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MALNORMAL SUBGROUPS AND FROBENIUS GROUPS:
BASICS AND EXAMPLES

PIERRE DE LA HARPE AND CLAUDE WEBER

With an appendix by Denis Osin

Abstract. Malnormal subgroups occur in various contexts. We review a large num-
ber of examples, and compare the general situation to that of finite Frobenius groups of
permutations.

In a companion paper [18], we analyse when peripheral subgroups of knot groups and
3-manifold groups are malnormal.

1. Introduction

A subgroup H of a group G is malnormal if gHg−1 ∩ H = {e} for all g ∈ G
with g /∈ H. As far as we know, the term goes back to a paper by Benjamin
Baumslag containing conditions for an amalgam H ∗LK (called a “generalized free
product” in [3]) to be 2-free (i.e. such that any subgroup generated by two elements
is free). Other authors write that H is antinormal or conjugately separated, instead
of “malnormal” [22, 29].

The following question arose in discussions with Rinat Kashaev (see also [25]
and [26]). We are grateful to him for this motivation.

Given a knot K in S3, when is the peripheral subgroup malnormal in the
group π1(S3 rK) of K ?

The answer, for which we refer to [18], is that the peripheral subgroup is malnormal
unless K is either a torus knot, or a cable knot, or a connected sum.

The main purpose of the present subsidiary paper is to collect in Section 3 several
examples of pairs

(infinite group, malnormal subgroup)
which are classical. Section 2 is a reminder of basic elementary facts on malnormal
subgroups. In Section 4, we allude to some facts concerning the more general notion
of almost malnormal subgroup, important in the theory of relatively hyperbolic
groups. We conclude in Section 5 by comparing malnormal subgroups in infinite
groups with finite Frobenius groups.

2. General facts on malnormal subgroups

The two following propositions collect straightforward properties of malnormal
subgroups. For a groupG and an element h ∈ G, we denote by CG(h) the centraliser
{g ∈ G | gh = hg} of h in G.

Proposition 1. — Let G be a group and H a subgroup; let X denote the
homogeneous space G/H and let x0 ∈ X denote the class of H. The following
properties are equivalent:

(a) H is malnormal in G;
(b) the natural action of H on X r {x0} is free;
(c) any g ∈ G, g 6= e, has zero or one fixed point on X.

Moreover, if G contains a normal subgroup N such that G is the semi-direct product
N oH, these properties are also equivalent to each of:

Math. classification: 20B07, 20B05.
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66 P. de la Harpe & C. Weber

(d) nh 6= hn for all n ∈ N , n 6= e, and h ∈ H, h 6= e;
(e) CG(h) = CH(h) for all h ∈ H, h 6= e.

The proof is an exercise; if necessary, see the proof of Theorem 6.4 in [21].
Following an “added in proof” of Peter Neumann in [30], we define a Frobenius

group to be a group G which has a malnormal subgroup H distinct from {e} and G.
A split Frobenius group is a Frobenius group G containing a malnormal subgroup
H and a normal subgroup N such that G = N oH. It follows that the restriction
to N of the action of G on G/H is regular, i.e. transitive with trivial stabilisers
(the latter condition means {n ∈ N | ngH = gH} = {e} for all gH ∈ G/H).

In finite group theory, according to a famous result of Frobenius, Properties (a)
to (c) imply the existence of a splitting normal subgroup N , so that any finite
Frobenius group is split. See Section 5 for more details.

Proposition 2. — Let G be a group.
(i) The trivial subgroups {e} and G are malnormal in G. They are the only

subgroups of G which are both normal and malnormal.
(ii) Let H be a malnormal subgroup in G; then gHg−1 is malnormal for all

g ∈ G.
More generally, if α is an automorphism of G, then α(H) is malnormal.

(iii) Let H be a malnormal subgroup of G and K a malnormal subgroup of H;
then K is malnormal in G.

(iv) Let H be a malnormal subgroup and S be a subgroup of G; then H ∩ S is
malnormal in S.

(v) Let (Hι)ι∈I be a family of malnormal subgroups of G; then
⋂
ι∈I Hι is

malnormal in G.
(vi) Let H1 and H2 be two groups; then H1 is malnormal in the free product

H1 ∗H2.
(vii) Let H be a non-trivial subgroup of G; if the centre of G is non-trivial, then

H is not malnormal in G.
(viii) Let H be a non-trivial subgroup of G containing at least 3 elements; if

G contains a normal subgroup C which is infinite cyclic, then H is not
malnormal in G.

In particular, a group G without 2-torsion containing a normal infinite
cyclic subgroup (such as the fundamental group of a Seifert manifold not
covered by S3) does not contain any non-trivial malnormal subgroup.

Proof. — Claims (i) to (v) follow from the definition. Claim (vi) follows from
the usual normal form in free products, and appears formally as Corollary 4.1.5 of
[28].

For (vii), we distinguish two cases for the centre Z of G. First case: Z * H; for
z ∈ Z with z /∈ H, we have zHz−1 ∩H = H 6= {e}, so that H is not malnormal.
Second case: Z ⊂ H; for g ∈ G with g /∈ H, we have {e} 6= Z ⊂ H ∩ gHg−1.

Claim (viii) is obvious if H ∩C 6= {e}, so that we can assume that H ∩C = {e}.
Choose c ∈ C, c 6= e and h ∈ H, h 6= e; observe that h−1ch = c±1.

If h−1ch = c, then e 6= h = c−1hc ∈ H ∩ c−1Hc, and H is not malnormal.
Since H is not of order two, there exist h1, h2 ∈ H r {e} with k + h2h

−1
1 6= e. If

h−1
j chj = c for at least one of j = 1, 2, the previous argument applies. Otherwise
k−1ck = c, so that H is not malnormal for the same reason. �

About (viii), note that the infinite dihedral group D∞ contains an infinite cyclic
subgroup of index 2, and that any subgroup of order 2 in D∞ is malnormal.

Corollary 3. — Let G be a group.
(ix) Any subgroup H of G has a malnormal hull1, which is the smallest mal-

normal subgroup of G containing H.

1Or malnormal closure, as in Definition 13.5 of [23]
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(x) Any group H is isomorphic to a malnormal subgroup of some group.
(xi) Let π : G −→ Q be a projection onto a quotient group and let H be a

malnormal subgroup in G; then π(H) need not be malnormal in Q.

Proof. — Claim (ix) is straightforward from (v), and (x) from (vi).
Consider a factor Z of the free product G = Z ∗ Z of two infinite cyclic groups,

and the projection π of G on its abelianization. Then Claim (xi) follows from (vi)
and (ix). �

Claim (ix) above suggest the following construction, potentially useful for the
work of Rinat Kashaev. Given a group G and a subgroup H, let N be the largest
normal subgroup of G contained in H; set H = H/N , G = G/N . Then H has a
malnormal hull, say G0, in G. There are interesting cases in which H is malnormal
in G0 = G.

For example, let p, q be a pair of coprime integers, p, q > 2, and let a, b ∈ Z be
such that ap+ bq = 1. Then G = 〈s, t | sp = tq〉 is a torus knot group; a possible
choice of meridian and parallel is µ = sbta and λ = spµ−pq, which generate the
peripheral subgroup P ' Z2 of G (as in Proposition 3.28 of [7]). Let N = 〈sp〉
denote the centre of G; if u and v denote respectively the images of sb and ta in
G := G/N , then G = 〈u, v | up = vq = e〉 ' Cp ∗ Cq is the free product of two
cyclic groups of orders p and q, and P := P/N = 〈uv〉 ' Z is the infinite cyclic
group generated by uv. As we will see below (Remark 8.B), P is malnormal in G.

Let G be a group and H,H ′,K be subgroups such that K ⊂ H ′ ⊂ H ⊂ G. If K
is malnormal in H, then K is malnormal in H ′, by (iv). It follows that it makes
sense to speak about maximal subgroups of G in which K is malnormal. We will
see in Example 9 that K may be malnormal in several such maximal subgroups of
G; in other words, one cannot define one largest subgroup of G in which K would
be malnormal.

3. Examples of malnormal subgroups of infinite groups

Proposition 2 provides a sample of examples. Here are a few others.

Example 4 (translation subgroup of the affine group of the line). — Let k be

a field and let G =
(

k∗ k
0 1

)
be its affine group, where the subgroup k∗ of G is

identified with the isotropy subgroup of the origin for the usual action of G on the
affine line k. Then k∗ is malnormal in G.

Observe that the field k need not be commutative (in other words, k can be
a division algebra). More generally, if V is a k-module, then the subgroup k∗ =(

k∗ 0
0 1

)
of the group

(
k∗ V
0 1

)
= k∗ n V is malnormal. To check Example

4, it seems appropriate to use (c) in Proposition 1, with k∗ n V acting on k by
((a, b), x) 7−→ ax+ b.

Subgroups of G provide notable examples. If k = R, for n ∈ Z, |n| > 2, the
soluble Baumslag-Solitar group

Γ = BS(1, n) =
(
nZ Z

[ 1
|n|
]

0 1

)
' 〈a, t | tat−1 = an〉

is a subgroup of G. The intersection BS(1, n) ∩ R∗ is the infinite cyclic group

generated by
(
n 0
0 1

)
, and is malnormal in BS(1, n); see Claim (iv) of Proposition

2.

Example 5 (parabolic subgroup of a Fuchsian group). — Consider a discrete
subgroup Γ ⊂ PSL2(R) which is not elementary and which contains a parabolic
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element γ0; denote by ξ the fixed point of γ0 in the circle S1. Then the parabolic
subgroup

P = {γ ∈ Γ | γ(ξ) = ξ}

corresponding to ξ is malnormal in Γ.

For Example 5, we recall the following standard facts. The group PSL2(R) is
identified with the connected component of the isometry group of the Poincaré half
planeH2 = {z ∈ C | Im(z) > 0}. It acts naturally on the boundary ∂H2 = R∪{∞}
identified with the circle S1. Any γ ∈ Γ, γ 6= e, is either hyperbolic, with exactly
two fixed points on S1, or parabolic, with exactly one fixed point on S1, or elliptic,
without any fixed point on S1. For such a group Γ containing at least one parabolic
element fixing a point ξ ∈ S2, “non-elementary" means P 6= Γ. Since Γ is discrete
in PSL2(R), a point in the circle cannot be fixed by both a parabolic element and
a hyperbolic element in Γ.

It follows that the action of P on the complement of {ξ} in the orbit Γξ satisfies
Condition (b) of Proposition 1, so that P is malnormal in Γ.

In particular, in PSL2(Z), the infinite cyclic subgroup P generated by the class

γ0 =
[
1 1
0 1

]
of the matrix

(
1 1
0 1

)
∈ SL2(Z) is malnormal (case of ξ = ∞). In

anticipation of Section 5, let us point out here that there cannot exist a normal
subgroup N of PSL2(Z) such that PSL2(Z) = N o P , because this would imply
the existence of a surjection PSL2(Z) −→ P ' Z, but this is impossible since the
abelianised group of PSL2(Z) is finite (cyclic of order 6).

Example 6 (parabolic subgroup of a torsion-free Kleinian group). — Consider a
discrete subgroup Γ ⊂ PSL2(C) which is not elementary and torsion-free. Suppose
Γ contains a parabolic element γ0, with fixed point ξ in the sphere S2. Then the
parabolic subgroup

P = {γ ∈ Γ | γ(ξ) = ξ}

corresponding to ξ is malnormal in Γ.

In case the group Γ of Example 6 is the group of a hyperbolic knot, P is the
peripheral subgroup of Γ. Part of Example 6 carries over to a much larger setting,
see Proposition 13 below.

The argument indicated in Example 5 carries over to the case of Example 6. The
group PSL2(C) is identified with the connected component of the isometry group
of the hyperbolic 3-space H3 = {(z, t) ∈ C ×R | t > 0}; it acts naturally on the
boundary ∂H3 = C ∪ {∞} identified with the sphere S2.

The number of conjugacy classes of subgroups of the type P is equal to the
number of orbits of Γ on the subset of S2 consisting of points fixed by some parabolic
element of Γ.

In Example 6, the hypothesis that Γ is torsion-free cannot be omitted. For
example, consider the Picard group PSL2(Z[i]), its subgroup P of classes of matrices

of the form
[
a b
0 a−1

]
, and the subgroup Q of P of classes of matrices of the form[

1 b
0 1

]
. Set

g =
[

0 1
−1 0

]
∈ PSL2(Z[i]) (observe that g2 = e, g /∈ P ),

and

h =
[
i 0
0 −i

]
∈ P (observe that h2 = e, h /∈ Q).
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As ghg−1 = h−1 ∈ P , the subgroup P is not malnormal in PSL2(Z[i])). As

h

[
1 b
0 1

]
h−1 ∈ Q for all b, the subgroup Q is not malnormal in P (and a for-

tiori not malnormal in PSL2(Z[i])).
Note that, in the group Γ of Example 5, torsion is allowed, because each element

γ 6= e of finite order in PSL2(R) acts without fixed point on S1. But the element
h above, of order 2, has fixed points on S2.

Example 7 is a variation on Examples 5 and 6, related to boundary fixed points
of hyperbolic elements rather than of parabolic elements.

Example 7 (virtually cyclic subgroup of a torsion-free Gromov hyperbolic group).
Consider a Gromov hyperbolic group Γ which is not elementary, an element γ0 ∈ Γ
of infinite order, and one of the two points in the boundary ∂Γ fixed by γ0, say ξ.
Set

P = {γ ∈ Γ | γ(ξ) = ξ}.
Assume moreover that Γ is torsion-free. Then P is malnormal in Γ.

For the background of Example 7, see [15], in particular Theorem 30 of Chapter
8. Recall that any element in P fixes also the other fixed point ξ− ∈ ∂Γ of γ0, that
the infinite cyclic subgroup of Γ generated by γ0 is of finite index in P , and that P
itself is infinite cyclic.

In torsion-free non-elementary hyperbolic groups, subgroups of the form P are
precisely the maximal abelian subgroups. (See also Example 10.)

To check the claim of Example 7, consider γ ∈ Γ such that γ /∈ P , i.e. such that
γ(ξ) 6= ξ. If one had γ(ξ) = ξ−, every element of γPγ−1 would fix ξ−, and therefore
also ξ; it would follow that γ(ξ−) = ξ, so that γ2 would fix ξ and ξ−; since Γ is
torsion-free, this would imply γ = 1, in contradiction with the hypothesis. Hence
γ({ξ, ξ−}) and {ξ, ξ−} are disjoint, and it follows that γPγ−1 ∩ P = {e}.

Remark 8. — Here are illustrations and variations on Example 7.
(A) In the free group F2 on two generators a and b, any primitive element, for

example akba`b−1 with k, l ∈ Z r {0}, generates an infinite cyclic subgroup which
is malnormal.

(An element γ in a group Γ is primitive if there does not exist any pair (δ, n),
with δ ∈ Γ and n ∈ Z, |n| > 2, such that γ = δn.)

(B) Here is an old-fashioned example: consider a discrete subgroup Γ of PSL2(R),
and a hyperbolic element h ∈ Γ fixing two distinct points α, ω ∈ S1. Then

P = {γ ∈ Γ | γ(α) = α}

is malnormal in Γ.
We particularize further, as referred to at the end of Section 2. Consider two

integers p > 2 and q > 3; denote by Cp and Cq the finite cyclic groups of order p
and q. In the hyperbolic plane, consider a rotation u of angle 2π/p and a rotation
v of angle 2π/q. If the hyperbolic distance between the fixed points of u and v is
large enough, the group generated by u and v is a free product

Γ = 〈u, v | up = vq = e〉 ' Cp ∗ Cq,

by the theorem of Poincaré on polygons generating Fuchsian groups [36]; moreover,
the product uv is hyperbolic and primitive. It follows that the infinite cyclic group
generated by uv is malnormal in Γ.

(C) Let us mention another variation: let G be a connected semisimple real
algebraic group without compact factors, let d denote its real rank, and let Γ be
a torsion-free uniform lattice in G := G(R). Then G contains a maximal torus
T such that A := Γ ∩ T(R) ' Zd is malnormal in Γ; see [38], building up on a
result of Prasad and Rapinchuk, and motivated by the construction of an example
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in operator algebra theory. For an earlier use of malnormal subgroups in operator
algebra theory, see [37], in particular Corollary 4.4, covered by our Example 7.

The following example supports the last claim of Section 2.

Example 9. — There exists a group G containing two distinct maximal sub-
groups B+, B− and a subgroup T ⊂ B+ ∩ B− which is malnormal in each of
B+, B−, but not in G.

Set G = PGL2(C), and let π : GL2(C) −→ G denote the canonical projection.
Define the subgroups

T = π

(
C∗ 0
0 C∗

)
, B+ = π

(
C∗ C
0 1

)
, and B− = π

(
C∗ 0
C 1

)
of G. Then T is malnormal in B+ and in B− (see Example 4 and Proposition 2.ii),
but not in G, since T is strictly contained in its normalizer NG(T ), the quotient
NG(T )/T being the Weyl group of order 2. Moreover, B+ and B− are maximal
subgroups in G; this can be checked in an elementary way, and is also a consequence
of general properties of parabolic subgroups (see [5], Chapter IV, § 2, no 5, Théorème
3).

Example 10 (CSA). — A group is said to be CSA if all its maximal abelian
subgroups are malnormal. The following groups are known to be CSA :

(i) torsion-free hyperbolic groups;
(ii) groups acting freely and without inversions on Λ-trees (in particular on

trees);
(iii) universally free groups.

For (i), see Example 7. For (ii), see Corollary 1.9 in [2]. And (iii) follows; for
CSA groups, see [29], [16], and other papers by the same authors.

The nature of the two next examples is more combinatorial than geometric.

Example 11 (M. Hall). — Let F be a free group and H a finitely generated
subgroup of F ; then there exist a subgroup of finite index F0 in F which contains
H and a subgroup K of F such that F0 = H ∗K.

In particular, H is malnormal in F0.

This is a result due to M. Hall and often revisited: see [17], [9], [39], or Lemma
15.22 on Page 181 of [19].

Rank 2 malnormal subgroups of free groups are characterised in [13].

Example 12 (B.B. Newman [31]). — Let G = 〈X; r〉 be a one-relator group
with torsion, let Y be a subset of X which omits at least one generator occuring in
r, and let H be the subgroup of G generated by Y . Then H is malnormal in G.

Let us quote a few more known facts about malnormal subgroups:
• There exist hyperbolic groups for which there is no algorithm to decide
which finitely generated subgroups are malnormal [6].

• IfH is a finitely generated subgroup of a finitely generated free group F , the
malnormal closure K of H in F has been investigated in [23]; in particular,
K is finitely generated (part of Theorem 13.6 in [23]).

• Other papers on malnormal groups include [4] and [24].

4. Almost malnormal subgroups

A subgroup H of a group G is almost malnormal if gHg−1 ∩H is finite for all
g ∈ G with g /∈ H, equivalently if the following condition holds: for any pair of
distinct points x, y ∈ G/H, the subgroup {g ∈ G | gx = x, gy = y} is finite.

Note that, inside torsion-free groups, almost malnormal subgroups are preisely
the malnormal subgroups.
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Almost malnormal subgroups are important in relatively hyperbolic groups.
Without entering much details, we remind the following snippets. Let G be a group
and {Hλ}λ∈Λ a collection of subgroups of G. There is a notion of finite relative pre-
sentation of G with respect to {Hλ}λ∈Λ, say 〈X, {Hλ}λ∈Λ | R = 1 ∀R ∈ R〉, where
X is a finite subset of G and R a finite subset of (∗λ∈ΛHλ) ∗FX (where FX stands
for the free group on X), and of a notion of relative Dehn funtion f : N −→ N with
respect to {Hλ}λ∈Λ for such a presentation (such an f exists for some presentations
only). We refer to [33], of which we quote now part of Proposition 2.36:

Proposition 13. — Let G and {Hλ}λ∈Λ be as above. Assume that
(a) G has a finite relative presentation with respect to {Hλ}λ∈Λ;
(b) there exists a relative Dehn function for this presentation.

Then Hλ is almost malnormal in G for all λ ∈ Λ.

The group G is hyperbolic relatively to {Hλ}λ∈Λ if (a) and (b) above hold,
and if moreover the corresponding relative Dehn function is linear. A motivating
example is that of the fundamental group G = π1(M) of a complete finite-volume
Riemannian manifold with pinched negative sectional curvature, with {Hλ}λ∈Λ the
collection of the cusp subgroups [12]. Also, a Gromov hyperbolic group is hyperbolic
relatively to the collection reduced to the trivial subgroup {e}.

There are various conditions which ensure an abundance of almost malnormal
subgroups. For example, from [35, Theorem 5.6 and Lemma 5.2]:

Example 14 (an `2-criterion). — Consider a countable groupG with non-vanish-
ing first `2-Betti number β(2)

1 (G) 6= 0, and an infinite subgroup K of G with
β

(2)
1 (K) < β

(2)
1 (G) (for example K ' Z). Then there exists a proper subgroup

H of G which contains K and which is almost malnormal.

Almost malnormal subgroups appear in criteria for residual finiteness, in several
papers by Daniel T. Wise, such as [42, 43, 44, 45]. Here is a result from the first of
these:
the free product of two virtually free groups amalgamating a finitely generated

almost malnormal subgroup is residually finite.
The malnormality condition is necessary! indeed: there exists a free group F and a
subgroup E of finite index such that the amalgamated product F ∗E F is an infinite
simple group [8, Theorem 5.5].

5. Comparison with malnormal subgroups of finite groups

Let G be a Frobenius group (as defined in Section 2) and H a malnormal sub-
group of G; we assume that H 6= {e} and H 6= G. Let N denote the Frobenius
kernel, which is by definition the union of {e} and of the complement in G of⋃
g∈G gHg

−1; observe that N r {e} is the set of elements in G without any fixed
point on G/H. The subgroup H is called the Frobenius complement.

For the case of a finite group G, let us quote the following three important
results, for which we refer to Theorems V.7.6, V.8.7, and V.8.17 in [20]; see also [1]
or [11].

(F1) N is a normal subgroup of G, its size |N | coincides with the index [G : H],
and G is a semi-direct product N oH (Frobenius [14]); moreover |N | ≡ 1
(mod |H|).

(F2) N is a nilpotent group; moreover, if H is of even order, then N is abelian
(Thompson [40, 41]).

(F3) Let H ′ be another malnormal subgroup in G, neither {e} nor G, and let
N ′ be the corresponding Frobenius complement; then H ′ is conjugate to H
and N ′ = N .
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Moreover, N ′ = N coincides with the “Fitting subgroup” of G, i.e. the
largest nilpotent normal subgroup of G.

There are known non-trivial examples showing that H need not be solvable, and
that N need not be abelian.

These facts do not carry over to infinite groups, as already noted in several places
including [10] and Page 90 in [11].

In what follows, G is a group with malnormal subgroup H, neither {e} nor G,
and Frobenius complement N .

5.1. N need not be a subgroup of G. For example, let K be a non-trivial knot
in the 3-sphere, GK its group, and PK its peripheral subgroup. Assume that K
is prime, and neither a torus knot nor a cable knot, so that PK is malnormal in
GK [18]. Since the abelianisation of GK is Z (by Poincaré duality), the Frobenius
kernel is not a subgroup (otherwise PK ' Z2 would be a quotient of Gab

K ' Z,
which is preposterous).

Another example is provided by H, malnormal in G = H ∗ K, with H and K
non-trivial and H not of order 2 (see Proposition 2.vi). Again, the Frobenius kernel
is not a subgroup; indeed, for h1, h2 ∈ H r {e} with h1h2 6= e and k ∈ K r {e},
both h1k and k−1h2 are in the Frobenius complement, but h1h2 is not.

The example of the cyclic subgroup H generated by x−1y−1xy in the free group
G on two generators x and y, which is a malnormal subgroup of which the Frobenius
complement is not a subgroup, appears on Page 51 of [27]; see also (A) in Remark 8.

5.2. There are examples with N = {e}. The content of this subsection was
shown to us by D. Osin.

Consider one of the finitely generated torsion-free infinite group with exactly two
conjugacy classes constructed in [34, Corollary 1.3], say G. Then G is a limit of an
infinite sequence of torsion-free groups and epimorphisms G1 → G2 → · · · , where
each Gi is hyperbolic relative to a subgroup Hi and the epimorphism Gi → Gi+1
maps Hi isomorphically onto Hi+1. Let H be the limit of Hi in G; it is a non-trivial
subgroup of G, indeed H is not finitely generated.

The groupH is malnormal in G. To check this, consider g ∈ G and h, k ∈ Hr{e}
with g−1hg = k. The same equality holds in some Gi for some preimages of g, h, k.
Since Gi is torsion-free and hyperbolic relative to Hi, the group Hi is malnormal
in Gi. Hence the preimage of g in Gi belongs to Hi. Consequently g ∈ H.

Obviously the kernel N is trivial in this case as every element of G is conjugate
to an element of H.

5.3. When N is a subgroup of G, it need not be nilpotent. This is shown by
the example of the wreath product G = S oZ, with S a simple group. The subgroup
H = Z is malnormal, and the corresponding Frobenius kernel N =

⊕
i∈Z Si, with

each Si a copy of S, is not nilpotent. More generally, given a group H acting on a
set X in such a way that hZx is infinite for all h ∈ H, h 6= e, and x ∈ X, as well as
a group S 6= {e}, the permutational wreath product G = S oX H contains H as a
malnormal subgroup, with Frobenius kernel

⊕
x∈X Sx.

5.4. Malnormal subgroups need not be conjugate. This is clear with a non-
trivial free product G = H ∗ K as in Proposition 2, where H and K are both
malnormal subgroups, and are clearly non-conjugate. If G = H ∗K ∗ L, with non-
trivial factors, the malnormal subgroup H is strictly contained in the malnormal
subgroup H ∗K.

5.5. On centralisers. Let G = N o H be a semi-direct product. If X = G/H
(as in Proposition 1) is identified with N , note that the natural action of G can be
written like this: g = mh ∈ G acts on n ∈ N to produce mhnh−1 ∈ N . Consider
the two following conditions, the first being as in Proposition 1:
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(a) H is malnormal in G;
(f) CG(n) = CN (n) for any n ∈ N , n 6= e.

Then (f) implies (a). Indeed, for any n ∈ N , n 6= e, Condition (f) implies CH(n) =
H ∩ CG(n) ⊂ H ∩ N = {e}. In other words, for h ∈ H, the equality hnh−1 = n
implies h = e; this is Condition (d) of Proposition 1. Hence Condition (a) of the
same proposition also holds.

When G is finite, then, conversely, (a) implies (f); see Theorem 6.4 in [21]. In a
previous version of this paper, we asked wether this carries over to the general case.
In fact, it does not; this was shown to us by Denis Osin, by a general construction,
and independently by Daniel Allcock.

Here is Allcock’s simple example. Consider an infinite dihedral group
G = 〈r, t | r2 = e, rtr = t−1〉

and its infinite cyclic subgroup T generated by t; we think of r as a half-turn and of
t as a translation of the real line. Let π be the homomorphisms of G onto the group
{1,−1} of order two mapping r and t onto −1, and set N = kerπ. On the one hand,
N is also an infinite dihedral group, generated by s = rt and u = t2, which satisfy
the relations s2 = e and sus = u−1; we denote by U the infinite cyclic subgroup of
N generated by u. On the other hand, G is the semi-direct product N oH, where
H = {e, r} is a subgroup of order 2 which is malnormal in G. Observe that U is of
index 2 in both N and T , and of index 4 in G. For any u ∈ U , u 6= e, we have

U = CN (u) 6= CG(u) = T.

Thus Condition (a) is satisfied, but Condition (f) is not.
More generally, Denis Osin has shown us that the two centralisers which ap-

pear in Condition (f) can be very different from each other. We reproduce his
construction in the following appendix.

Appendix: A construction by Denis Osin

Observe that for any split extension G = N oH and for any element z ∈ N , the
group CN (z) is normal in CG(z), and CG(z)/CN (z) is isomorphic to a subgroup
of H. It turns out that every subgroup of H can be realized as CG(z)/CN (z) for
some z ∈ N and G = N oH with H malnormal. Below we prove this for finitely
generated torsion-free groups. The proof of the general case is a bit longer. It
is based on the same idea but uses some additional technical results about van
Kampen diagrams and small cancellation quotients of relatively hyperbolic groups.

Theorem 15. — For any finitely generated torsion-free groupH and any finitely
generated subgroup Q 6 H, there exists a group N , a split extension G = N oH,
and a nontrivial element z ∈ N such that H is malnormal in G and CG(z)/CN (z) '
Q.

To prove the theorem we will need some tools from small cancellation theory over
relatively hyperbolic groups. Let G be a group hyperbolic relative to a collection
of subgroups {Hλ}λ∈Λ. An element of G is loxodromic if it is not conjugate to an
element of

⋃
λ∈Λ

Hλ and has infinite order. A group is elementary if it contains a

cyclic subgroup of finite index. It is proved in [32] that, for every loxodromic element
g ∈ G, there is a unique maximal elementary subgroup EG(g) 6 G containing g.
Two loxodromic elements f, g are commensurable (in G) if fk is conjugate to gl in
G for some non-zero k, l. A subgroup S of G is called suitable if it contains two
non-commensurable loxodromic elements g, h such that EG(g) ∩ EG(h) = {1}.

The next result follows from [34, Theorem 2.4] and its proof.
Theorem 16. — Let G0 be a group hyperbolic relative to a collection {Hλ}λ∈Λ

and S a suitable subgroup of G0. Then for every finite subset T ⊂ G0, there exists
a set of elements {st | t ∈ T} ⊂ S such that the following conditions hold.
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(a) Let G = 〈G0 | t = st, t ∈ T 〉. Then the restriction of the natural homomor-
phism ε : G0 → G to every Hλ is injective.

(b) G is hyperbolic relative to {ε(Hλ)}λ∈Λ.
(c) If G0 is torsion-free, then so is G.

Proof of Theorem 15. — Set
G0 = (〈z〉 ×Q) ∗ 〈a, b〉 ∗H.

Clearly G0 is hyperbolic relative to the collection {〈z〉 × Q,H}. Let X and Y be
finite generating sets of Q and H, respectively. We fix an isomorphic embedding
ι : Q→ H. Without loss of generality we can assume that ι(X) ⊆ Y .

It is easy to see that S = 〈a, b〉 is a suitable subgroup of G0. Indeed a and b are
not commensurable in G0 and EG0(a) ∩ EG0(b) = {1}. We apply Theorem 16 to
the finite set

T = {z} ∪ {ay, by | y ∈ Y ∪ Y −1} ∪ {x−1ι(x) | x ∈ X}.
Let G be the corresponding quotient group. For simplicity we keep the same nota-
tion for elements of G0 and their images in G. Part (a) of Theorem 16 also allows
us to identify the subgroups 〈z〉 × Q and H of G0 with their (isomorphic) images
in G.

Let N be the image of S in G. Note that, in the quotient group G, we have
t ∈ N for every t ∈ T . In particular we have z ∈ N and x−1ι(x) ∈ N for all x ∈ X.
Hence the group G is generated by {a, b}∪Y . Since ay, by ∈ N for all y ∈ Y ∪Y −1,
the subgroup N is normal in G and G = NH. Using Tietze transformations it is
easy to see that the map a 7→ 1 and b 7→ 1 extends to a retraction ρ : G→ H such
that ρ|Q ≡ ι. In particular, H ∩N = {e} and hence G = N oH.

Since G0 is torsion-free, so is G by Theorem 16 (c). By Theorem 16 (b) and
Proposition 13, the subgroups H and 〈z〉 × Q are malnormal in G. In particular,
CG(z) = 〈z〉 × Q. Since z ∈ N and ρ|Q ≡ ι, we obtain ρ(zn, q) = ι(q) for every
(zn, q) ∈ 〈z〉 ×Q. Hence

CN (z) = CG(z) ∩N = CG(z) ∩Ker ρ = 〈z〉 × {e}.
Therefore CG(z)/CN (z) ' Q. �
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