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ERGODIC DILATION OF A QUANTUM DYNAMICAL SYSTEM

CARLO PANDISCIA

Abstract. Using the Nagy dilation of linear contractions on Hilbert space and the
Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical
system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic
properties of the original quantum dynamical system.

1. INTRODUCTION

A quantum dynamical system is a pair (9, ®) consisting of a von Neumann
algebra 9t and a normal, i.e. o-weakly continuous, unital completely positive map
DM — M.

In this work we will prove that is possible to dilate any quantum dynamical
system to a quantum dynamical system where the dynamics ® is a *-homomorphism
of a larger von Neumann algebra.

The existence of a dilation for a quantum dynamical system has been proven by
Muhly and Solel [8, Prop. 2.24] using the minimal isometric dilation of completely
contractive covariant representations of particular W*-correspondences over von
Neumann algebras. In contrast, we prove the existence of a dilation for a quantum
dynamical system using the Nagy dilations for linear contractions on Hilbert spaces
(see [9]) and a particular representation obtained by the Stinespring theorem for
completely positive maps (see [13]).

Throughout this paper we will use the abbreviation ucp-map for unital com-
pletely positive maps, and we denote by B(H) the C*-algebra of all bounded linear
operators on a Hilbert space H.

In the present paper by a dilation of a quantum dynamical system (91, @), with
M defined on a Hilbert space H we mean a quadruple (R, 0, K, Z) where (%R, ©)
is a quantum dynamical system with R defined on Hilbert space K and © is a
*-homomorphism of R; and Z : H — K is an isometry satisfying the following
properties (see [8]):

o ZMZ* C R

o I*RZ C M,

o O"(A)=Z*O"(ZAZ*)Z for Ae Mand n € N;

o 7*O"(X)Z =" (Z*XZ) for X € R and n € N.
Hence, we have the following commutative diagram:

r 2L m
Z.7% 1 L z5z
m 2L

Notice that in the literature of dynamical systems the dilation problem has taken
meanings different from that used here, see e.g. [2, 3, 4, 12].

By a representation of a quantum dynamical system (9%, ®) we mean a triple
(m,H, V), where 7 : 0 — B(H) is a normal faithful representation on the Hilbert
space H and V is an isometry on H such that

m(®(A)) = V*r(A)V for AeM.

Math. classification: 46L07, 46L55, 46L57.
Keywords: Quantum Markov process, completely positive maps, Nagy dilation, ergodic state.
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78 C. Pandiscia

Since 7 is faithful and normal, we identify the quantum dynamical system (91, @)
with (w(90), ®o) where @, is the ucp-map Pq(7(A4)) = V*m(A)V, for any A € M.
This this leads us to the study of invariant algebras under the action of isometries.

In fact, in Section 3, we consider a concrete C*-algebra 2 with unit of B(#) and
an isometry V of H such that

VAV C .

If (‘A/, ’ﬁ, Z) is the minimal unitary dilation of the isometry V', we will prove that
there is a C*-algebra 2 of B(#) with the following properties:

o JAZ* C 5(;
o Z*UZ C
o VAV C §l;
o Z*V*XVZ =V*Z*XZV for X € U;
o Z*V*(ZAZ*)WWZ =V*AV for A € 4.

—

A dilation of a quantum dynamical system (7 (9), @, ) is given by (7(9M), O, A, Z),
where the *-homomorphism O is defined by

O(X):=TV*XV for X (M)

In Section 4 we prove a Stinespring-type theorem for ucp-maps between C*-algebras
with unit, fundamental for the proof of the main result of this paper.

In Section 5 we discuss the ergodic properties of the dilation of a quantum
dynamical system. To this end it is worth recalling the notion of p-adjointness.
Let (9, ®) be a quantum dynamical system and let ¢ be a faithful normal state
on M with ¢ o & = . The dynamics ® admits a g-adjoint (see [6]) if there is a
normal ucp-map @y : M — M such that for each A, B € M

P(2(A)B) = ¢(A®y(B)),

(see [1, 5, 7, 10] for the relation between reversible processes, modular operators
and ¢-adjointness). If (MR, ©) is our dilation of the quantum dynamical system
(M1, @), we shall prove that if the dynamics ® admits a ¢-adjoint and

. " _
Jim ,;) |p(A®*(B)) — p(A)p(B)| =0 for A,B e,
then
1 n
lim Z lp(Z* X (Y)Z) — o(Z* X Z)p(Z*Y Z)| =0 for X,Y € R.
k=0

Before proving the existence of a dilation of a quantum dynamical system, it is
necessary to recall the fundamental Nagy dilation theorem. This is the subject of
the next section.

2. NAGY DILATION THEOREM

If V is an isometry on a Hilbert space H, there is a triple (‘7, ﬁ, Z) where H is
a Hilbert space, Z : H — H is an isometry and V' is a unitary operator on H with

VZ =2V (2.1)

satisfying the following minimal property:
H=\ VFzH, (2.2)

keZ

see [9]. However, for our purposes it is still useful to recall here the structure of the
unitary minimal dilation of an isometry.
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For a Hilbert space K recall that [?(K) denotes the Hilbert space {¢ : N — K :

3 |€(n)|? < oo}. Consider the Hilbert space
n=0

H=HoPFH) (2.3)
and the unitary operator on H defined as

vV FII,
0o W

where F =1 — VV* and I1; : [>(FH) — H is the canonical projection
H]<§O,§1€n) = fj for ] S N,
while W : [2(FH) — [2(FH) is the operator
W(€07£1§TI) = (517672 )7 for (50751671) € lz(FH)

If Z:H — H is the isometry defined by Zh = h @ 0 for all h € H, it is simple to
prove that the relations (2.1) and (2.2) are verified.
We observe that for each n € N we have

~

V:

: (2.4)

on_ | V" C(n)
where C(n) : [>(FH) — H are the following operators:
C(n) = ZV"*jFHj_l forn > 1.
j=1
Furthermore, for each n,m € N we obtain:
m* m* Hn—m if n >m
W™ =T, and IL,W™ = { 0 (2.6)
since
m—+1
m* ~~
W™ (&0,&1...6n...) =1(0,0...0, & ,&1...),
while for each k,p € N we obtain:
P B 2 74 G DR + Y
,C(k)" = { 0 elsewhere (2.7)
since for each h € H we have:
k times
C(k)*h = (FV*=Y"h . FV*h, Fh,0,0...). (2.8)

3. ISOMETRIC DILATION AND INVARIANT ALGEBRAS

In this section we consider a concrete unital C*-algebra 21 of B(H) and an
isometry V on the Hilbert space H such that

VAV C .

If (IA/7 ’;Q, Z) denotes the minimal unitary dilation of the isometry V', we will prove
the following proposition:

PROPOSITION 3.1. — There exists a unital C*-algebra A C B(#) such that:
a) ZAZ* C UA;
) Z*AZ C UA;
) VAV C A
(d) Z*V*XVZ =V*Z*XZV for X € U;
) Z*VH(ZAZ*WZ =V*AV for A € AU
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The statements (d) and (e) are straightforward consequences of (a) and (b) and
of the relationship VZ = ZV. In order to prove the other statements, we must
study two classes of operators on the Hilbert space H, associated to the pair (A, V)
defined above, which we shall call the gamma and the napla operators.

3.1. Gamma operators. We consider the sequences

a:=(ny,na...np, A, As. L Ay,
with n; € Nand A; € A for j =1,2,...,7. These elements a are called strings of
A of length I(«) := r and weight & := i n;.

To any string « of 2 correspond twé:éperators of B(H) defined by
la) := A V™M ALV AV and (af = VAV 1 Ay - VAL
Furthermore for each natural number n we define the sets
[n) :={|la) € B(H) : &=n},

and
[n)A = {|Ja)A € B(H) : AcAand a-string of A with & =n}.

The symbols (n| and 2(n| have analogous meanings.

PROPOSITION 3.2. — Let o and 3 be strings of 2. For each R € 2 we have:

A — P if &> p
(ol B|B) € { G- if a<f 3.1)
and .
[a)R|B) € |&+ B). (32)

Proof. — For each m,n € N and R € 2 we have:

Vm=n)9 if m>n

AV=m) if m<n (3.3)

V™ RV™ € {

Given « = (mq,mg...my, A1, Ay... A) and 8 = (ny,n2...ns, By, By...Bs) we
have that

(a|R|B) = V™ Ay - VA RBIV™ - B,V™ = (a]1]),
where & and J are strings of 2 with (&) +1(3) = () +1(8) — 1. Moreover if ¢ >
then & > E, while if & < § then a< 5 In fact if m; > ny we obtain:

(|R|B) = V™ Ay -+ AV M=) Ry By V2 . BV = (G]1]5),
where i
Ry =V™MARB V™|
a=(my —ny,mg...my, Ry, Ay. .. A,), and
B: (ng...ng,By...Bg).
If m; < nq then we can write:
(a|R|B) = V™ A, - V™ Ay Ry V(M=) B, ... BV = (a|I|3),
where .
Ry =V™ A RB,V™,
a=(mg...mp,Az... A;) and
B=(n1—my,ny...ng, Ry, By...Bs).

The proof of (3.1) follows by induction on the number v = I(a)+1(3). The equation
(3.2) follows by a direct calculation. O
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Now, given the orthogonal projection F' = I — VV* (see Section 2), for each
string o of 2 with & > 1 we define

INa) = (| Fll4—1,
which we call the gamma operator associated to (2, V). The linear space generated
by all gamma operators I'(a) for & > 1 will be denoted by G(2, V).
PROPOSITION 3.3. — For any strings o and 8 of 2 with &, 3 > 1, we have
T(a)T(B)* e A.
Proof. — Note that

@B = (ol F1g) = { §

alF|B) if & =p
0 it &a#p
In fact if & = 3 we have that
(@|F|B) = (a|(I = VVT)|a) = (alI]a) — (VVT]a) € 2,
since (a|V € (& — 1| and V*|ar) € |& — 1), and (& — 1|I|& — 1) C A by relationship
(3.1). O
The gamma operators associated to (2(,V) define an operator system X of
B(I12(FH)) by
Y= {T € B(*(FH)): T1TT5 €A forall T1,Ty € G(A, V)}. (3.4)
We observe that the unit I belongs to ¥ and that
MAl, € ¥ for AeX,

for any pair of gamma operators I'y, I'y. Furthermore, it is easy to prove that ¥ is
norm closed, and it is weakly closed if 2 is a W*-algebra.

3.2. Napla operators. For strings « and 5 of 2, any A € 2 and k € N we define
Ak(A,a, B) i= T, Fla)A(B|FT, .

We call these operators of B(I2(FH)) the napla operators associated to the pair

(A, V).

In the next lines we show that the linear space generated by the napla operators
form a #-algebra. To this end, it is easily seen that Ag(A, a, 8)* = Ak(A’.k, B, «) for
any h,k > 0. Moreover we have the following two relationships: if &k + 8 # h + 7,
then

Ak(A,Oé,ﬁ)Ah(B,’Y,(S) = Ov (35)
while if k+ 8 = h + 4, then there is ¥ and R € 2 with
[ A(R,a,9) if h—k=>0, where d =5 +h—k
Ak‘(Aaaa/B)Ah(Ba’Y75)_ { Ah(R,ﬁ,é) lf h*k<0, Whereﬂ:5+k—h
(3.6)
In fact, notice that
Ak(A7 «, B)Ah(Ba v, 6) = H;+kF|a)A(B|FH5+k:H;+hF|’7)B(6|FH5+h

If k+ B # h+4 it follows that TT;  IT. |, = 0, and this shows (3.5). If k+53 = h+4,
without lost of generality we can assume that i > k. So § =4+ h —k > % and, by
relationship (3.1), we have that (8|F|y) € (8 —4|. Consequently, A(|F|y)B(8| €
A(6 4+ 4 — 4|, and there exists a 9 string of 2 and an element R € 2 such that
9 =05+ —+4and A(B|F|y)B(6| = R(¥|. Now, since 9 = 6 + h — k we have:

Ak(A, @, B)AR(B,7,6) = T Fla) R FIl; .,
=10, Fla)RW|FI; , = Ap(R, o, 9),
showing relationship (3.6).
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PROPOSITION 3.4. — The linear space X, generated by the napla operators is
a *-subalgebra of B(I1?(FH)) included in the operator systems Y. defined in (3.4).

Proof. — From relationships (3.5),(3.6) the linear space X, is a *-algebra. Fur-
thermore for each pair I'(a), T'(3) of gamma operators we obtain:
() Ak(A,7,0)0(8)" = (a|FTa—11T, , , Fy)A(S| F1l;, 11, F|B) € 2,
since by the relationships (3.1) and (3.2) we have

L [a—1=%+Fk,

0 elsewhere

(| FTlq1 1T, Fly) A(S| FIIz,  TT5_, F|B)

In fact, if @ =4 4+ k + 1 we can write
(@l Flla 1115, Fly) = (el F|y) = (all]y) = (@[VV7]y) € Ak + 1],
since (a|Ily) € A(k + 1] and (a|VV*|y) € Ak +1|. If B =6+ k + 1 we have
(6| Flls 115 F|B) € (k + 1|2, completing the proof. O
The next result is concerned with W-invariance.
PROPOSITION 3.5. — The *-algebra X, and the operator system Y are W-

invariants:

wW*x,W cXx, and W*YXW CX.

Proof. — The first inclusion follows by (2.6). Concerning the second one, let
T € X. For each pair T'(a), I'(8) of gamma operators
D)W TW)I(B)" = (a|Flla W TWIL, | F[B)
= (Oé|FHd_2THB72F|5) S QlV*Fl(aO)TFQ(BO)VQl,
where «a, and f, are strings of 2 with &, = & — 1 and B, = B —1. In fact

if « = (m1,ma...my, A1, As... A,), then, by definition of the gamma operator,
there is 7 < r with m; > 1 such that

(| Fllgy—o = Ay - - AV (| FTlg—0 = Ay - - A; VT (),
where
ao=1(0,...0,m; — 1L,mj4q1...mp, A1, Ay. .. A,)
with &, = & — 1. Consequently
Ta)(W*TW)HT(B)* Cc V*AV C 2,
completing the proof. O

3.3. The algebra generated by the napla and gamma operators. Let X be
the closure in norm of the *-algebra X, of the apla operators previously defined.
Since the operator system X defined in (3.4) is a norm closed set, we have X C X.
Notice that in case 2 is a von Neumann algebra of B(H), the operator system ¥
is weakly closed and X!/ C 3.

PROPOSITION 3.6. — The set
SZ{‘ li 1;} :Ate,Te%anthFgeG(Ql,V)} (3.7)
2

is an operator system of B(#) such that:
V*SV c S.
Furthermore
V*A*(S)V C A%(S),
where A*(S) is the *-algebra generated by the set S.
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Proof. — From relationship (2.4) we obtain:

VAV V*AC(1) + V*Ih W
C(L)*AV + W*TsV  C(1)*AC(1) + W*T'5C(1) + C(1)*'ThWW + W*TW
We observe that V*T'(a)W and V*AC(1) are gamma operators associated to the
pair (2, V), while C(1)*AC(1), C(1)*T'(a)W and W*TW are operators belonging
to X. In fact we have V*AC(1) = V*AFTI, = I'(¥) with ¥ = (1, A); while if

VSV =

a=(my,ma...mp, A1, As... A),
then V*T'(a)W = V*(a| FIl41 W = T'(¢¥), with
9= (mi1+1,mg...m;, A1, Ay... A;)
since I15_1 W = Il,. Furthermore
C(1)*AC(1) =TI{FAFTIy = Ao(A, o, B),
with a = 8 = (0,1); while
C(1)T(a)W =I5F (| FTl4 1 W =I5 F ) (| Flla40 = Ao(1, v, @)

with v = (0, I), where the last statement follows from the fact that Vis unitary. O

We observe that A*(S), the *-algebra generated by the operator system S defined

~

in (3.7), is the linear space generated by the following elements of B(H):
Ay ATy
ToTA; Ty
with A; € A, T'; € G(A, V) and T, € X for all 4,k = 1,2,3 and j = 1,2. We list
here some easy properties of the *-algebra A*(S):
(a) ZAZ* C A*(S);
(b) Z*A*(8)Z C U,
(c) V*A*(S)V C A*(S).
Furthermore, since VZ = ZV we have:
(d) ZV*XVZ =V*2*X2V;
(e) ZV*(ZAZ\VZ = V*AV.
Using these results we prove the Proposition 3.1.
Proof of Proposition 3.1. — Let 2 be the C*-subalgebra of B(?—A[) generated by

V¥ zAzVh for Ae (3.8)
k=0
For each naturaAl number k we have that V¥ Z9AZ*Vk ¢ VF SVF ¢ S, since
ZAZ* C S; so A C C*(S), the norm closure of the *-algebra A*(S). It is easily
seen that 2l satisfies the conditions of Proposition 3.1, completing the proof. O

Remark 3.7. — It is straightforward to show that if gl is a von Neumann algebra
of B(H), then the Proposition 3.1 still holds true, with 2 the von Neumann algebra

A~

of B(H) generated by the elements (3.8).

4. STINESPRING REPRESENTATION AND QUANTUM DYNAMICAL SYSTEMS

We consider a concrete C*-algebra 2 of B(#H) with unit and a ucp-map ® : 2 —
2.
On the algebraic tensor product 2 ® H we can define a semi-inner product by
(A1 ® hy, A @ ha)a = (h1, ®(AT A2)ha)3,

for all Ay, A € A and hy, ho € H. We denote by AReH the Hilbert space comple-
tion of the quotient space of A®H by the linear subspace {T € A ® H : (T, T)4 = 0},
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with inner product induced by (-, -)¢. Furthermore, we denote the image of AQ h €
AR H in AReH by ARgh; so
(A1®ah1, A2@ah2) o, = (hi, ®(A1A2)h2)n
for all A1, As € A and hq, ho € H.
Moreover, we define a representation g : 2 — B(AReH) by
03 (A)(X®ph) = AX Qp h for AcAand XRsh € ARsH,
and a linear isometry Vg : H — ARsH by
Voh := 1Q¢h for he H,
satisfying the equation
D(A) =Vgoe(A)Ve for Aell (4.1)
The triple (Vg, 00, AR¢H) is the Stinespring representation of the ucp-map @ (see
[13]).
Our aim is to analyze the behaviour of the isometry Vg and of its adjoint V on
the multiplicative domain of the ucp-map ®. To this end note that the adjoint Vg
verifies Vi AQqh = ®(A)h for any A € 2 and h € H. Furthermore, recall that the

multiplicative domain of the ucp-map ® : 2 — 2l is the C*-subalgebra with unit of
2 defined as

D ={AcA:P(A")P(A) = P(A*A) and P(A)P(A") = P(AA™)},
see [11]. The multiplicative domain is characterized by the following relationship
AeDy — U@(A)V@Vq;k = V<I>V£O'<1>(A) (42)
In fact, we first note that
AReh = 1QeP(A)h forallhe H <= P(A*A)=P(4A")D(A),
since
|AQsh — 14 P(A)A|? = (h, ®(A*A)h) — (h, D(A*)D(A)R).
Consequently, for any A € Dg and BRgh € AR¢H we have
03 (A)VoViBRoh = AReP(B)h = 1Q6P(A)P(B)h
= 1®¢©(AB)h == chV.gO'q)(A)B@q)h,
where we have used the property of the multiplicative domain ®(A)®(B) = ®(AB)
(see [13]). Conversely, if 04 (A) VeV = VaVios(A) then
D(A*A) =Vgoe(A*A) Ve = Vioa(A%)oa(A) Vo VEVs
= V£U¢(A*)V¢V£U¢(A)V¢ = (I)(A*)(I)(A>7
and this completes the proof of (4.2).

It is easily seen from (4.2) that ® is a *homomorphism if, and ouly if, Vs is a
unitary operator.

The next steps provides some simple applications of the Stinespring representa-
tion of ucp-maps.

Let 2 be a concrete C*-subalgebra with unit of B(H) and @ : 2 — 2 a ucp-map.
By the Stinespring’s theorem we obtain a triple (Vy, o1, H1), with H; = AR®¢H such
that ®(A) = Vio1(A)Vp for all A € A. Moreover the application ®; : A — B(H1)
defined by ®1(A) := o1(P(A4)), for A € 2, is a ucp-map because it is a composition
of ucp-maps. By applying the Stinespring’s theorem to ®;, we have a new triple
(Vi,09,Ha), with Hy = AR, H1 such that ®1(A) = Vi*o2(A)V; for all A € 2.

So, iterating this procedure we obtain, for each natural number n > 1, a ucp-map
®,, : A — B(H,,) such that

B,(A) = on(B(A)) for Ae (4.3)
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and a new triple (V,,, 0511, Hnt1), where Hy11 = ARq, Hyp, and an isometry V;, :
Hyp — Hnp41 such that @,(A) =V, op41(A)V, for all A € 2.
Now we prove the following Stinespring-type theorem (see [14]):

PROPOSITION 4.1. — Let 2 be a concrete C*-algebra with unit of B(H) and
® : A — A a ucp-map. There exists an injective representation (Teo, Hoo) of A and
a linear isometry Vo, on the Hilbert Space H, such that

Too(P(A)) = Vimeo(A)Vo for A€l
Furthermore, A € Dg if, and only if, Voo VE oo (A) = Moo (A) Vo VE.
Proof. — We counsider for each natural number n the ucp-map ®,, : 2 — B(H,,)
defined in (4.3) and its Stinespring representation (V,,, op41, Hnt1) with Ho = H

and o9 = id. Then, we obtain a faithful representation 7o, : A — B(H,) on the
Hilbert space Hoo = €D H,, by defining

n>0
Too(A) := G?Oon(A) for AeA.
Now, let Vo, : Hoo — Hoo be the isometry defined by
Voo (hoy By .o by o) := (0, Voho, Vihy ... Vihy o2, (4.4)
for all h,, € H,, and n € N. Note that the adjoint of V, is
Vi(ho,hiyoo hy...) = (Vohy,Vithe ...V _1hy o) (4.5)

for all h,, € H,, and n € N. Hence, for any n and h,, € H, we have
Vimo(A)Vo @ hyy = @ Pn(A)hp = P 0n(P(A))hy, = 1o (P(A)) D hy.
n=0 n=0 n>=0 n=0

Finally, the last statement easily follows by 4.2.
In fact if A € Dy then A € Dy, for all natural number n, where Dg  is the
multiplicative domain of the ucp-map (4.3), then

VoV € oo ([ Pa,.)' € Too(Dsa)'-
n=0
(]

We have the following remark on the existence of a representation of a quantum
dynamical system:

Remark 4.2. — Let (9, ®) be a quantum dynamical system. The injective
representation 7o (A4) : M — B(H) defined in proposition 4.1 is normal, since the
Stinespring representation og : 2 — B(Lg) is a normal map. Then (Teo, Hoo, Vo)
is a representation of the quantum dynamical system (90, ®).

4.1. Dilation of a quantum dynamical system. We use the results of the
previous section to analyze the problem of dilation of quantum dynamical systems.
Consider a ucp-map ¢ : 2 — 2 with 2 a concrete C*-algebra with unit of B(H).
If (Hoo, Toos Vo) is the Stinespring representation of Proposition 4.1, then
VMoo (A) Voo C Moo (P(A) C oo (2A).
Hence, we can define a normal ucp-map @ : moo (A)” — 7o (™A)” as
®.(B) :=VLBV, for Be€m(A)".
Clearly we have that @ (Too(A)) = oo (P(A)) for all A € 2.
Now, if (V,H, Z) is minimal unitary dilation of the isometry Vi : Hoo — Hoo,
then by Proposition 3.1 there is a C*-algebra with unit 2 of B(#) such that:
(a) Z7oe(A)Z* C 4,
(b) Z*AZ = oo (),
(c) V*AV C 2.
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Furthermore, we have a *-homomorphism d : A — A defined by

O(X)=V*XV for X e4, (4.6)
such that for any A € A, X € 2 and any natural number n we have:

Too(®"(A)) = Z*O"(ZAZ*)Z,
and R

Too(@(Z* X Z)) = Z70™(X) Z.

In conclusion, it is straightforward to prove that (ﬁ” ,0, ’)Q, Z), with © : A" —
the normal *-homomorphism

O(X):=V*XV for X e,

is a dilation of the quantum dynamical system (7o (2)"”, P, ) above defined.
Summarizing, the quantum dynamical system (901, @) can be identified with its
associated quantum dynamical system (7o (), o) which admits the dilation

(7o (M), 0,7, 7).

4.2. The deterministic part of a quantum dynamical system and its dila-
tions. In this section we study which relationships there are between the dilations
and the deterministic part of a quantum dynamical system.

Let ® : 2 — 2 be a ucp-map as described in previous section and C*(S) the
C*-algebra generated by the operator systems S defined in (3.7).

We recall that S C A*(S) C C*(S) C B(H) where H = Hoo @ [2(FHo)) with
F =1 —-V,VZ%. By relationships (a), (b) and (c) of Section 3.3, we can define a
*-homomorphism A : C*(S) — C*(S8) as follows:

AX)=V*XV for X eC*(S). (4.7)
Furthermore, we have a ucp-map & : C*(S) — 2 such that
To(E(X))=2Z"XZ for X € C*(S)
and for any natural number n € N
EoAN" =" 0.

Hence, we have the following diagram:

cxS) 2L ox(s)
£l 1€
a 2Ly

where E(ZAZ*) = A for all A € 2.

We consider now the C*-algebra D := ﬂn>0 Dgr» where the set Dgn is the
multiplicative domain of the ucp-map ®" : 2 — 2 for all natural numbers n. The
restriction of ® to D is a *-homomorphism ®, : D — D of C*-algebras. It is said
to be the deterministic part of the ucp-map @ : A — 2.

The *-homomorphism A defined above is related to the deterministic part of ®
in the following way:

PROPOSITION 4.3. — There is an injective *~homomorphism i : D — C*(S)
such that for each natural number n and D € D we have:

E(A"(i(D))) = @*(D)

and
A" (i(D)) = i(@"™(D)).
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Proof. — Since F' € m(Dg) C meo(D)’ by Proposition 4.1, the map = : D —
B(I*(FHoo)) defined by

E(D) =Y T Free (@, *(D)FII,, DeD
k>0

is a representation. Furthermore for any D € D we have that Z(D) belongs to X,
the linear space generated by the napla operators defined in Proposition 3.4, since
IT; Froe (@;(kJrl)(D)FHk is the napla operator Ak(WOO(QZ(IHI)(D)), a, ) with the
strings o = 8 = (0,1).

We define a *-homomorphism i : D — C*(S) as follows

(D) =7eo(D)®E(D) for DeD,
and by relationship (2.5) we obtain that

V" e (D)V™, V" 10 (D)C,,
Cimtae D)V, Cimae(D)Cp + W™ E(D)W™

It is straightforward to prove that
C* oo (D)C, + W E(D)YW™ = Z(8"(D))
and Clmoo(D)V™ = 0, since by relationship (2.8) we have
FVO=R 7 (D)WW = 1o (B (D) FVF = 0
for all 1 < k < n, completing the proof. O

A"(i(D)) =

Finally, we observe that there is the following relationship between dilations and
the deterministic part of a quantum dynamical system:
If (R,0,K,7) is any dilation of quantum dynamical system (90, ®), then for
any natural number n and D € D we have :
0" (ZDZ*)Z = Zd}(D),
since if Y = @*(ZDZ*)Z — Zd™(D), then Y*Y = 0.

5. ERGODIC PROPERTIES

Let A be a concrete C*-algebra of B(H) with unit, ® : 2 — 2 a ucp-map and ¢
a state on 2 such that ¢ o ® = ¢. We recall that ¢ is an ergodic state, relative to
the ucp-map @ (see [10)), if for each A, B € A

n

D ((A2H(B)) — w(A)p(B)) =0,

k=0

lim

and that ¢ is weakly mixing if for each A, B € 2

lim —— 3" [p(AD*(B)) — p(A)p(B)| = 0.
k=0

n—oon + 1

By Proposition 4.1 we can assume that 2 is a concrete C*-algebra of B(H), and
that there is an isometry V on H such that:

O(A)=V*AV for Ael
Let (V,#,Z) be the minimal unitary dilation of (V,H) defined in (2.4), let 2 be

~

the C*-algebra included in %(ﬁ) defined in Proposition 3.1, and let ® : 2 — 2A be
the ucp-map defined in (4.6).

PROPOSITION 5.1. — If the ucp-map ® admits a p-adjoint and ¢ is an ergodic
state, then:
N
lim — N o2 XS (V) Z) — 9(Z° X Z)p(Z*Y Z))] = 0
N—oco N =+ 1

k=0
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for all X,Y € 5{, while if ¢ is weakly mixing, then:
. 1 * 2k * *
lim TZW(Z XO*(Y)Z) — o(Z* X 2)p(Z*Y Z)| =0

for all X,Y € 9.

The proof of this proposition is a straightforward consequence of the next lemma.
To this purpose, we make a preliminary observation. Recall that H = H®I2(FH)
and that, writing an element X of B(H) in matrix representation

X1 Xip

X =
Xo1 Xopo

the following relationship holds:
P(Z°XBH(Y)Z) = (X1 0* (V1)) + 9(X1 20(K) Vi1 VF) + o(X1 2 W Y, VE).

LEMMA 5.2. — Let X € A*(S), the *-algebra generated by the operator system
S defined in (3.7) and Y € . The following relations hold:

(a) If ¢ is an ergodic state then we have:

lim X1 2C(k)* Y11 VE + X oW YV, VE)Y =0 5.1
NﬁmN+1 E‘P( 1,2 () 1,1 + X1,2 2,1 ) s ( )

(b) If ¢ is weakly mixing then we have:

N—oc0

1 "
lim T Z |50(X1 QC( ) Y171Vk +X172Wk Y2,1V’“)| =0. (52)

Proof. — Since X € A*(S), we can assume without loss of generality that X1 o =
AT (y)Ap (B, o, B) with A, B € 2 and «, 8,7 strings of 2. Then we can write

_ [ A(IFla)B(BIFTl,,,, if y—1=d+m
K12 = { 0 elsewhere (5:3)

since
Xio= (’Y‘FHW 1Ha+mF‘a)B(ﬂ|FHﬁ'+m~
Observe that we can find a natural number k, such that the relation
X1 oW Yo, VE =0 (5.4)
holds for each k > k,. In fact

k—time

WE (€0,€1- 3 6ns o) = (0...,0,80,61,- ),

for all vectors (£0,&1,..-,&n,-..) € 2(FH); so H5+mW”“* =0 for all k > B+ m.
Then by equation (5.4) it follows that

1

lim X120k Y1 1VFE + X1 o WF YoV
N—)ooN—|—]_ES0( 1,2C0(k)" Y11 VP + X1 5 21 V")

NIHOONJF Z @(X1,20(k)* Y1, VF).

Hence we have to compute only (X1 2C (k)*Y1,1V¥). Notice that
X120(k)*Y1,V* = A(y|Fla)B(B|FTl 4, C(k)* Y1, V*
by relationship (5.3), and that
M, Clk) = FVES=m=U" for k> +m,
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by relationship (2.7). It follows that
X12C(k)Yi1VF = A(y|F|o)B(B|FVE—E-m=1"y;  y*
A(Y|Fle) B(BIFH 07D (v )V,

Since 4 = &+ m + 1, we have A(y|F|a)B(B| € 2A(8 + m + 1| by relationship (3.1).
Hence there is a string ¢ of 2 with ¥ = 4+ m + 1 and an operator R € 2, such
that A(y|F|a)B(8] = R(Y]. So we can write

X12C(k)*Y1.1VF = RO|FOF=F-D(y; ) VAtm+1,

If we set 9 = (n1,ng,...n., A1, Ag, ... A,.) then we have ny+no+...4+n, = B+m+1
and

R|FOH—F=1) (v, |)yhtm+l
= RV™A V™ 1A, 4 A2VniA1F¢(k—ﬁ'—1)(y171)vﬁ+m+1
= RO™ (A, "1 (Ap_y - - D" (A2 Ry))),
where
Ry, = 0" (A4;0* 7D (13 1)) — 0™~ (@(A) @D (v1,)) € A
Using the ¢-adjont, we have
P(X120(k) Y12VE) = (@2 (@7 - @7 (@7 (R)A,) -+ A3) A2 Ry).  (5.5)
In fact,
P(X120(k) Y11 VF) = p(RO™ (4,01 (A1 - @™ (A2 Ry))))
= (P (R) A" (Ar—a (- 2" (A2Ry))))
P(2, "T @ (R)Ar)Ar—1(Ar—2 - - A3®™ (A2 Ry))

- ga(@;w(q)gs BT (] (R)A,) - As) AsRy),

and replacing Ry we obtain that
(@) - @) (@) (R)A,) - - Ag) Ao R,
= Q2P @ (R (R)A,) - Az) Ap®™ (A ®FP71(vy 1)) —
— (D - (R (R)A,) - - A3) A @™ TH (@ (Ad) ¢ (vy,)).
Therefore
P(X12C (k)" Y1,1VF)
= (O (R (- @ (DL (R)A,) ) Az) A1 @ F=D(v7 1))~
— (@ TN @2 B (DT (R)A,) -+ ) Ag)B(A1)DF ) (13 1)),
Now, assume that ¢ is ergodic. Then we have that

Ao N 1 Zw (D (B2 (- @) (BL7(R)A,) -+ ) Ag) A1 0P =1 (17 )

PP (D2 (- D (B (R)A) -+ ) A2) Ar)p(Y1,1),
and that

N
lim — D (@@ (- By (R)Ay) - ) Ag) (A1) (Y7 1))

= (@ (@ (@7 - B (B (R)A) -+ A3) A2)®(A1))p(Y1a)
PP (@7 H (@ (D7 - @7 (B (R)A) - A3)A2)) A ) (Yi).
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Thus

completing the proof of item (a).
In the weakly mixing case, using relationship (5.5) we obtain:

lp(X1,205Y11VF))|
= [p(T2™ (A1) P=D (Y1 1) — o(TO™ ~H(®(A1) D7) (Y1,1)))],

where T' = ®'(®* - - &7 (B" (R)A,) - - - A3) Ag.
Adding and subtracting the element ¢(T®"*(A1))p(Y1,1) we can write:

p(X12CEY1 V)] < [p(T™ (A1) @* V(Y] 1)) — o(T9™ (A1))p(Y1,1))|
+ (T ~H(@(A1)@* ) (Y1,1))) — (T®™ (A1))p(Yi 1))
Moreover
| (T®™ 1 (B(A)DF P (V1.1))) — o(TE™ (A1) (Y1)
= (@ HT)B(AN DD (V1)) — p(@1*HT) D (A1) p(Yi1)],

and by the weakly mixing properties we obtain:

N
. 1 n - n
NN D (@™ (A1) E D (Y] 1)) — o(TR™ (Ar))e(Y11)| = 0,

k=0

and

R :
T S (@ T)B(A)BE (Y1) - (@ DB plVi )| = 0
k=0
completing the proof of item (b). O

Finally, the proof of proposition Proposition 5.1 is a simple consequence of this
lemma since the C*-algebra 2 is included in C*(S), the norm closure of *-algebra
A(S).

It is clear that Proposition 5.1 can be extended to a quantum dynamical system
(M1, @) with ¢ a normal faithful state on 9t.
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