} . (2.14)

We also write Ei(J) to indicate the time interval.
The Helmholtz energy F is now supposed to be of class C5 and the coefficients

η, ζ, β, γ of class C4.

Theorem 2.2 ([20]). — Considering the situation described in Subsection 1.2,
assume the above and that

(i) the initial data (ρ0, θ0, χ0, u0) lie in

V := {(%, ϑ, c, v) ∈ H3
p(Ω)×W

3− 2
p

p (Ω)×W
4− 4

p
p (Ω)×W

4− 2
p

p (Ω;Rn) :
%(x) > 0, ϑ(x) > 0, ∀x ∈ Ω},

(ii) the subsequent compatibility conditions hold:

u0|Γ0 = 0, (u0 | ν)|Γs
= 0, QS|t=0 · ν|Γs

= 0, ∂νχ0|Γ = 0, ∂ν
( 1
θ0
µ0
)

Γ = 0,

−∇·S|t=0,Γ0 = (∇·C)|t=0,Γ0 ∈W
2− 3

p
p (Γ0;Rn),

−
(
∇·S|t=0 | ν

)
|Γs

= (∇·C− ρ∇u · u | ν)|t=0,Γs
∈W

2− 3
p

p (Γs),

−QS(∇·S)|t=0 · ν|Γs
= QS(∇·C− ρ∇u · u)|t=0,Γs

· ν|Γs
∈W

1− 3
p

p (Γs;Rn),

θ0|Γd
= gd|t=0 ∈W

3− 3
p

p (Γd), ∂νθ0|Γn
= gn|t=0 ∈W

2− 3
p

p (Γn),

where µ0 is defined as µ|t=0 = µ[ρ0, θ0, χ0]. Then the problem (1.1), (1.6), (2.1),
(2.8), (2.11), (2.12) possesses a unique strong solution (ρ, θ, χ, u) on a maximal
time interval J∗ := [0, T ∗), T ∗ ∈ (0, T ]. This solution belongs to the class E1(J∗)×
E2(J∗)× E3(J∗)× E4(J∗) for each interval J∗ = [0, T∗] with 0 < T∗ < T ∗. If finite,
the maximal time T ∗ is characterized by the property:

lim
t→T∗

(ρ, θ, χ, u)(t) does not exist in Vp,

where Vp := {ω ∈ V : ω fulfils the compatibility conditions in (ii)}. Moreover, the
solution map (ρ0, θ0, χ0, u0) 7→ (ρ, θ, χ, u)(·) generates a local semiflow on the phase
space Vp.
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2.3. Solution theory for NSK. Let Ω be a bounded domain in Rn, n > 1,
with C3- boundary, Γ := ∂Ω, and J ≡ [0, T ], T ∈ (0,∞], a time interval.

The equations (1.9) have to be supplemented with initial and boundary condi-
tions

u = gD(t, x), (t, x) ∈ J × ∂Ω,
∂νρ = gN (t, x), (t, x) ∈ J × ∂Ω,
θ = gd(t, x), (t, x) ∈ J × ∂Ω, (2.15)
u = u0(x), (t, x) ∈ {0} × Ω,
ρ = ρ0(x), (t, x) ∈ {0} × Ω,
θ = θ0(x), (t, x) ∈ {0} × Ω.

Assume F, η, ζ, β are of class C2.

Theorem 2.3 ([19]). — Let n+ 2 < p <∞ and suppose that
(i) the initial data (u0, ρ0, θ0) belong to

V := {(υ, %, ϑ) ∈ B2−2/p

pp (Ω;Rn)×B3−2/p

pp (Ω;R+)× B2−2/p

pp (Ω;R+) :
%0(x) > 0, ϑ0(x) > 0∀x ∈ Ω};

(ii) compatibility conditions hold: u0|Γ = gD|t=0 in B2−3/p
pp (Γ;Rn), ∂νρ0 =

gN |t=0 in B2−3/p
pp (Γ), θ0|Γ = gd|t=0 in B2−3/p

pp (Γ).
Then there exists T ∗ ∈ (0, T ] such that for any T∗ ∈ (0, T ∗), the nonlinear prob-
lem (1.9), (2.15) admits a unique solution (u, ρ, θ) on J∗ = [0, T∗] in the maximal
regularity class F(J∗) := F1(J∗)× F2(J∗)× F3(J∗) with

F1(J) := H1
p(J ; Lp(Ω;Rn)) ∩ Lp(J ; H2

p(Ω;Rn)),
F2(J) := H3/2

p (J ; Lp(Ω;R+)) ∩ Lp(J ; H3
p(Ω;R+)),

F3(J) := H1
p(J ; Lp(Ω;R+)) ∩ Lp(J ; H2

p(Ω;R+)).
If finite, the maximal time T ∗ is characterized by the property:

lim
t→T∗

(u, ρθ)(t) does not exist in Vp,

where Vp := {ω ∈ V : ω fulfils the compatibility conditions in (ii)}. Moreover, the
solution map (u0, ρ0, θ0) 7→ (u, ρ, θ)(·) generates a local semiflow on the phase space
Vp.

Remark 2.4. — Solution theories for NSK have earlier been given by Hattori and
Li [14] and Danchin and Desjardins [8]. A solution theory for the Euler-Korteweg
equations is due to Benzoni-Gavage and collaborators [4, 5].

Remark 2.5. — Certain heteroclinic traveling wave solutions of NSK, NSAC,
NSCH model diffuse interphase interfaces. Such solutions and their stability have
been studied in [22, 3, 5, 11, 12, 16].

3. Reduction of phase-field models to Korteweg-type models.
In this section we consider fluids that consist of two incompressible phases of

different temperature-independent7 specific volumes. Such a fluid is properly de-
scribed by a Gibbs energy of the form

G(p, θ, χ,∇χ) = T (χ)p+W (θ, χ, |∇χ|2), (3.1)
where

T (χ) = χτ1 + (1− χ)τ2 (3.2)

7The case of two different temperature-dependent specific volumes can also be treated, but we
refrain from doing this here.
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with constants τ1, τ2 > 0 satisfying
τ∗ ≡ τ1 − τ2 6= 0. (3.3)

If G satisfied −∂2
pG < 0, this description would be related to a Helmholtz energy

F through a Legendre transform,
F (τ, θ, χ,∇χ) = G(p, θ, χ,∇χ)− pτ.

However, as G is affine, (the Legendre transform degenerates and) a description
based on a Helmholtz energy is not available. While the capillarity tensor and the
exchange rates can be defined refering to G instead of F , namely using

CE = −∇χ⊗ ρ ∂G
∂∇χ

, (3.4)

JAC = θ

ε

(
− ρ ∂

∂χ

(
1
θ
G

)
+∇·

(
ρ

∂

∂∇χ

(
1
θ
G

)))
, (3.5)

and, for JCH ,
ρ

θ
µ = ρ

θ
∂χG−∇·

(ρ
θ
∂∇χG

)
, (3.6)

the argumentations of Subsections 2.1, 2.2, and thus Theorems 2.1 and 2.2, need F
for many more purposes, and therefore do not apply. Instead we find the following.

3.1. Reduction of the Navier-Stokes-Allen-Cahn system.

Theorem 3.1. — In the case of two molecularly immiscible incompressible
phases of different, temperature-independent specific volumes, (3.1), (3.2), (3.3),
the Navier-Stokes-Allen-Cahn equations (1.1) with C = CE , J = JAC from (3.4),
(3.5) can be written as the Navier-Stokes-Korteweg system

∂tρ+∇·(ρu) = 0,
∂t(ρu) +∇·(ρu⊗ u)−∇·(−p̄I + K + S∗) = 0,

∂tĒ +∇·(Ēu− (−p̄I + K + S∗)u)−∇·(β∇θ) = 0,
(3.7)

with Ē , p̄,K derived as in 2.3 from the Helmholtz energy

F̄ (θ, ρ,∇ρ) = W (θ, χ̄(ρ), [χ̄′(ρ)]2|∇ρ|2) with χ̄(ρ) := 1/ρ− τ2
τ∗

(3.8)

and with viscous stress
S∗ = η(Du)s + (ζ + ζ∗)∇·u I where ζ∗ ≡

ε

ρτ2
∗
. (3.9)

Proof. — First, note that by relations (3.2), (3.3), the unknown χ can be re-
garded as a function of ρ. We therefore set

χ = χ̄(ρ) = 1/ρ− τ2
τ1 − τ2

= 1/ρ− τ2
τ∗

(3.10)

with derivative
χ̄′(ρ) = − 1

τ∗ρ2 .

Moreover, we shall need the relations
∂χG = τ∗p+ ∂χW,

∂∇χ

(ρ
θ
G
)

= ∂∇χ

(ρ
θ
W
)

= 1
χ̄′(ρ)∂∇ρ

(ρ
θ
F̄
)
, ∇χ = χ̄′(ρ)∇ρ,

∂ρF̄ = χ̄′(ρ)∂χW + χ̄′′(ρ)
χ̄′(ρ)∇ρ · ∂∇ρF̄ ,

(3.11)

the last of which implies
1
τ∗
∂χW = −ρ2∂ρF̄ + ρ2 χ̄

′′(ρ)
χ̄′(ρ)∇ρ · ∂∇ρF̄ . (3.12)
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Looking at the forth equation of (1.1), we evaluate

∂t(ρχ) +∇·(ρχu) = ρχ̇ = ρχ̄′(ρ)ρ̇ = −ρ2χ̄′(ρ)∇·u = 1
τ∗
∇·u

and J as
θ

ε

(
∇·
(
ρ

θ
∂∇χG

)
− ρ

θ
∂χG

)
= θ

ε

(
∇·
(

[χ̄′(ρ)]−1∂∇ρ

(
ρ

θ
F̄

))
− ρ

θ
τ∗p− ρ

θ
∂χW

)
and find an explicit representation of the pressure,

p = − ε

τ2
∗ρ
∇·u− θρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ

(ρ
θ
F̄
))
− 1
τ∗
∂χW. (3.13)

Using this, we get

−p I + C + S = −p I−∇χ⊗ ∂∇χ(ρW ) + S

= 1
τ∗
∂χW I + θρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ

(ρ
θ
F̄
))

I−∇ρ⊗ ∂∇ρ(ρF̄ ) + S∗

= 1
τ∗
∂χW I + θρ∇·

(
∂∇ρ

(ρ
θ
F̄
))

I− ρ2 χ̄
′′(ρ)
χ̄′(ρ)∇ρ · ∂∇ρF̄ −∇ρ⊗ ∂∇ρ(ρF̄ ) + S∗,

where we have used (3.10) and (3.9). Replacing now the term ∂χW according to
the identity (3.12), we indeed find

−pI + C + S = −p̄I + θ

[
ρ∇·
(
∂∇ρ

(
ρ

θ
F̄

))
I−∇ρ⊗ ∂∇ρ

(
ρ

θ
F̄

)]
+ S∗

= −p̄I + K + S∗
with the Korteweg tensor K as defined in (1.11). �

Remark 3.2. — Theorem 3.1 shows that for fluids consisting of two immiscible
incompressible phases of different specific volumes, the PDE theory of the Navier-
Stokes-Korteweg system is an alternative to the “rather incompressible” description
proposed in [22] and pursued (later) in [1].

3.2. Reduction of the Navier-Stokes-Cahn-Hilliard system

Theorem 3.3. — In the case of two molecularly immiscible incompressible
phases of different, temperature-independent specific volumes, (3.1), (3.2), (3.3),
the Navier-Stokes-Cahn-Hilliard equations (1.1) with C = CE and J = JCH from
(3.4), (1.7), and (3.6) can be written as the non-local Navier-Stokes-Korteweg sys-
tem

∂tρ+∇·(ρu) = 0,
∂t(ρu) +∇·(ρu⊗ u)−∇·(−p̄I + K + Sγ) = 0,

∂tĒ +∇·(Ēu− (−p̄I + K + Sγ)u)−∇·(β∇θ) = 0,
(3.14)

with Ē , p̄,K derived as in 2.3 from the Helmholtz energy (3.8) and the non-local
viscous stress

Sγ = η(Du)s + ζ∇·u I + θ

τ2
∗

Λγ(∇·u)I, (3.15)

where Λγ denotes the solution operator of the elliptic problem

−∇·(γ∇φ) = ∇·u on Ω.

Proof. — The only difference from the proof of Theorem 3.1 consists in the form
of the representation for the pressure p. Using (3.10) in the forth equation of (1.1)
we obtain

1
τ∗
∇·u = ∇·

(
γ∇
(
µ

θ

))
= −∇·

(
γ∇
(
− µ

θ

))
⇔ 1

τ2
∗

Λγ∇·u = − µ

τ∗θ
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with
µ

θ
=
(
∂χ

(1
θ
G
)
− 1
ρ
∇·
(
∂∇χ

(ρ
θ
G
))

= τ∗
θ
p+ 1

θ
∂χW −

1
ρ
∇·
(

[χ̄′(ρ)]−1∂∇ρ

(ρ
θ
F̄
))

and thus
θ

τ2
∗

Λγ∇·u = − 1
τ∗
µ = −p− θρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ

(ρ
θ
F̄
))
− 1
τ∗
∂χW

instead of (3.13). �

Remark 3.4. — An existence theorem for the initial-boundary value problem of
(3.14) with (3.15) has been given in [17].
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