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ON MALNORMAL PERIPHERAL SUBGROUPS
OF THE FUNDAMENTAL GROUP OF A 3-MANIFOLD

PIERRE DE LA HARPE AND CLAUDE WEBER

Abstract. Let K be a non-trivial knot in the 3-sphere, EK its exterior, GK = π1(EK) its
group, and PK = π1(∂EK) ⊂ GK its peripheral subgroup. We show that PK is malnormal
in GK , namely that gPKg

−1 ∩ PK = {e} for any g ∈ GK with g /∈ PK , unless K is in
one of the following three classes: torus knots, cable knots, and composite knots; these are
exactly the classes for which there exist annuli in EK attached to TK which are not boundary
parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral
subgroups in the fundamental group of a compact orientable irreducible 3-manifold of which
the boundary is a non-empty union of tori (Theorem 3). Proofs are written with non-expert
readers in mind. Half of our paper (Appendices A to D) is a reminder of some three-manifold
topology as it flourished before the Thurston revolution.

In a companion paper [15], we collect general facts on malnormal subgroups and Frobenius
groups, and we review a number of examples.
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1. Statement of the results

Consider a knot K in S3. Let VK be a tubular neighbourhood of K. The
exterior of K is the closure EK of S3 r VK , and the peripheral torus is the
common boundary TK = ∂VK = ∂EK . The group of K is the fundamental group
GK = π1(EK), and the peripheral subgroup is the image PK of π1(TK) in GK .
Recall that, by Dehn’s Lemma, the map π1(TK) −→ PK is an isomorphism if and
only if K is non-trivial.

A subgroup H of a group G is malnormal if gHg−1 ∩ H = {e} for all g ∈ G
with g /∈ H; basic facts on malnormal subgroups can be found in our companion
paper [15]. The following question arose in discussions with Rinat Kashaev (see
also [21] and [22]); we are grateful to him for this motivation.

Given K as above, when is PK malnormal in GK ?
The answer, our Corollary 2, happens to be a straightforward consequence of the
following Theorem, from [32]; the latter appears already as Lemma 1.1 in [38], and
also as Proposition 2 in [12]. Our proof, essentially self-contained, relies on Seifert
foliations and pseudo-foliations. Technical terms are defined below (see Sections 2,
3, and the three appendices A, B, and C).

Math. classification: 57M25, 57N10 .
Keywords: knot, knot group, peripheral subgroup, torus knot, cable knot, composite knot,

malnormal subgroup, 3-manifold.
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Theorem 1 (Reformulation of a result of Jonathan Simon). — Let K be a non-
trivial knot, EK its exterior, TK its boundary, and µ a meridian of TK . Assume that
there exists an annulus A in EK attached to TK which is not boundary parallel.
Then the knot K is

(i) either a composite knot,
(ii) or a torus knot,
(iii) or a cable knot.

Moreover, let η denote one of the components of ∂A. In case (i) η is a meridian of
TK . In cases (ii) and (iii), the distance of µ and η is ∆(µ, η) = 1. In particular, in
all cases, ∆(µ, η) 6 1.

Conversely, if K is as in one of (i), (ii), and (iii), then there exists an annulus A
in EK attached to TK which is not boundary parallel.

The “converse part” of the theorem is a rather straightforward consequence of
the definitions, see Section 3. As a corollary of Theorem 1 and the annulus theorem:

Corollary 2. — For a non-trivial knot K, the peripheral group PK is mal-
normal in GK if and only if K is neither a composite knot, nor a torus knot, nor a
cable knot.

To view PK as a subgroup of GK , we need to choose a path from the base point
in EK implicitely used to define GK to the base point in TK implicitely used to
define π1(TK), so that PK is a subgroup of GK defined up to conjugation only. But
the conclusion of Corollary 2 makes sense since a subgroup and all its conjugates
are together malnormal or not. A similar remark holds for the next theorem.

Theorem 1 suggests a result on malnormal peripheral subgroups in a more general
situation:

Theorem 3. — LetM be a 3-manifold which is compact, connected, orientable,
and irreducible. Assume moreover that the boundary ∂M has at least one compo-
nent, say ∂1M , which is a torus; and that M is neither a solid torus S1 ×D2 nor a
thickened torus T2 × [0, 1].

Denote by G the fundamental group of M , by P the peripheral subgroup of
G associated with ∂1M , and by V the connected component of the Jaco-Shalen-
Johannson decomposition of M which contains ∂1M .

Then P is not malnormal in G if and only if V is a Seifert manifold.

Two observations are in order.
If M is a solid torus or a thickened torus (in both cases an irreducible Seifert

manifold), the peripheral group coincides with π1(M), and thus is trivially malnor-
mal in π1(M).

There is a well-known fact on 3-manifolds which are compact, connected, ori-
entable, irreducible, and with non-empty boundary: if one boundary compo-
nent of such a manifold is a compressible torus, then the manifold is a
solid torus; for the convenience of the reader, we provide a proof of this as Lemma
13 below. Thus in the situation of Theorem 3, ∂1M is incompressible in M .

By specialising to exteriors of links (see the definitions recalled at the end of
Appendix B), we could obtain the following corollary. The notation we use for a
link L, namely VL, EL and GL, are defined in the same way as for knots.

Corollary 4. — Let L be a link in S3, with r > 2 components L1, . . . , Lr. As-
sume that L is unsplittable, and is not the Hopf link. Denote by GL the group of L.
For j ∈ {1, . . . , r}, denote by Pj the peripheral subgroup of GL which corresponds
to Lj .

Then Pj is not malnormal in GL if and only if
◦ either Lj is part of a (possibly satellised) torus sublink of L;
◦ or Lj is the outcome of a connected sum operation of links.
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In this paper, we give a proof of Theorem 1, following the method of [32]; from
this and the annulus theorem, Corollary 2 follows. Then, using more of the theory
of 3-manifolds, we prove Theorem 3; as a consequence, we obtain a second proof of
Theorem 1.

More precisely, Section 2 contains general facts on annuli attached to boundary
tori of 3-manifolds. Section 3 analyses exteriors of composite knots, torus knots, and
cable knots, and thus establishes the converse (and easy) implication in Theorem
1. In Section 4, we complete the proof of Theorem 1; the first few lines show also
how Corollary 2 follows from Theorem 1. Section 5 is a proof of Theorem 3, and
Section 6 shows how Corollary 2 follows from Theorem 3.

We will not show how Corollary 4 follows from Theorem 3, for length reasons.
Indeed, if T1, . . . , Tr denote the boundary components of the exterior EL of the
link L = L1 t · · · t Lr, a JSJ piece of EL can be adjacent to just one of the
Tj or to several of them, and many cases have to be treated separately, so that
there are (among other things) non-trivial combinatorial complications. To avoid
unreasonable length, we have chosen to leave the details to the expert readers.

As we have non-expert readers in mind, we have written rather long appendices.
In A, we recall various basic definitions on 3-manifolds, a theorem due to Alexander
on complements of tori in S3, and a re-embedding construction of Bonahon and
Siebenmann for submanifolds of S3. Appendix B is about Seifert foliations and
Seifert pseudo-foliations on 3-manifolds. Appendix C is a reminder on the annulus
theorem and the JSJ decomposition, needed for our proof of Theorem 3. The last
appendix is a digression on the terminology and the literature.

In a companion paper [15], we collect basic facts and (more or less) standard
examples on malnormal subgroups and on Frobenius groups of permutations.

It is convenient to agree on the following standing assumption:
all 3-manifolds and surfaces below are assumed to be

compact, connected, orientable, and possibly with boundary,
unless either they are obviously not, such as links or boundaries, which need not be
connected, or if it is explicitely stated otherwise (for example, the space of leaves
of a Seifert foliation, a surface, need not be orientable). Moreover, maps, and in
particular embeddings from one manifold into another, are assumed to be smooth.

2. On annuli embedded in 3-manifolds with torus boundaries

2.1. Curves in tori and slopes. A simple closed curve in a surface is essential
if it is not homotopic to a point, equivalently if it does not bound an embedded
disc. Let T be a 2-dimensional torus; a slope in T is an isotopy class of essential
simple closed curves. These curves and slopes are non-oriented.

The distance ∆(s1, s2) of two slopes s1, s2 in T is the absolute value of their
intersection number, namely

∆(s1, s2) = min
{

#(σ1 ∩ σ2)
∣∣∣ σj is a simple closed curve

representing sj , j = 1, 2

}
.

(This “distance” does not satisfy the triangle inequality, but the terminology is
however standard.) Two slopes are isotopic if and only if their distance is zero.
Two slopes, once oriented, define a basis of H1(T,Z) if and only if their distance is
one. Observe that, if σ1, σ2 are two essential simple closed curves in T which are
disjoint, and therefore isotopic, then the closure of each connected component of
their complement T r (σ1 ∪ σ2) is an annulus embedded in T .

For curves on tori and for slopes, see [27] (in particular Section 2.C) and [5].
If a 2-torus T is given as the boundary of a solid torus, a meridian is an essential

simple closed curve µ on T which bounds a disc in the solid torus, and a parallel
is an essential simple closed curve λ on T such that the homotopy classes of λ and
µ, with orientations, constitute a basis of π1(T ) = H1(T,Z).
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2.2. Annuli attached to a torus component of the boundary. Let M be a
3-manifold with boundary, such that one connected component of ∂M , say T , is
a 2-torus. An annulus in M attached to T is an annulus A which is properly
embedded in M and such that each component of ∂A is an essential curve in T ;
observe that these two components are disjoint, so that we have a well-defined
slope of A in T .

As a particular case of a definition from Subsection A.1, an annulus A in M
attached to T ⊂ ∂M is boundary parallel if there exists a solid torus U embedded
in M such that

(i) A ⊂ ∂U ,
(ii) (∂U rA) ⊂ T ,
(iii) there exists a diffeomorphism1 h : U −→ A×[0, 1] such that h(A) = A×{0};

in this case A is said to be boundary parallel through U . Observe that, in this
situation, there is an annulus AT embedded in T such that ∂U = A ∪∂A AT (the
notation ∪∂A indicates that A ∩AT = ∂A).

Our next Subsections, 2.3 to 3.3, describe various examples in the particular
situation of the exterior of a knot.

2.3. Examples of boundary parallel annuli in knot exteriors. Let K be a
knot; let EK and TK = ∂EK be as usual. Any slope s in TK can be the slope of a
boundary parallel torus attached to TK in EK .

Indeed, consider an annulus AT in TK bounded by two parallel essential simple
closed curves in TK in the class s. Push the interior of AT slightly inside EK to
obtain an annulus A in M attached to TK ; there is a well-defined solid torus U ,
bounded by A ∪AT , such that A is boundary parallel through U .

(This would essentially carry over to any boundary component of any 3-manifold,
instead of just the torus ∂EK .)

On the contrary, Theorem 1 shows that there are strong limitations on slopes
which can be associated to non-boundary parallel annuli attached to TK . More
generally there are strong limitations on slopes of incompressible surfaces, see e.g.
[5].

2.4. Examples of annuli in the exterior of the trivial knot. Consider a non-
trivial knot J , with EJ , TJ as usual, and a meridian K ⊂ TJ , which is viewed as a
trivial knot in S3, with EK , TK as usual. Then A := TJ ∩EK is an annulus in EK
attached to TK . It is not boundary parallel because J is non-trivial. The slope of
A in TK is a parallel.

3. Examples of non boundary-parallel annuli in knot exteriors

The next three subsections provide a proof of the converse part of Theorem 1.

3.1. Examples of annuli in exteriors of composite knots. Consider a com-
posite knot, namely a connected sum K = K1]K2 of two non-trivial knots. There
is no loss of generality if we assume that K is in R3, intersecting R2 in exactly two
points, and that, if H1, H2 denote the two closed half-spaces bounded by R2, the
knot Kj is the union of K ∩ Hj with the straight segment in R2 joining the two
points of K ∩R2 (for j = 1, 2). Then

A =
(
R2 r (R2 ∩

◦
V K)

)
∪ {∞}

is an annulus in EK attached to TK . The slope of A in TK is a meridian.
For j = 1, 2, denote by Wj the closure of the complement in Hj of Hj ∩ VK .

Observe that Wj is diffeomorphic to the exterior of Kj so that both W1 and W2
are knot exteriors.

1Note that U and A× [0, 1] are manifolds with corners; the notion of diffeomorphism can easily
be adapted to this situation.
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(Note: if K2, say, were trivial, then W2 would be a solid torus.)

3.2. Examples of annuli in exteriors of torus knots. Denote by S1 ×D2 the
solid torus standardly embedded in R3 and by T its boundary. A torus knot is
a knot isotopic to an essential simple closed curve on the torus T. We agree here
that

the trivial knot is not a torus knot.
Let K be a torus knot on T, and let VK be a tubular neighbourhood of K small

enough for VK ∩ T to be a pair (K1,K2) of curves on T which are disjoint and
parallel to K (the standardly embedded torus T should not be confused with the
torus TK = ∂VK = ∂EK). The complement T r (K1 ∪ K2) has two connected
components; let A be the closure of the component which does not contain K.
Then A is an annulus in EK = (R3 ∪ {∞}) r

◦
V K attached to the boundary TK .

The slope of A in TK is a parallel.
The complement EK r A of A has two connected components. The bounded

component is essentially the interior of the standard solid torus; more precisely it
is the interior of this standard solid torus minus part of the “small” solid torus VK ;
thus, the closure of this bounded component is again a solid torus. Similarly, the
other component, together with the point at infinity of R3, is a solid torus.

3.3. Examples of annuli in exteriors of cable knots. Consider on the one
hand a non-trivial knotKc and a tubular neighbourhood Vc ofKc with its boundary
Tc = ∂Vc. Consider on the other hand the standardly embedded solid torus S1×D2,
a non-trivial torus knot Kpat in ∂(S1×D2), and a homeomorphism h : S1×D2 −→
Vc. Then, by definition, the knot K := h(Kpat) is a cable knot around Kc, with
companion Kc and pattern Kpat. We do assume that Kc is non-trivial; thus, in
this paper,

torus knots are not cable knots.
Some authors (including [32]) use the other convention, and consequently state
Theorem 1 with two cases only.

Let Apat be an annulus inside ∂(S1 ×D2) related to Kpat as A is related to K
in the previous Subsection 3.2. Then A := h(Apat) is an annulus in EK attached
to the boundary TK . The slope of A in TK is again a parallel.

The two components of EKrA are one a solid torus (that is a small perturbation
of Vc), and the other a knot exterior (a small perturbation of the exterior of Kc).

4. Proof of Theorem 1

We continue with the notation of Theorem 1. It is useful to consider a thickened
torus

NT := TK × [0, ε] ⊂ VK with NT ∩ EK = TK = TK × {0},
as well as a thickened annulus embedded in EK

NA := A× [1, 2] ⊂ EK with A = A× {3
2}.

Define
- the shrunk neighbourbood V −K := VK rNT ,
- the enlarged exterior E+

K := EK ∪NT = S3 r V −K ,
- and their common boundary T ′K := TK × {ε} = ∂V −K = ∂E+

K , that is TK
slightly pushed inside VK .

The union
N := NT ∪NA

is a manifold with boundary, indeed with corners. Note that
CK := ∂A× [1, 2] = TK ∩NA = NT ∩NA = VK ∩NA
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is the disjoint union of two annuli, each one being a neighbourhood in TK of a
component of ∂A. On N , there is a natural foliation by circles, such that ∂A×{1, 2}
is the union of four particular leaves, of which the isotopy class is a slope of TK . The
manifolds N and NA are irreducible since they are Seifert manifolds with boundary
(Proposition 19).

Let Θ denote the space of leaves of N . Then Θ is homeomorphic to the union
of an annulus (the space of leaves of NT ) together with a thickened diameter (the
space of leaves of NA); the four points which are common to the boundary of the
thickened annulus and the boundary of the thickened diameter represent the four
leaves in ∂A×{1, 2}. Since Θ is orientable (Lemma 26), it is a planar surface with
three boundary components (a “pair of pants”), and the manifoldN is diffeomorphic
to a product:

N ≈ Θ× S1.

The boundary ∂N is the union of three tori. One is T ′K ; we denote the two others
by T1 and T2. For j ∈ {1, 2}, the torus Tj separates S3 in two components; we
denote by Wj the closure of the component contained in EK . Thus

E+
K = N ∪W1 ∪W2 and EK = NA ∪W1 ∪W2

where the interiors on the right-hand sides are disjoint.
By Alexander’s Theorem 14, each Wj can be either a solid torus or a knot

exterior, so that there are three cases to consider:
(4.1) both W1 and W2 are knot exteriors;
(4.2) both W1 and W2 are solid tori;
(4.3) W1 is a solid torus and W2 is a knot exterior.

We will see that these three cases correspond respectively to K being a composite
knot, a torus knot, and a cable knot. Thus the proof below splits naturally in three
cases; it follows and extends the indications given by [32] (there is an earlier paper
of Simon with similar ingredients, used for other purposes).

4.1. Case in which both W1 and W2 are knot exteriors. We have to show
that the slope of A in TK is a meridian, and it will follow that K is a connected
sum of two non-trivial knots. Compare with Subsection 3.1.

Since W1 is a knot exterior, the manifold S3 r
◦
W 1 is a solid torus, by Theorem

14. Thus W2 is contained in the interior of a 3-ball which is contained in S3 r
◦
W 1,

by Proposition 16; we denote by Σ the boundary of this ball. Since Σ∩ (W1 ∪W2)
is empty, we have

Σ ⊂ interior of (VK ∪NA)
and Σ separates W1 from W2. Since VK ∩NA = CK , we have

Σ ∩
◦
CK 6= ∅.

Indeed, if this intersection were empty, we would have either Σ ⊂ VK or Σ ⊂ NA,
and each of these inclusions would contradict the fact that Σ separates W1 from
W2. Moving slightly Σ if necessary, we can assume that the intersection Σ ∩CK is
transverse, so that this intersection, say Γ, is a bunch of pairwise disjoint circles.

We will show how to modify Γ (by modifying Σ), in order to obtain a curve
which is both a slope of A in TK and a meridian of TK .

Consider a circle γ of the bunch Γ which is innermost in Σ, namely which
bounds a disc, say Dγ ⊂ Σ, such that

◦
Dγ ∩Γ = ∅. There are two cases to consider,

depending on this disc being in VK or in NA.
Suppose first that Dγ ⊂ NA. Since the circle γ is in one of the two annuli making

up CK = ∂A× [1, 2], there are a priori two possibilities: either it bounds a disc in
this annulus, or it is parallel to the boundary of this annulus. But the second case
would mean that γ defines the same slope of TK as A; thus γ would be essential
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in TK ; since γ bounds a disc in EK , the knot K would be trivial, in contradiction
with our hypothesis. Hence γ bounds a disc D′γ ⊂ ∂A× {j}, where j = 1 or j = 2.
The union Dγ ∪ D′γ is a 2-sphere embedded in NA; since NA is irreducible, this
2-sphere bounds a 3-ball in NA. We can now isotope Dγ through this 3-ball and
then push it slightly outside NA, to remove the intersection γ.

Suppose now that Dγ ⊂ VK . As before, there are a priori two possibilites: either
γ bounds a disc in CK , and we can modifiy the situation to one with one circle less,
or γ is both a slope of A and a meridian of TK .

Iterating the previous construction with an innermost circle as often as necessary,
we obtain in all cases a curve which is both a slope of A and a meridian of TK .
This ends the proof of Theorem 1 in case both W1 and W2 are knot exteriors.

4.2. Case in which both W1 and W2 are solid tori. There are a priori two
subcases.

Either the oriented foliation of N introduced above extends to an oriented foli-
ation by circles of E+

K = N ∪W1 ∪W2. Then K is a torus knot, by Proposition
28.

Or the oriented foliation of M does not extend to one of the Wj , say to W1.
Then, by Corollary 25, this foliation extends to W2, indeed to S3 r

◦
W1, with K

a regular leaf, and the knot K is trivial. Since the triviality of K contradicts the
hypotheses of Theorem 1, this second subcase does not occur.

4.3. Case in which W1 is a solid torus and W2 a knot exterior. Let N̂ denote
a submanifold of S3 obtained from N by the Bonahon-Siebenmann re-embedding
construction; this amounts to replacing W2 by a solid torus, that we denote by
U2 (see Proposition 15). Recall that N̂ is diffeomorphic to N , and thus is given
together with a Seifert foliation (indeed is a circle bundle).

Claim 5. — The foliation on N̂ extends to S3 = N̂ ∪ V −K ∪W1 ∪ U2.

Let us admit the claim. In the solid torus W1, the core must be an exceptional
leaf, otherwise the annulus A would be boundary parallel through W1. Thus, if we
consider the original embedding N ⊂ S3, we see that K is a cable around the knot
whose exterior is W2.

Proof of Claim 5. — Since the complement of N̂ in S3 is a union of solid tori, the
Seifert fioliation on N̂ extends either as a Seifert foliation or as a pseudo-foliation,
say F , on S3. By Corollary 25, it is enough to show that there cannot exist a
pseudo-leaf in any of V −K , W1, U2.

Suppose that V −K would contain a pseudo-leaf. Then F would be the standard
pseudo-foliation, with unique pseudo-leaf inside V −K . Hence the core of W1 would
be a regular leaf, and A would be boundary parallel through2 the solid torus W1.
This would contradict the hypothesis on A, and is therefore impossible.

The same argument shows that U2 does not contain a pseudo-leaf.
Suppose that W1 contains a pseudo-leaf. Then the knot K is a regular leaf of

the pseudo-foliation. But regular leaves are all isotopic in S3 r U2, and they all
bound discs. Hence K bounds a disc in S3 rU2 that is a meridian disc in VK . This
disc lives also in the original situation, and this implies that the knot K is trivial,
in contradiction with our hypothesis. �

5. Proof of Corollary 2 and of Theorem 3

Consider a 3-manifold M which satisfies the hypothesis of Theorem 3, and as-
sume moreover that ∂1M ≈ T2 is incompressible (see the comments which follow

2This is abusive, since W1 stands here for a slightly expanded solid torus W+
1 made up of W1

and the appropriate part of NA. But small lies can help the truth to be simpler.
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Theorem 3). We assume that P ≈ π1(∂1M) is not malnormal in G = π1(M), and
we have to show that the JSJ piece V which contains ∂1M is a Seifert manifold.

By assumption, there exist p0, p1 ∈ Pr{1} and g ∈ GrP such that gp0g
−1 = p1.

The elements p0 and p1 are represented by loops in ∂1M which are freely homotopic
inM . Hence there exists a (possibly singular) map ϕ : A −→M of which the image
connects these two loops; here, A is the standard annulus S1 × [0, 1].

Let us check that ϕ is essential (compare with [32], Page 207). On the one hand,
one component of ∂A generates π1(A) ≈ Z; its image by ϕ is p0 6= 1 (or p1 6= 1) so
that, the group P being torsion-free, ϕ induces an injection of π1(A) into P , and
therefore also into G. On the other hand, there is a spanning arc α in A that is
mapped by ϕ to g; since g /∈ P , the restriction ϕ|α is not homotopic relative to its
boundary to an arc in ∂M .

From the Annulus Theorem 30, there exists an embedding ψ : A −→ M with
ψ(∂A) ⊂ ∂1M . The annulus π(A) is not boundary parallel (this is the meaning of
ψ being essential in Theorem 30).

On the proof of Corollary 2. — For a non-trivial knot K, the argument of the
few lines above show that, if the peripheral subgroup PK is not malnormal in GK ,
then there exists an annulus in EK attached to TK that is not boundary parallel.
Hence Corollary 2 follows from Theorem 1. �

Remark. — The following is useless for our purpose but pleasant to know: the
peripheral subgroup PK of a knot group GK is maximal abelian in GK (a result of
Noga, see Corollary 1 in [11]) and of infinite index in GK (Theorem 10.6 in [16]).

We return to the situtation of Theorem 3. By Theorem 31, M has a family T
of tori providing a JSJ decomposition in various pieces; recall that V denotes that
piece which contains ∂1M .

Claim 6. — There exists an embedded essential annulus in V , with at least one
boundary component in ∂1M .

Proof. — We know that there exists an embedded essential annulus ψ as above.
Without loss of generality, we can assume that ψ(A) is transversal to T , so that
the intersection ψ(A) ∩ T is a bunch B of circles. Let us agree that such a circle β
is

• of the first kind if it bounds a disc in ψ(A),
• of the second kind if it is boundary parallel in ψ(A).

First, we get rid of circles of the first kind, by a classical argument. As a
preliminary observation, note that a circle from B contained inside a circle of the
first kind is also of the first kind. Thus, if there are circles of the first kind, one
may choose one of them, say β, that is innermost, so that β bounds a disc ∆ in
ψ(A) containing no element of B in its interior. Denote by Ti the torus of the
family T that contains β; we have ∆ ∩ Ti = ∂∆. If β was not contractible inside
Ti, the disc ∆ would be a compressing disc for Ti, and this is impossible since Ti is
incompressible. Hence β bounds a disc, say δ, in Ti. The union δ ∪∆ is a 2-sphere
embedded in M ; since M is irreducible, it bounds a 3-ball. We can first isotope ∆
through this 3-ball and then push it slightly outside Ti to remove the intersection
β.

Note that the irreducibility of M has played a crucial role above.
Iterating this operation, we can obtain eventually an annulus ψ′ : A −→ M

embedded in M without any circle of the first kind. Note that ψ′(A) and ψ(A)
are isotopic in M , so that ψ′ is also essential. The intersection ψ′(A) ∩ T is now
a bunch B′ of circles that are all of the second kind, namely that are boundary
parallel in ψ′(A).

The circles in B′ decompose ψ′(A) in a sequence of successive annuli. If the first
of them is essential, keep it and stop. If it is inessential, then both its boundary
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components are in ∂1M , and we can repeat the same argument with the second
annulus. After some time, we must encounter an essential annulus with one bound-
ary component in ∂1M and with empty intersection with T , therefore an essential
annulus entirely contained in V . �

Claim 7. — With the notation of the previous claim, the manifold V is Seifert.

Proof. — From the JSJ Decomposition Theorem, we know that V is Seifert or
atoroidal. But, if V is atoroidal, it is also Seifert, thanks to the following proposition
that we copy from Lemma 1.16 on Page 25 of [14]. �

Proposition 8. — Let X be a compact, irreducible, and atoroidal 3-manifold.
Assume that X contains an incompressible, ∂-incompressible annulus meeting only
torus components of ∂M . Then X is a Seifert manifold.

This ends the proof of the implication “P not malnormal =⇒ V Seifert” of
Theorem 3.

Proof of the converse statement in Theorem 3. — We assume that V is a Seifert
manifold. It is an irreducible manifold: one reason is noted as Comment (i) after
Theorem 31, another one is that V has a boundary (Proposition 19).

We have the inclusions ∂1M ⊂ V ⊂ M and the corresponding group homo-
morphisms Z2 ≈ π1(∂1M) −→ π1(V ) −→ π1(M) = G. As already noted in
Section 1, we can assume that ∂1M is incompressible in M , so that the inclu-
sion π1(∂1M) −→ G is an isomorphism onto the peripheral subgroup P of G; a
fortiori, the inclusion π1(∂1M) −→ π1(V ) is an injection. The homomorphism
π1(V ) −→ π1(M) is also an injection (Remark (iii) after Theorem 31). Let us
moreover remark that π1(∂1M) is a proper subgroup of π1(V ); otherwise, because
of standard facts on fundamental groups of Seifert manifolds with boundaries (see
Chapter 12 in [16]), V would be a thickened torus, and this has been ruled out.
Summing up: π1(∂1M) ≈ Z2 is a proper subgroup of π1(V ).

Since V is a Seifert manifold, the torsion-free group π1(V ) has an infinite cyclic
normal subgroup, which is generated by the homotopy class of a regular fibre.
By Proposition 2.viii of [15], it follows that π1(V ) does not have any non-trivial
malnormal subgroup. A fortiori, P is not malnormal in G. �

6. Corollary 2 as a consequence of Theorem 3

Corollary 2 is a consequence of Theorem 3 and of various facts on Seifert foliations
(Appendix B) that are summed up in the following proposition.

Proposition 9. — Let K be a non-trivial knot, EK its exterior, TK its bound-
ary, and V the component of the JSJ decomposition of EK containing TK . If V is
a Seifert manifold, then K is either a composite knot, or a torus knot, or a cable
knot.

Note. — One proof would be to show that, if V is Seifert, then there exists
an essential embedded annulus in V . We will proceed differently, without using
Theorem 1.

There are statements similar to our proposition in [19], Lemma VI.3.4, and [20],
Lemma 14.8. The proof below is somewhat different, as it uses Seifert foliations
and pseudo-foliations.

Proof of Proposition 9. — Denote by T1, . . . , Tr the connected components of ∂V
distinct from TK (possibly r = 0, ifK a torus knot, since then EK is Seifert foliated).
For j ∈ {1, . . . , r}, letWj denote the closure of the connected component of S3rTj
that does not contain V . If Wj was a solid torus, Tj would be compressible in EK ;
but this would contradict the incompressibility of the JSJ tori in the decomposition
of EK . Hence, by Theorem 14, Wj is a knot exterior.
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We consider the Bonahon-Siebenmann re-embedding V̂ of V in S3, summed up
below in Proposition 15. This construction amounts to replace each Wj by a solid
torus Uj . Then V̂ can be seen as the exterior EL of a link L := K̂ t L1 t · · · t Lr
with r + 1 components.

Proposition 9 is now a consequence of the following claim. �

Claim 10. — (i) If the Seifert foliation on V does not extend to VK (or, equiv-
alently, if the Seifert foliation on V̂ does not extend to VK), then r > 2 and
K is the connected sum of r prime knots.

(ii) If the Seifert foliation on V extends to VK , then r 6 1. If r = 0, then K is
a torus knot, and if r = 1 then K is a cable knot.

Proof. — (i) By hypothesis, there exists a foliation on V̂ that does not extend to
VK . By Proposition 29, this foliation does extend as a pseudo-foliation on S3, with
K̂ as a pseudo-leaf. By the uniqueness result for pseudo-foliations of S3, Corollary
25, the cores of the solid tori Ui are regular leaves. It follows from the description
of composite knots à la Schubert (Subsection B.5) that K is a connected sum of r
prime knots.

(ii) By hypothesis, there exists a foliation on V that extends to M = VK ∪
V ; observe that the manifold M is irreducible (being Seifert and with boundary,
Proposition 19). To show that r 6 1, we proceed by contradiction and assume for
some time that r > 2.

Consider the torus component T1 of ∂M . SinceM is irreducible and is not a solid
torus, T1 is incompressible in M (Lemma 13). Since T1 bounds on the other side
the cube with a knotted hole W1, it is incompressible in W1. Thus, van Kampen’s
theorem shows that π1(T1) is a subgroup of π1(M ∪W1). By a similar argument,
π1(T1) is still a subgroup of π1(M ∪W1 ∪ · · · ∪Wr). But this is impossible since
M ∪W1 ∪ · · · ∪Wr = S3.

If r = 0, then K is a torus knot, since it is a leaf of a Seifert foliation of S3.
If r = 1, the same incompressibility argument as above shows that M is a solid

torus (otherwise T1 would be incompressible in S3). We know the classification of
Seifert foliations on a solid torus: the space of leaves is a disc, and the number s
of exceptional leaves is at most 1. If one had s = 0, the manifold V would be a
thickened torus, and this is impossible because T1 cannot be boundary parallel in
a JSJ decomposition. Hence s = 1, and the knot K is not an exceptional leaf (this
would again imply that V is a thickened torus). Hence K is a regular leaf of the
Seifert foliation on the solid torus M , and this foliation has one exceptional leaf
(the core of M). Thus K is a torus knot in M , not isotopic inside M to the core
of M . It follows that this torus knot is satellised around the knot K1 of which the
exterior is W1. This is exactly the cable situation. �

Appendices on three-dimensional topology

Appendix A. Terminology and basic facts about 3-manifolds

This section is a reminder on some terminology for 3-manifolds, and classical
results that we have used in Sections 4, 5 and 6 (Alexander, Dehn, Seifert, Wald-
hausen, Bing-Martin, Bonahon-Siebenmann). Recall the standing assumption
agreed upon in Section 1:

all 3-manifolds and surfaces below are assumed to be
compact, connected, orientable, and possibly with boundary,

but for a few exceptions which are either obvious or explicitely stated as such. Also,
all maps are assumed to be smooth.

A map ϕ from a manifold N to a manifold M is proper if ϕ−1(∂M) = ∂N .
A manifold S is properly embedded in a manifold M if it is embedded and if
∂S = S ∩ ∂M .
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A.1. Irreducibility and parallelism. A 3-manifoldM is irreducible if any em-
bedded 2-sphere bounds a 3-ball. For example, S3 is irreducible; indeed, it is a
theorem of Alexander that any 2-sphere embedded in S3 bounds two 3-balls
(see e.g. Theorem 1.1 in [14], Page 1). The only irreducible 3-manifold which has
a 2-sphere in its boundary is the 3-ball. For the importance of the irreducibility
hypothesis, see for example the proof of Claim 6.

Let M be a manifold of dimension m. Let S0, S1 be two manifolds of the same
dimension n < m, with S0 properly embedded in M and S1 either properly em-
bedded in M or embedded in ∂M . Then S0 and S1 are parallel if there exists an
embedding of a thickened manifold

ψ : S × [0, 1] −→M

such that
(i) ψ(S × {0}) = S0 and ψ(S × {1}) = S1,
(ii) ψ(∂S × [0, 1]) ⊂ ∂M .

If ∂M 6= ∅, a manifold S0 properly embedded in M is boundary parallel, or
∂-parallel, if there exists a manifold S1 embedded in ∂M such that S0 and S1 are
parallel.

Consider for example the case with M = A an annulus and S of dimension 1.
There are three isotopy classes of properly embedded arcs in an annulus A: one
class with the two ends of the arc in one component of ∂A, one class with the two
ends of the arc in the other component of ∂A, these are boundary parallel, and
the class of the so-called spanning arcs with one end in each component of ∂A,
equivalently with Ar {arc} connected.

Recall that a simple closed curve in a surface is essential if it is not homotopic
to a point, equivalently if it does not bound an embedded disc. A circle embedded
in A is essential if and only if it is boundary parallel, and is then a core of A. Note
that a core of A and a spanning arc of A, appropriately oriented, have intersection
number +1.

A.2. Incompressible and ∂-incompressible surfaces. Let S be a surface prop-
erly embedded in a 3-manifold M and γ a simple closed curve in the interior of S.
A compressing disc for γ is a disc D embedded in M such that γ = ∂D = D∩S.
The surface S is incompressible if, for any simple closed curve γ in the interior
of S which has a compressing disc D, there exist a disc D′ in S such that ∂D′ = γ
(equivalently: γ is null-homotopic in S). Note that our definition is different from
that of [16] for properly embedded surfaces which are discs or spheres; for us, these
are always incompressible.

Mutatis mutandis, this definition of “incompressible” applies to boundary com-
ponents of M .

A non-connected surface (for example ∂M in some situations) is incompressible
if each of its connected components is so (see e.g. Section 1.2 in [14]).

A connected surface S properly embedded in M , or a component of ∂M , is
incompressible if and only if the induced homomorphism of groups π1(S) −→ π1(M)
is injective. This follows from Dehn’s Lemma and the loop theorem; see
Corollary 3.3 in [14]. (It is important here that S is two-sided, but this follows
from our standing assumption, according to which both S and M are orientable.)

For example, the boundary TK of a non-trivial knot exterior EK is incompress-
ible, and the boundary of a handlebody of genus g > 1 is compressible.

Given a (not necessarily connected) surface S properly embedded in a 3-manifold
M , the manifoldM∗S obtained fromM by splitting M along S is the complement
in M of a regular open neighbourhood of S (observe that S is two-sided, being
orientable in an orientable manifold). We quote now Theorem 1.8 in [34].



52 P. de la Harpe & C. Weber

Proposition 11 (Waldhausen). — Let M and S be as above; assume that S is
incompressible. Then the connected components of M∗S are irreducible if and only
if M is irreducible.

Let S be a surface with boundary ∂S 6= ∅ properly embedded in a 3-manifold
M with boundary ∂M 6= ∅. For an arc α properly embedded in S, a compressing
disc is a disc D embedded in M with:

◦ α = D ∩ S,
◦ β := D ∩ ∂M is an arc in ∂D,
◦ ∂D = α ∪ β and ∂α = ∂β = {two points in ∂D}.

(Observe that such a D is never properly embedded in M since the interior of α is
disjoint from ∂M .) The surface S is ∂-incompressible if, for any arc α properly
embedded in S with D as above, α is boundary parallel in S.

Proposition 12. — Let M be an irreducible 3-manifold. Assume that the
boundary of M has some torus compoments; let ∂TM denote the union of these.

Let S be a surface properly embedded and incompressible in M , with ∅ 6= ∂S ⊂
∂TM . Then either S is ∂-incompressible or S is a boundary parallel annulus.

In particular, if ∂M is a union of tori, an annulus properly embedded and in-
compressible in M is either ∂-incompressible or boundary parallel.

Proof. — We refer to Lemma 1.10 of [14]. �

Remark. — If ∂TM is compressible, it follows from Lemma 13 below that M is
a solid torus. It is known that, in a solid torus, an incompressible surface which is
not a disc is necessarily an annulus parallel to the boundary (Lemma 2.3 in [34]).

A.3. Complements of tori in the 3-sphere. Let T be a torus embedded in
S3. By Poincaré-Alexander duality, the complement S3 r T has two connected
components, and their closures U1, U2 have T as a common boundary. By the
theorem of Alexander recalled in Subsection A.1, the manifolds U1 and U2 are
irreducible.

The following Theorem 14 is also due to Alexander (see [14], Page 11). The proof
below (unlike that of Alexander!) uses Dehn’s Lemma. Our preliminary Lemma 13
is well-known to specialists.

Lemma 13. — Let M be an irreducible 3-manifold; assume that the boundary
∂M has a component ∂1M which is a compressible torus.

Then M is a solid torus; in particular, ∂M is connected.

Proof. — Let D be a compressing disc for ∂1M and let E be a small open
tubular neighbourhood of D. Let M∗D = M rE be the result of splitting M along
D. By construction, the boundary ∂M∗D contains a 2-sphere, consisting of “most
of” ∂1M ∪ ∂E. By the irreducibility assumption, this 2-sphere (viewed now in M)
bounds a 3-ball B in M . Then V + B ∪E is a solid torus, because it is orientable
and obtained by attaching E along ∂B as a 1-handle.

This solid torus is closed in M since it is compact. It is also open by Brouwer’s
theorem of invariance of domain (see the remark below). It follows that V = M . �

Remark (On Brouwer’s Theorem). — The following result is (a restatement of
what is) found in books, see e.g. [9, Proposition 7.4]: an injective continuous map-
ping g : N1 −→ N2 between two manifolds N1, N2, of the same dimension and with-
out boundary, is open. Let now M1,M2 be manifolds of the same dimension, with
boundary, and let ∂′M2 be the union of some of the connected components of ∂M2.
If an injective continuous mapping f : M1 −→ M2 is such that f(∂M1) = ∂′M2,
then f is open. This is a straightforward consequence of the previous statement, ap-
plied to the natural map g induced by f , with domain the double N1 = M1∪∂M1M1
of M1 and target the interior of the double N2 = M2 ∪∂′M2 M2.
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The core of a solid torus U embedded in a 3-manifold M is h(S1 × {0}), where
U is the image of an embedding h : S1×D2 −→M of the standard solid torus (the
core is well-defined up to isotopy).

Theorem 14 (Alexander). — Let T be a torus embedded in S3 and let U1, U2
be the closures of the connected components of S3 r T .

At least one of them, say U1, is a solid torus, say with core C1, so that U2 is the
exterior of the core C1. The curve C1 is unknotted in S3 if and only if U2 is also a
solid torus.

Proof. — If T were incompressible in both U1 and U2, the group π1(T ) would
inject in π1(U1) and π1(U2), by Dehn’s lemma. Since S3 = U1 ∪T U2, it would also
inject in the amalgamated sum

π1(S3) = π1(U1) ∗π1(T ) π1(U2),

by the Seifert–van Kampen theorem, and this is absurd. Upon exchanging U1 and
U2, we can therefore assume that T is compressible in U1. Lemma 13 implies that
U1 is a solid torus.

If U2 is also a solid torus, then T is unknotted, by definition. �

Alexander’s theorem is strongly used in the following construction, that we pro-
pose to call the Bonahon-Siebenmann’s re-embedding construction. In [4,
beginning of § 2.2], this is called a splitting. On page 326 of [6] and with the
notation of our Proposition 15, the embedding of Ẑ in S3 is called the untwisted
re-embedding.

Let Z be a 3-manifold embedded in S3, with boundary a non-empty disjoint
union of tori ∂Z = T1 t . . . t Tr. For j ∈ {1, . . . , r}, denote by Wj the closure of
the connected component of S3 r Tj which does not contain Z. Assume that the
notation is such that W1, . . . ,W` are knot exteriors and W`+1, . . . ,Wr solid tori,
for some ` with 0 6 ` 6 r. The purpose of the construction is to obtain a situation
with ` = 0, namely with Z re-embedded as the exterior of an appropriate link in
the 3-sphere.

For j ∈ {1, . . . , `}, denote by µj a meridian and by λj a parallel of Tj viewed
as the boundary of the solid torus S3 rWj ; orient these so that they become a
basis of H1(Tj ,Z). Let Uj denote a solid torus, with boundary endowed with an
oriented meridian µ′j and an oriented parallel λ′j . Define inductively a sequence of
manifolds M0 = S3,M1, . . . ,M`; for j ∈ {1, . . . , `}, the manifold Mj is obtained by
gluing Uj to the closure of Mj−1 rWj , in such a way that µj is glued to λ′j and
λj to µ′j . Observe that the construction provides an embedding of Z in Mj , and
that the components of the complement of the image of Z in Mj can be naturally
identified with U1, . . . , Uj ,Wj+1, . . . ,Wr. Since Mj has a Heegaard decomposition
of genus one3 and has the homology of the 3-sphere, Mj is diffeomorphic to S3. In
particular, M` is diffeomorphic to S3, and we denote it by S3 again; we denote by
Ẑ the image of the embedding of Z in this “new” S3.

For reference, we state the result of this construction as:

Proposition 15. — Let Z be a 3-manifold embedded in S3, with boundary a
non-empty disjoint union of tori.

There exists a submanifold Ẑ of S3 that is diffeomorphic to Z and that is the
exterior of a link in S3.

3A manifold N that has a Heegaard decomposition of genus one is diffeomorphic to either
the 3-sphere, or S1 × S2, or a lens space. Indeed, the median torus of such a decomposition is
the boundary of two solid tori, and has therefore two meridians µ, µ′. If δ = ∆(µ, µ′), with the
notation of Subsection 2.1, then π1(N) ≈ Z/δZ, and N is S1 × S2, or S3, or a lens space, if the
value of δ is 0, or 1, or > 2. See Chapter 2 of [16].
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Using automorphisms of the solid tori we could show that, given two results
Ẑ, Ẑ ′ ⊂ S3 of the construction, there exists a diffeomorphism h of S3 such that
h(Ẑ) = Ẑ ′.

The following result is due to Bing and Martin. A manifold with boundary
homeomorphic to the exterior of a non-trivial knot in S3 is picturesquely called
in [1] a cube with a knotted hole; we also use knot exterior. We insist that
a knot exterior is the exterior of a non-trivial knot; observe that Bing-Martin’s
result does not carry over to the exterior of a trivial knot.

Proposition 16 (Bing-Martin). — Consider a solid torus U in S3 and a knot
exterior W contained in the interior of U .

Then there exists a 3-ball B in the interior of U such that W ⊂
◦
B.

Proof. — Since W is the exterior of a non-trivial knot, the inclusion of ∂W in
W induces an injection of π1(∂W ) ≈ Z2 into π1(W ), by Dehn’s lemma (the proof
of Bing and Martin does not use Dehn’s lemma). Since

Z ≈ π1(U) ≈ π1(U r
◦
W ) ∗π1(∂W ) π1(W ),

by the Seifert–van Kampen theorem, this implies that π1(∂W ) does not inject in
π1(U r

◦
W ). Hence, by Dehn’s lemma, there exists a compressing disc D for ∂W

in U r
◦
W . The union of W and of a thickening of this disc D is the 3-ball we are

looking for. �

Appendix B. Seifert foliations and pseudo-foliations

B.1. Seifert foliations. In this paper, a foliation always means a foliation by
circles of a 3-manifold M , namely a partition of M in circles with the usual
regularity hypothesis [13]. A foliation is oriented if all its leaves are coherently
oriented.

For example, fixed-point free actions of the rotation group SO(2) on 3-manifold
provide oriented foliations (see Proposition 17).

Standard actions of SO(2) on the solid torus provide important examples called
standard foliated solid tori. More precisely (we follow Page 299 of [25]),
parametrise the solid torus S1×D2 by (eiψ, ρeiθ), with 0 6 ρ 6 1 and 0 6 ψ, θ < 2π.
Given two coprime integers µ, ν with 0 6 ν 6 µ, the corresponding standard lin-
ear action of SO(2) = {z ∈ C | |z| = 1} on the solid torus is defined by

SO(2)× S1 ×D2 −→ S1 ×D2, (z, eiψ, ρeiθ) 7−→ (zµeiψ, zνρeiθ).
This action is always effective4. It is free if and only if µ = 1 (this implies ν = 0 or
ν = 1); in this case, the orbits are fibers of a product fibration S1 ×D2 −→ D2. If
µ > 1 (this implies 1 6 ν 6 µ− 1), the action is free on the complement of the core
of equation ρ = 0; this core is the exceptional orbit, and the other orbits are the
regular ones.

For µ = 0 and ν = 1, the same formula defines an action with regular orbits in
meridian discs, and with the core as fixed point set. See Subsection B.2 below.

A Seifert foliation is a circle foliation such that each leaf has a neighbourhood
that is a union of leaves and that is isomorphic to a standard foliated solid torus.
Each neighbourhood isomorphic to a standard foliated solid torus with µ > 2
contains an exceptional leaf, and all other leaves are regular leaves. Many
authors use “Seifert fibration” for our “Seifert foliation”, but our terminology is
motivated by the fact that these in general are not circle bundles, and because
“fibration” is already used in many other situations. A Seifert manifold is a
manifod which admits a Seifert foliation.

4Recall that an action of a group G on a set X is effective (or faithful) if, for any g ∈ G,
g 6= e, there exists x ∈ X with gx 6= x.
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LetM be a 3-manifold given with a Seifert foliation. Let B be the corresponding
space of leaves, viewed here as a surface, possibly with boundary, possibly non-
orientable (we do not view B as an orbifold), and let p : M −→ B denote the
quotient map. Since M is orientable, B is orientable if and only if the Seifert
foliation is orientable. We mark the points in B which correspond to exceptional
leaves in M and we denote by B̌ the surface obtained from B by removing disjoint
small discs around the marked points. It is standard that B, with appropriate
decorations, provides a complete description of M and its Seifert foliation (see e.g.
Theorem 2.4 in [3]).

The following proposition is not deep, but useful. It shows an equivalence be-
tween Seifert foliations and leaves on the one hand, and fixed point free SO(2)-
actions and orbits on the other hand.

Proposition 17. — The leaves of an oriented Seifert foliation on a 3-manifold
M are the orbits of a fixed point free action of SO(2) on M , and conversely.

Proof. — Any fixed point free SO(2)-action gives rise to an oriented Seifert fo-
liation; this is an immediate consequence of the existence of a slice for the action
(see [23], or the middle of Page 304 in [25]).

For the converse implication, we can quote [26] or [25], who prove that any Seifert
data can be realised by a SO(2)-action. Alternatively, see [10], Page 80, for a more
direct approach. �

The next theorem, from [10], is much deeper than Proposition 17. It is remark-
able enough to be stated here, even if we do not use it elsewhere in this paper.
(Recall that our 3-manifolds are compact, connected, and orientable.)

Theorem 18 (Epstein). — The leaves of an oriented circle foliation on a 3-
manifold M are the orbits of a fixed point free action of SO(2) on M .

The following result is due to Waldhausen. For the first claim, see e.g. Lemma
VI.7 in [17] or Proposition 1.12 in [14]. For the second claim, see Corollary 3.2 [29].

Proposition 19. — A Seifert manifold is either irreducible, or S1 ×S2, or the
connected sum of two projective spaces.

In particular, a Seifert manifold with boundary is irreducible.
Hence, if M is a Seifert manifold with boundary, either ∂M is incompressible or

M is a solid torus.

Finally, let us quote a proposition which shows that there are plenty of incom-
pressible annuli and tori in Seifert manifolds. For the proof, see Page 127 in [19].

Proposition 20. — Let M be a Seifert manifold, and let p : M −→ B denote
the projection on its space of leaves. Let α be a properly embedded arc in B which
avoids the marked points; set A = p−1(α). Let γ be a simple closed curve in B
which avoids the marked points and which is orientation-preserving; set T = p−1(γ).
Then :

(i) A is a properly embedded annulus in M which is incompressible.
(ii) A is boundary parallel in M if and only if α is boundary parallel in B.
(iii) T is a properly embedded torus in M ; it is compressible in M if and only

if γ bounds a disc in B which contains at most one marked point.

These are examples of so-called vertical annuli and tori in Seifert manifolds.
For a precise description of annuli and tori in 3-manifolds, see Theorems 3.9 and
3.5 in [3], respectively.

B.2. Seifert pseudo-foliations, general facts. Consider the standard solid torus
U := S1×D2 and its core C = {0}×S1. The standard Seifert pseudo-foliation
of U is the partition F0 of U in the points of the circle C and the circles γρ × {z},
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where γρ is a circle of radius ρ > 0 in D2 centred around the origin and z is a point
of S1; we call C the pseudo-leaf and the other circles the leaves of F0.

More generally, let us define a Seifert pseudo-foliation of a 3-manifoldM to be
a partition ofM in circles and points, which restricts to a Seifert foliation outside a
finite disjoint union of solid tori V1, . . . , Vr, and to standard Seifert pseudo-foliations
inside these solid tori. Pseudoleaves and leaves of such a pseudo-foliation are defined
naturally; leaves can be either regular or exceptional, as in Seifert foliations. We
insist that we assume r > 1; in other words:

it is part of the definition of a Seifert pseudo-foliation
that it contains at least one pseudo-leaf.

By definition, a Seifert pseudo-foliation ofM as above restricts to a Seifert foliation
on M r (

◦
V1 t · · · t

◦
Vr). From now on, we will write pseudo-foliation instead of

Seifert pseudo-foliation.
For example, and as a consequence of the classification of circle foliations on

the 2-torus, every circle foliation F∂ on the boundary of a solid torus extends to a
Seifert foliation or a pseudo-foliation F on the solid torus itself. More precisely, F
is a pseudo-foliation if the leaves of F∂ are meridians, and F is a Seifert foliation
in all the other cases. Hence, if V is a submanifold of a closed manifold W (e.g. of
S3) with W r V a union of solid torus, any Seifert foliation or pseudo-foliation on
V extends to a foliation or a pseudo-foliation on W .

A Seifert pseudo-foliation is oriented if its restriction to the complement of the
pseudo-leaves is oriented.

Proposition 17 has an analogue for pseudo-foliations:

Proposition 21. — The leaves of an oriented pseudo-foliation on a 3-manifold
M are the orbits of an effective action of SO(2) on M with fixed points, and
conversely.

Proof. — That any effective action of SO(2) with fixed points gives rise to a
pseudo-foliation is again a straightforward consequence of the slice theorem (see
the proof of Proposition 17). For the converse, we believe that Epstein’s proof
carries over. Alternatively, see Theorem 1 in [25] and Corollary 2b, with t = 0, in
[26]. �

The space of orbits B of a pseudo-foliation of a manifold M is again a surface
(possibly with boundary, possibly non orientable); we use also “space of leaves”
instead of “space of orbits”, even though this is abusive, since the restriction of
the projection M −→ B to each pseudo-leaf is a bijection. There are again marked
points in B, corresponding to exceptional leaves inM and we define B̌ as above; also,
it is again true (as in B.1) that B together with appropriate decorations provides a
complete description of M and its pseudo-foliation. Here are two basic examples.

(i) For the standard pseudo-foliation of the solid torus U, the space of orbits
is an annulus. One component of its boundary is the space of orbits of the
2-torus ∂U, the other component corresponds to the pseudo-leaf, which is
the core of U, and there are no marked points. The canonical projection
p : U −→ B restricts to a bijection from the core of U onto one component
of the boundary of the annulus B.

Conversely, let M be a manifold with a pseudo-foliation such that the
corresponding space B is an annulus with one boundary component being
the space of orbits of ∂M , and without marked points; then M is a solid
torus with the standard pseudo-foliation.

(ii) On S3 = R3 ∪ {∞}, the standard action of SO(2) by rotations around an
axis defines a pseudo-foliation with one pseudo-leaf. The space of orbits B
is the 2-disc D2, and the boundary of the disc represents the fixed points
of the action. Conversely, if a pseudo-foliation on M gives rise to such
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a 2-disc, then M is the 3-sphere, the leaves are the circular orbits of the
standard action of SO(2), and the pseudo-leaf is the circle of fixed points.

To simplify the discussion, we assume from now on that M has no boundary. In
particular, boundary components of B are in bijection with pseudo-leaves of M .

B.3. Seifert pseudo-foliations on closed 3-manifolds. To emphasise the dif-
ference between foliations and pseudo-foliations, we state as a lemma an observation
due to Waldhausen (see Page 90 of [34], the discussion of Condition 6.2.4).

Lemma 22 (Waldhausen). — Let F be a pseudo-foliation on a closed 3-mani-
fold M , let p : M −→ B be the projection on the space of orbits, and let β be an
arc properly embedded in B which avoids the marked points.

Then p−1(β) is a 2-sphere embedded in M .
Proof. — Remove a little interval at each extremity of β. Let β∗ denote the

closure of the complement of these intervals. Then p−1(β∗) is an annulus. The
inverse image of a little interval is a disc, indeed a meridian disc in the tubular
neighbourhood of the pseudo-leaf. Thus p−1(β) is an annulus with a disc glued on
each of its boundary components; hence p−1(β) is a 2-sphere. �

Easy and standard topological considerations show that Lemma 22 has the fol-
lowing consequences.

Proposition 23. — Let the notation be as in the previous lemma.
(i) The sphere p−1(β) separatesM if and only if β separates B, thus producing

a connected sum decomposition of M .
(ii) If β does not separate B, then the sphere p−1(β) produces a factor S1×S2

in M .
(iii) If B is a disc with one marked point, then M is a lens space.
(iv) The sphere p−1(β) bounds a 3-ball if and only if β is boundary parallel in

B̌.
Comments. — Claim (i) is straightforward. Claim (ii) holds by classical argu-

ments (Lemma 3.8, Page 27, in [16]). For (iii), see Page 301 of [25]. Claim (iv) is
a consequence of the previous ones. �

The following result can either be easily deduced from the considerations above,
or recovered as a special case of a result of Orlik and Raymond, written in terms
of SO(2)-actions with fixed points (Page 299 of [25]).

Proposition 24. — Let M be a closed orientable manifold that admits an
orientable pseudo-foliation. Then M is either a 3-sphere, or S1 × S2, or a lens
space, or a connected sum of these.

Corollary 25. — LetM be a homology 3-sphere; assume thatM is furnished
with a pseudo-foliation. Then M = S3 is the standard sphere, and the pseudo-
foliation, up to diffeomorphism, is given by the standard action of the rotation
group SO(2) around an axis of the sphere S3 = R3 ∪ {∞}, as in Example (ii) of
the end of B.2. In particular, the pseudo-foliation has exactly one pseudo-leaf.

Proof. — Let F be a pseudo-foliation on M ; by our next Lemma 26, F is ori-
entable.

If the space of leaves B of F either had at least two boundary components or
had genus > 1, there would exist in B an arc β as in Lemma 22, and Proposition
23.ii would imply that Z = H1(S1 × S2,Z) is a direct factor of H1(M,Z); this is
impossible because M is a homology sphere. Hence B is a disc.

If this disc had just one marked point, M would be a lens space by Proposition
23.iii, and this is again impossible since M is a homology sphere. If this disc had
two or more marked points, M would be a connected sum of lens spaces, and this
is equally impossible. Hence B is a disc without marked points.

This implies that M = S3, and that SO(2) acts as stated in the corollary. �
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A Seifert foliation (or pseudo-foliation!) on the 3-sphere is necessarily orientable.
More generally:

Lemma 26. — Let Z be a 3-manifold embedded in a homology 3-sphere M . If
Z has a Seifert foliation with space of leaves B, then B is orientable.

Proof. — Let us first recall that, in a homology 3-sphere M , any embedded
surface S without boundary is orientable. Indeed, using homology and cohomology
with coefficients the field F2 with two elements (so that H2(S) ≈ F2 for any closed
surface S, orientable or not), Alexander duality

H2(S) ≈ H0(M r S)/H0(point) ≈ F2

shows that S is two-sided, and therefore orientable.
To prove the lemma, it is enough to show that any simple closed curve γ in B

which avoids the marked points is two-sided. Given such a γ, consider the surface
S := p−1(γ). Since S is orientable in an orientable manifold, S is two-sided; it
follows that γ is two-sided.

[Note that, since S is orientable and is a circle bundle over a circle, S is a
torus]. �

We end this subsection by translating Propositions 19 and 24 in terms of SO(2)-
actions:

Corollary 27. — Let M be a closed orientable 3-manifold.
(i) If M admits a fixed-point free SO(2)-action, then M is either irreducible,

or S1 × S2, or the connected sum of two projective spaces.
(ii) If M admits a non-trivial SO(2)-action with fixed points, then M is S3, or

S1 × S2, or a lens space, or a connected sum of these.
(iii) IfM admits SO(2)-actions of the two kinds, with fixed points and without,

then M is S3, or S1 × S2, or a lens space.

Thus, the list of SO(2)-actions with fixed points if far more restricted than the
list of actions without fixed points.

It is a natural temptation to hope for a general theory which would encompass
Seifert foliations and pseudo-foliations; but we should not give in this, as Wald-
hausen has warned us (see the Bemerkung on Page 91 of [34]). Indeed, Seifert
manifolds are irreducible (up to a small number of exceptions, see Proposition 19);
irreducibility is a crucial ingredient of their theory and classification. On the con-
trary, “most” pseudo-foliated manifolds are reducible (see Proposition 24); as a
consequence, this “general theory” would be worthless.

B.4. Seifert manifolds embedded in S3. We begin by stating a standard char-
acterization of torus knots, used above in Subsection 4.2.

Proposition 28 (Seifert foliations on knot exteriors). — A knot K such that
EK carries a Seifert foliation is a torus knot or the trivial knot.

Proof. — There are two cases to distinguish.
(i) Suppose that the foliation extends to VK , providing a Seifert foliation of

S3. By Seifert’s classification of the Seifert foliations on the 3-sphere [30],
K is either a torus knot or the trivial knot.

(ii) Suppose that the foliation, say F , does not extend to VK . Then the induced
foliation on TK is necessarily a foliation by meridians, so that F extends to
a pseudo-foliation F ′ on S3. By Corollary 25, F ′ has a unique pseudo-leaf,
which is K and which is a trivial knot. �

Proposition 28 suggests to distinguish two types of links, as follows (it is a result
from [7]).
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Proposition 29 (Seifert foliations on link exteriors). — Let L = L1 t · · · t Lr
be a link in S3, with r > 2 components. Assume that EL admits a Seifert foliation
F .

(i) If F extends to a foliation of the 3-sphere, then L is obtained by selecting r
leaves of a Seifert foliation of S3. Links of this type are called torus links.

(ii) If F does not extend as a foliation, then it extends to a pseudo-foliation of
the 3-sphere, necessarily with a unique pseudo-leaf which is a component
of L, say L1. The other components L2, . . . , Lr of L are meridians around
the pseudo-leaf L1.

Proof. — This is a straightforward consequence of Corollary 25. �

Let us finally define terms which enter our Corollary 4. A link L is unsplittable
if, for every 2-sphere S in S3 disjoint from L, all components of the link L are in
the same connected component of S3 rS. A torus sublink is a part Li1 t· · ·tLis
of a link L1t· · ·tLr, for some subsequence of indices with 1 6 i1 < · · · < is 6 r; it
is itself a torus link. A connected sum operation on two links L = L1 t · · · tLr
and L′ = L′1 t · · · tL′s consists in connecting just one component Lj of L with one
component L′k of L′.

B.5. Composite knots à la Schubert. We revisit Schubert’s description of com-
posite knots [28] in terms of pseudo-foliations and the re-embedding construction.
Consider a solid torus U embedded in an unknotted way in S3, an integer r > 2,
and r disjoint meridian discs D1, . . . , Dr in U; thicken these discs a little bit; the
thickened discs separate U in r closed 3-balls B1, . . . , Br.

Let K be a knot embedded in the interior of U. We assume that K intersects
each disc Di transversely in exactly one point. Hence K runs across each thickened
disc in a little unknotted arc, and Ai := K ∩Bi is a properly embedded arc in Bi,
for i = 1, . . . , r. We assume moreover that the arc Ai is knotted in Bi. Denote by
Ki the knot obtained from Ai by adding an unknotted arc outside Bi. Then, by
construction-definition, the knot K is the connected sum K1] · · · ]Kr of the knots
K1, . . . ,Kr.

Denote by VK a thin tubular neighbourhood of K in U, and set TK = ∂VK .
Consider a little collar of TK inside VK , denote by T ′K the component of its bound-
ary which is inside VK , and by V −K the smaller tubular neighbourhood of K with
boundary T ′K .

For i ∈ {1, . . . , r}, let Wi be the closure of Bi r (VK ∩ Bi). Thus Wi is a cube
with a knotted hole; this hole is indeed knotted, since Ai is knotted by hypothesis.
Note that Wi is the exterior of the knot Ki defined above. Set Ti := ∂Wi, which is
a 2-torus.

On the one hand, define
Σ := S3 r

(
V −K tW1 t . . . tWr

)
(the t indicate disjoint unions), and observe that ∂Σ = T ′K t T1 t · · · t Tr. On the
other hand, consider the link L = L0tL1t· · ·tLr in S3 obtained from the standard
pseudo-foliation by selecting the pseudo-leaf L0 and m regular leaves L1, . . . , Lr.
The Bonahon-Siebenmann re-embedding Σ̂ of Σ in S3 is obtained by replacing each
cube with a knotted hole Wi by a cube with an unknotted hole, namely by a
solid torus, say Ui. Thus Σ̂ is the exterior of the link L defined just above.

From that description, we see that the link exterior Σ̂ is diffeomorphic to a
product F × S1, where F is a planar surface with r + 1 boundary components
∂0F, . . . , ∂rF . The product ∂iF ×S1 is the boundary of a little tubular neighbour-
hood of Li. Hence Σ is also Seifert foliated and diffeomorphic to F ×S1. Since the
foliation on Σ̂ does not extend to a tubular neigbourhood of L0 = K̂, the foliation
Σ does not extend to this neighbourhood of K. In both foliations (of Σ and of Σ̂),
the leaves on the boundary of a tubular neighbourhood are meridians.



60 P. de la Harpe & C. Weber

To obtain the composite knot K from the link L, we have just to replace each
cube with an unknotted hole Ui by Wi. After this replacement, the link component
L0 = K̂ is changed into K.

Remark (On the necessity of the condition r > 2). — In the connected sum
point of view, we wish the sum to be non-trivial, namely involving at least two
non-trivial factors. In the JSJ point of view, if the Seifert foliation on V does not
extend to VK and if r = 1, then the JSJ torus T1 is boundary parallel (parallel to
TK), and this contradicts the JSJ conditions.

Appendix C. The annulus theorem and the JSJ decomposition

C.1. The annulus theorem. A first major ingredient of our proof of Theorem 3
is the annulus theorem, announced together with the torus theorem by Waldhausen
[36]; a detailed proof of the annulus theorem was given in [8]. Before stating the
theorem, we recall some terminology.

We denote by A the standard annulus S1 × [0, 1], and by ∂0A = S1 × {0},
∂1A = S1 × {1} the two components of its boundary ∂A. Recall that spanning
arcs in A have been defined in A.1. A proper map from the standard annulus
to a 3-manifold M , say ϕ : (A, ∂A) −→ (M,∂M), is essential if the induced
homomorphism π1(A) −→ π1(M) is injective and if, for a spanning arc α in A, the
restriction ϕ|α is not homotopic rel its boundary to an arc in ∂M .

Theorem 30 (Annulus Theorem). — Let M be a compact orientable 3-mani-
fold and let ϕ : A −→M be an essential map from the annulus to M . Then there
exists an essential embedding ψ : A −→ M such that, for i = 0 and i = 1, the
image ψ(∂iA) lies in the same connected component of ∂M as ϕ(∂iA).

On the proof. — The last part of our formulation, from “such that”, is not
explicit in Theorem 3 of [8], but it follows from their proof. �

C.2. The JSJ decomposition. The second major ingredient in our proof of The-
orem 3 is the JSJ decomposition of 3-manifolds, as stated below. Traditionally,
JSJ refers explicitely to Jaco-Shalen-Johannson, and also implicitely to Waldhausen
[36].

A 3-manifoldM is atoroidal (other authors use “simple”) if any incompressible
torus in M is boundary parallel (as defined in A.1). Recall that M∗T denotes the
manifold obtained by splitting M along T .

Theorem 31 (JSJ Decomposition). — Let M be an irreducible 3-manifold.
In the interior of M , there exists a family T = {T1, . . . , Tr} of disjoint tori

that are incompressible and not parallel to components of ∂M , with the following
properties:

(i) each component of M∗T is either a Seifert manifold or atoroidal;
(ii) the family T is minimal among those that have Property (i).

Moreover, such a family T is unique up to ambient isotopy.

Proof. — The reference we like best is [3, Theorem 3.4]. See also (among others)
Theorem 1.9 in [14], Page 169 of [19], and the comments in the much shorter [18].

We insist that, in these references, M is allowed to have a boundary. See e.g.
[14, Page 1] and, more implicitely, [19, Page 1]. �

The connected components of M∗T are the pieces of the JSJ-decomposition,
and T is the characteristic torus family. Observe that, by Condition (ii), no
piece can be a thickened torus, unless M itself is a thickened torus (in which case
T is the empty family, and M has a unique component, itself).

Remarks (Comments on the statement of Theorem 31). —
(i) By Proposition 11, each piece is irreducible.
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(ii) A 3-manifold can be both atoroidal and Seifert; examples include the solid
torus, the thickened torus, exteriors of torus knots, and some manifolds
without boundary. The complete list, which is rather short, can be found
in [19] (Page 129, and Lemma IV.2.G). Thus, the “or” in (i) of Theorem
31 is not exclusive.

(iii) Let V be a piece. Since the Tj ’s are incompressible, the inclusion V ⊂ M
induces an injection of π1(V ) into π1(M). This follows from an appropriate
version of the Seifert–van Kampen theorem.

C.3. Beyond Theorems 30, 31, and 3. The Cannon-Feustel theorem 30 can
be thought of as the original annulus theorem. There exists a stronger result, due
to Johannson (the “enclosing theorem” of [20]) and Jaco-Shalen (the “mapping
theorem” of [19], see their remark in the middle of Page 56); see also Page 173
of [17]. This requires more general JSJ-like decompositions, with a characteristic
surface A (rather than T ) composed of annuli and tori, and with pieces which can
be atoroidal, or Seifert manifolds or I-bundles (I is the unit interval). The existence
and unicity of such an A is closely related to the strong result just alluded to, and to
a general homotopy annulus theorem for essential mapping from a Seifert manifold
to a 3-manifold. For a statement which is both precise and readable, we refer to
Theorem 3.8 in [3]. Clearly, such strong theorems imply easily our Theorem 3.

To give some idea of the homotopy annulus theorem, let us state it in the par-
ticular case of a manifold with boundary a union of tori, a case for which no annuli
are needed in the JSJ-like decomposition (see [24], Page 38). Note that Theorem
32 is not used in this paper.

Homotopy Annulus Theorem 32 (particular case). — Consider the situa-
tion of Theorem 31, and assume moreover that ∂M is a non-empty union of in-
compressible tori. Assume that there exists an essential map (not necessariliy an
embedding) ϕ : (A, ∂A) −→ (M,∂M) of the annulus into M .

Then there exists a homotopy
ϕt : (A, ∂A) −→ (M,∂M), 0 6 t 6 1,

such that ϕ0 = ϕ and ϕ1 is an essential map (not necessarily an embedding) into
a Seifert piece of the JSJ decomposition (in particular, this decomposition has at
least one Seifert piece).

Moreover, in that Seifert piece, there exist embedded essential annuli (vertical
ones).

We cannot expect that ϕ1 is homotopic to an embedding. But, in a Seifert com-
ponent, there are plenty of incompressible vertical annuli. Hence we can strenghten
the conclusion of the annulus theorem, and conclude to the existence of an essential
embedding with vertical images inside some Seifert component.

Appendix D. On the terminology and the literature

D.1. On essential annuli. Embedded annuli and tori play the key role in our
arguments. Since the literature concerning the related terminology is in our opinion
rather messy, we review the following definitions.

Let M be a bounded 3-manifold and A an annulus. A mapping
f : (A, ∂A) −→ (M,∂M)

is W-essential, or essential in the sense of Page 24 of [37], if the induced mor-
phism of groups π1(A) −→ π1(M) and the induced morphism of pointed sets
π1(A, ∂A) −→ π1(M,∂M) are both injective (f need not be an embedding). Ob-
serve that π1(A, ∂A) has precisely two elements, the base point and the non-trivial
element represented by a spanning arc; it follows that this definition of “essential”
is equivalent to that of [32] (Page 206) or that of [8] (Page 220).
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A mapping f : (A, ∂A) −→ (M,∂M) is non-degenerate if the homomorphism
π1(A) −→ π1(M) is injective and if f is not homotopic (as a map of pairs) to a
map g : (A, ∂A) −→ (M,∂M) with g(A) ⊂ ∂M (we follow [19], Pages 121–122). If
M is irreducible and if ∂M is incompressible, Lemma IV.1.3 of [19] shows that f
is non-degenerate in this sense if and only if f is W -essential.

It seems that the terminology with “essential” becomes standard; see for example
[3], just before his Theorem 2.14.

Thus, for an annulus properly embedded and incompressible in an irreducible
manifold M with ∂M a union of tori, we have a priori several notions:

(i) it can be ∂-incompressible, or equivalently not boundary parallel (see
Proposition 12),

(ii) it can be W-essential, or equivalently non-degenerate.
In fact, these four notions are equivalent.

Indeed, on the one hand, “boundary parallel” clearly implies “degenerate”. On
the other hand, Lemma 5.3 of [35] contains more than is necessary to show that
“degenerate” implies “boundary parallel”. Here is a weakened version of this Lemma
5.3, with Waldhausen’s notation.

Lemma 33. — LetM be an irreducible 3-manifold. Let G be an incompressible
boundary component ofM , and let F be an incompressible surface properly embed-
ded inM such that ∂F ⊂ G. Suppose that there exists a homotopyH : F×I −→M
such that H(F × {0}) = F and H(∂(F × I) r (F × {0})) ⊂ G.

Then F is boundary parallel, and more precisely is parallel to a surface contained
in G.

D.2. On the terminology of Raymond and Orlik. For the reader who wishes
to read [26] and [25], we offer the following dictionnary.

◦ M is a compact and connected 3-manifold on which SO(2) acts. For these
authors, M can be non-orientable; but we assume in this paper that M is
orientable, so that their symbol ε takes always the value o (small “o”).

◦ M∗ is the orbit space (our B); in our case, M∗ is a compact orientable
surface, and g > 0 is its genus.

◦ F is the fixed point set and F ∗ is its homeomorphic image in M∗; the
number of connected components of F is denoted by h in [26] and by ~ in
[25].

◦ E denotes the set of exceptional orbits; its cardinal can be any non-negative
integer. SE is the set of special exceptional orbits; since M is orientable
here, SE = ∅, so that its cardinal t is always equal to 0.

Hence, in our case, Mε,s,~,t is always Mo,g,~,0.
We do not need to comment on the Seifert invariants, namely on b, which is a

variant of the Euler class (caution: there is a sign problem there), and on (αj , βj),
which are the usual Seifert invariants.

The projective plane is denoted by P , the Klein bottle byK. The “non-orientable
handle” N , which is the non-trivial S2-bundle over S1, does not play any role for
us.

D.3. Concerning hyperbolic geometry. Part of the Thurston revolution con-
sists in recognizing the importance of hyperbolic geometry in the subject of 3-
manifolds. For example:

Theorem 34. — Let M be an irreducible 3-manifold, and T a characteristic
torus family, as in Theorem 31. Suppose moreover that ∂M 6= ∅.

Then each connected component of M∗T is a Seifert manifold or a hyperbolic
manifold.

In other words, each atoroidal component of M∗T is Seifert or hyperbolic.
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Theorem 34 is a consequence of the hyperbolization theorem for Haken manifolds,
that was announced by Thurston during lectures at Princeton during the Spring
1977, and later precised in [33] (see in particular Theorem 2.5), where Thurston
initiated a program that was completed near the year 2000; see [2]. Note that
Theorem 34 does not cover all closed manifolds, for which the hyperbolization
theorem is due to Perelman.

Hyperbolization theorems can be used to give quick proofs of some of the results
of Section 1. Consider for example a non-trivial knot K. Assume that K is neither
a satellite knot nor a torus knot. Then EK has a hyperbolic structure [33, Corollary
2.5], and it follows that the peripheral subgroup PK is malnormal in the group GK
of K [15, Example 6].

But other cases would be less straightforward. Consider for example a Whitehead
double, say K; it is a satellite knot and is not a cable knot. By Corollary 2, PK is
malnormal inGK . But the JSJ-decomposition of EK has more than one component,
EK does not have a geometric structure, so that the few lines above are not sufficient
for a proof of Corollary 2.

We leave it to other readers or writers to discuss how the results of Section 1
follow from what we know now on the geometrization conjecture and on relatively
hyperbolic groups.
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