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EXPONENTIATIONS OVER THE QUANTUM ALGEBRA
Uy(sl2(C))

SONIA I’INNOCENTE, FRANCOISE POINT, AND CARLO TOFFALORI

Abstract. We define and compare, by model-theoretical methods, some exponentiations
over the quantum algebra Ug(sl2(C)). We discuss two cases, according to whether the
parameter ¢ is a root of unity. We show that the universal enveloping algebra of slo(C)
embeds in a non-principal ultraproduct of Ug(sl2(C)), where ¢ varies over the primitive
roots of unity.

1. INTRODUCTION

Exponentiation is a lively topic in modern model theory. It has been considered
not only in the classical frameworks of real closed fields and the field of com-
plex numbers, but also over larger settings such as Lie algebras. For instance,
Macintyre’s paper [10] develops a general picture of exponentiations over finite-
dimensional Lie algebras over both the real and the complex fields. This led in
[9] to the idea of defining exponential maps over an infinite-dimensional algebra,
namely the universal enveloping algebra U (sl2(C)) of the Lie algebra sl (C) of 2 x 2
traceless matrices with complex entries, using its irreducible finite-dimensional rep-
resentations.

This suggests to develop a similar analysis on the quantum algebra U, (sl2(C)).
We will introduce this algebra in more detail in the next Section 2. Quantum
algebras are now beginning to be intensively investigated even under the model
theoretic point of view. See for instance [3] where their simple representations are
approached under this perspective. Moreover quantum algebras occur in the work of
Boris Zilber [13] where they are associated to certain Zariski geometries. Recall that
there are one dimensional Zariski geometries which are finite coverings of algebraic
curves but not algebraic curves [4]. In [13] Zilber calls them non classical Zariski
geometries and, as said, connects them with some typical quantum algebras (when
the parameter of deformation ¢ is a root of unity). He just begins with the simplest
case of U, (sl2(C)) and builds a corresponding many-sorted structure V (U, (sla(C)))
consisting of the complex field C, a variety V' and a bundle of U,(slz(C))-modules
of fixed finite dimension (equal to the order of the root of unity) parametrized by V.
He shows that the theory of finite-dimensional U, (sl2(C))-modules is X;-categorical
and model-complete. Moreover, he shows that V (U, (sl2(C))) is a Zariski geometry
that is not definable in any algebraically closed field.

In this paper we will still consider the algebras Uy (sl2(C)) where g is arbitrary
(with only slight restrictions such as ¢®> # 1) but we will deal with exponentia-
tion. In fact, we will use the finite-dimensional representations of U, (sl2(C)) and
construct suitable exponential maps on it, following the approach of [9] for the
universal enveloping algebra U (slz(C)).

Math. classification: 03C60, 16W35, 20G42, 81R50.
Keywords: Quantum algebra, quantum plane, exponential map, ultraproduct.
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Here is the plan of the paper.

Sections 2, 3 and 4 are devoted to preliminaries on quantum algebras, exponential
rings and exponentiation for matrices. However, in order to illustrate in more detail
the remainder of the paper and our main results, let us fix right now some notation
on these topics. For every positive integer A let M) (C) be the Lie algebra of A x A
matrices with entries in the complex field. Then a matrix exponential map, taking
its values in the linear group GLy(C), can be introduced in M (C) in terms of
infinite power series, putting for every matrix A

400 An
expx(A) = Z

n!’
n=0

Coming back to Uy(sl2(C)), we will distinguish whether the parameter ¢ is a
root of unity, or not.

The latter case is treated in Sections 5 and 6 (regarding the finite-dimensional
representations of U, (sl2(C)) and exponentiations on Uy (slz(C)) respectively). It
is known that, under this assumption on ¢, all finite-dimensional representations
of Uy(sl2(C)) are semisimple, moreover the simple ones are classified in terms of
highest weight and so are very similar to those of the classical case. Consequently
various exponentiations over U,(slz(C)) can be defined by strategies very simi-
lar to the ones used in [9]. In fact, after recalling how simple finite-dimensional
Uy(sl2(C))-modules are classified, we will use that and the expy to define our ezpo-
nential maps from Uy, (sl (C)) to GLA(C) for every A and we will explore the basic
properties of these maps. After that, we will show how to embed U, (sl2(C)) into an
arbitrary non-principal ultraproduct of the M (C) with A varying (see Proposition
6.3). This will lead us to introduce another exponential map from U,(sl2(C)) to
the corresponding non-principal ultraproduct of the groups GL,(C). Again, we will
investigate the basic properties of this function (see Proposition 6.1 and Corollary
6.4).

Sections 7, 8 and 9 treat the case when ¢ is a root of unity. Again, they are
devoted first to finite-dimensional representations and then to exponentiations. We
define an exponential map from U, (sl2(C)) to certain ultrapowers of the linear group
GL(C), where ¢ is the order of the root ¢ if this order is odd or half of the order oth-
erwise (and in any case is fixed). Indeed we have to carefully choose appropriate ul-
trafilters in order first to embed U, in an ultrapower of M,(C) (see Proposition 8.2).
As before we use the characterization of the simple finite-dimensional U, (slz(C))-
modules. But this time the finite-dimensional representations of U,(slz(C)) are
not necessarily semisimple [6, Remark after Proposition 2.12] and there are further
finite-dimensional representations in addition to the highest weight ones.

Finally in the last section, again using a suitable choice of the parameters,
we approzimate the universal enveloping algebra U(slo(C)) by the quantum ones
U,(sl2(C)), where ¢ ranges over a family of primitive roots of unity of strictly in-
creasing order. Namely we show that U(sl2(C)) embeds in a certain non-principal
ultraproduct of the U, (sl2(C))’s.

We refer to [1] for basic model theory, including ultraproducts, to [11] for model
theory of modules and to [6], [7] and [8] for quantum algebras.
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2. PRELIMINARIES ON QUANTUM ALGEBRAS.

In this section, we will recall well known facts on quantum algebras over an
arbitrary field & (not necessarily the complex field) and on skew polynomial rings.
They can be found, for instance, in [6], [7] or [8].

Recall that the universal enveloping algebra U := U(slz(k)) of the 2 x 2 traceless
matrices over k can be presented as the associative algebra with three generators

0 1 0 0 10
(oo )r=(n)m=( 5)

subject to the relations
[H,X]=2X, [H, Y] =-2Y, [X,Y] = H.

Here [.,.] denotes the usual commutator.
The algebra U can also be built as an iterated skew polynomial ring. Start with
the algebra Ag = k[H] and consider
e the automorphism og of Ay acting identically on k and sending H to H + 2,
e the derivation §y = 0 on Ag.
Using them one forms the skew polynomial ring A1 := Ag[Y’; 09, do] (indeed Y-H =
(H +2)-Y). Now repeat the same construction with respect to 4; and
e the automorphism o; of Ay fixing k pointwise and sending Y to Y and H
to H — 2,
e the oi-derivation d; of A; sending H to 0 and Y to H.
Then U is isomorphic to As := A1[X; 01,01]. In fact X - Y =Y - X + H and
X H=(H-2)X.
Now let us introduce U, (sl2(k)). Recall that & is any field. Let ¢ be an element
of k such that ¢ # 0 and ¢*> # 1. Then, the quantum algebra U, := U,(sla(k)) is
the associative k-algebra with generators K, K~', E, F and relations:

K—-K!

KK'=K'K=1,KEK'"=¢E KFK'!=q¢?F [E,F]= -
q9—q
(2.1)

Note that these relations (2.1) imply by induction that, for every choice of integers
s, t =2,
quft _ Kflqtfl

E,FY = [t|Ft 1. , 2.2
[E,F'] = [i] R (2.2)
K s—1 _ K—l 1-s
[E%,F) = [s]E*~! . 24 — ¢ (2.3)
Here, for every integer z the g-number of z, denoted [z], is defined as
¢ —-q-
z] = .
8 q—qt

Alternatively the algebra U, can be represented, just as U, as an iterated skew
polynomial ring [7, Proposition VI.1.4]. Namely, let Ag := k[K, K 1] with
o the automorphism ag fixing k pointwise and sending K to ¢’ K,
e a zero derivation dg

and form the corresponding Ore extension A; := Ag[F'; ag,dg] (observe F' - K =
¢*’K - F). Then



52 Sonia L’Innocente, Frangoise Point & Carlo Toffalori

e extend aq to an automorphism «; of A; by putting
a(F-K')=q¢ " F - K,
e [7, Lemma VI.1.5] define an «;-derivation §; on A; by
K- K1
61(F) = — 1 and 51(K) =0.
qa—9q

Finally, let Ay := A1[E; a1, ] be the corresponding Ore extension. This is U, up
to isomorphism. In fact with the above notations we have:

LEMMA 2.1. — [7, chapter VI.1] U, is a right (and left) Noetherian domain and
the set {E*- K'-FJ : i,j €N, | € Z} is a basis of U, over k.

Proof. — One way to prove the first part of the statement is to show that U,
is isomorphic to Ay and to use properties of iterated skew polynomial rings (see
[2] and [7, proof of Proposition VI.1.4]). See also [6, Theorem 1.5 and Proposition
1.8]. O

Moreover, one can put on the algebra U, the following grading: deg(E) = 1,
deg(F) = —1 and deg(K) = deg(K~1) = 0.

For every integer m, let U, ,,, be the k-vector subspace of U, generated by

(B K' Fl:i—j=m,i,jeN, e}

It comes out that, as a vector space over k, U, decomposes as D, o5 Ugm (see [6,
1.9]). For uw € Uy ,,, m € Z, we have (see again [6, 1.9]):

K-u-K1=¢mu, (2.4)
whence the subring U, o is equal to the centralizer of K, if ¢ is not a root of unity.
In the general case, for ¢ arbitrary, put

¢ 'K +gK™! gK + ¢ 'K~!
Cy: (=g 12 +FE-F=F -E+ A= 12
Then Cj is the so called quantized Casimir element of U,. One easily checks that
C, commutes with K; further, using relations (1), one shows that Cj; belongs to
the center of U, [7, Proposition VI.4.1].

The following lemma is certainly well-known, but we could not find a precise

reference (and we use it as stated in the next sections).

(2.5)

LEMMA 2.2. — For any q, U, is equal to the polynomial ring k[Cy, K, K]
and any element of Uy ,, can be written, for some suitable u € Uy o as E™ - u when
m >0, and as u - F~™ when m < 0.

Proof. — Clearly K, K~ and E-F, hence C, are in U, o. Thus k[Cy, K, K~'] C
Ug,0. For the opposite inclusion, first observe that, by definition of Cy,
E-Fek[C, K, K.

This is trivially true also of K and K ~!. Therefore, in order to conclude our proof,
it suffices to show that, if u is any element in k[Cy, K, K], then E-u- F is also in
k[C,, K, K~']. Note that u can be represented as K¢ - p[C,, K| for some suitable
pla1, x2] € k1, z2] and d € N. As Cy is in the center of U,, we can assume u = K"
or u = K" for some n € N. By relation (2.4),

E-K'".F=E.-K"-F-K".K'=q ?"E.-F.K"
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and similarly
E- K" F=K".K'".E.-K" F=¢"K"-E-F.

Thus in both cases F-u- F € k[Cy, K, K™1].

Moreover for every u € Uy, there exist v/, v” € Uy such that E-u = - E
and F-u=u"-F. O

To conclude this section let us state some facts about the center of Uy, just to
say that, if ¢ is not a root of unity, then it has dimension 1 over k£ and is generated
by C, (see [6, Proposition 2.18] or [7, Theorem VI1.4.8]) while, if ¢ is a primitive ¢¢"
root of unity for some positive integer ¢, then it is generated by E*, F¢, K¢ K~¢
and Cy [6, Proposition 2.20].

3. EXPONENTIAL RINGS AND ALGEBRAS.

We recall here the notions of exponential ring and exponential algebra [9, Defi-
nition 4.1]. Let us set up the various languages we will need.

e First, £:= {+,—,-,0,1} = the language of (associative) rings (with 1).

e Secondly the language £, of groups.

e For the language of algebras over a field k, or more generally over a com-
mutative ring, we choose the expansion £4;4 of £, which is a two-sorted
language with a sort for a ring k, a sort for an (associative) algebra A and
a scalar multiplication map from A x k to A (both A and k are viewed as
structures of £).

Now let us consider a two-sorted structure (R,G, EXP) where R is an L-
structure, G is a Lg-structure and EXP a map from R to G. The corresponding
language, extending £ U L, by a function symbol from the ring sort to the group
sort for EX P, will be denoted by Lgxp.

DEFINITION 3.1. — We will say that (R, G, EX P) is an exponential ring if R is
an associative ring with 1, G is a (multiplicative) group and EXP : R — G satisfies
the following axioms:

(1) EXP(0) = 1¢g (the identity element in the group G),

(2) Vx € R, EXP(z) - EXP(—x) = lg,

(3) Ve, ye Rwithz-y=y -z, EXP(x +y) = EXP(z)- EXP(y)
(let us denote here in the same way, by the symbol -, the multiplication operations
of R and G).

When dealing with (exponential) k-algebras, we will use a language Laig pxp
extending L4;4 U Ly just as Lgx p did before with respect to £ and L,.

DEFINITION 3.2. — An L4 pxp-structure (R, k,G, EXP) is an exponential
k-algebra if
(1) the reduct (R, G, EX P) is an exponential ring,
(2) the reduct (R, k) is a k-algebra,
(3) Vei, ca €k, Vz € R, EXP(c1z) - EXP(cox) = EXP((¢1 + ¢2)x)
(where again - denotes at the same time all the various multiplications involved).

Finally, for every ring R, let us denote by Lp the language of right R-modules,
as described, for instance, in [11, page 3]. As said we refer to this book even for the
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basic model theory of modules, in particular for the definition of pp-formula (see
[11, 2.1]).

Note that for the language of k-algebras, we could have chosen the one-sorted
language Ly, of k-modules instead of the two-sorted language £ 4;4; this could make
a difference for instance when dealing with decidability issues.

4. EXPONENTIATIONS AND MATRICES.

For A a positive integer, let M (C) be the ring of A x A-matrices with coefficients
in the complex field C. It can be endowed with the Hermitian sesquilinear form
(v, "), defined by

(AB) = te(B - A) = 3 AG.j)- Bli,j)
1<, <A

for all A, B € M, (C) (where tr(-) denotes the trace, (-)* the conjugate of transpose
and A(i, ), B(i,j) the (i,7)-th entries of A, B respectively).

Let || - || be the norm induced by this form (usually called the Frobenius norm),
hence for every A, we have ||A||? := (A, A).

For every A, let expy be the matrix exponential map from the algebra of matrices
M (C) to the group of invertible matrices GLy(C), which sends any A € M, (C) to
the matrix exponential exp, (A4), defined as the power series

o0 An

expy(A) = ZF' (4.1)
n=0

Thus, if A = 1, that is, A is a scalar a of C, then exp;(A) = e® is the ordinary

exponential of the element a.

Using the terminology introduced in the previous section,
(Mx(C),C,GLA(C), expy)

is an exponential C-algebra (see for instance [12]). As noted in [10], it is bi-
interpretable with (C,z — e®).

It may be worth adding that a g-variant of the exponential map exp, can be
also defined as an element of the formal power series ring C[[X]] [7, page 76]. The
g-exponential is defined as the formal series

(o)

eq(X) = Z Xing?

= (n)g

where (0), = 1 and (n)}, = %. Observe that the series is well-defined
(provided that ¢ is not a root of unity). The g-exponential is an invertible series,
but in contrast with the ordinary exponential (that is, for ¢ = 1), the equality
eq(X)™! = e,(—X) fails. However, for any choice of variables X and Y such
that X - Y = ¢Y - X, the fundamental property of the exponentials e,(X +Y) =
eq(X) - e4(Y) is satisfied.

Anyway, we will work with the matrix exponential defined by (4.1) in order to
introduce, in the next sections, exponential maps over U, by using its representation
theory.

Observe that in [9] an exponential map was defined on the universal enveloping
algebra U(sly(C)) through its finite-dimensional representations. This was done
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by proving that there is an associative ring monomorphism from U(sla(C)) to
[Ty M»41(C) where V is any non-principal ultrafilter over N [9, Corollary 8.2 |.

Let us now indicate how a similar result can be obtained for the quantum algebra
U,(sl2(C)) working in the general context of Drinfeld-Jimbo algebras.

Let C[[h]] be the (topological) ring of all formal power series in the nonzero
indeterminate h and complex coefficients and let C((h)) denote its field of fractions.
Let Up,(sl2(C)) be the Drinfeld-Jimbo algebra (see [7, XVIL.4], or [8, Section 3.1.5]),
namely the C[[h]]-algebra generated by X,Y, H with

chH/2 _ o—hH/[2

[H,X]=2X, [HY]=-2Y, [X,Y]= TR ohjz
Notice that the first two relations are just the same as in U(sl2(C)).

Furthermore, there exists an isomorphism « of topological algebras, congruent
to the identity modulo h, between Uy (slo(C)) and the h-adic topological algebra
U(sl2(C))[[h]] [7, XVIIL.2, Theorem XVIII.4.1]. Now we use the one-to-one corre-
spondence between finite dimensional representations of sl (C) and representations
of Uy (sl2(C)) on CJ[[h]]-vector spaces of the form V[[h]], where V is a finite dimen-
sional C-vector space [8, Proposition 7.10] together with the embedding of U (sl3(C))
in [T, Mx41(C) [9], which we extend by linearity, working now over C[[h]].

Finally we use, as shown in [7, Proposition XVII.4.1], the embedding i of the
quantum algebra U, (sl2(C((R)))) in Up(sl2(C)) as a Hopf algebra, with

i(E) =X -e"H/2 j(F)=e M2y, i(K) = eM/2 (K1) = e hH/2,

In particular, we get an embedding of U, (sl2(C)), regardless of whether ¢ is a root
of unity, into [],, Mx11(C[[R]]).

In the next sections, according to whether ¢ is a root of unity, we will embed
U, in an ultraproduct of matrix rings over C, the sizes of the matrix rings going to
infinity when ¢ is not a root of unity, and otherwise with fixed size depending on
the order of the root of unity.

5. FINITE-DIMENSIONAL REPRESENTATIONS OF Uq, FOR g NOT A ROOT OF
UNITY.

This section deals with the finite-dimensional representations of the U,. As
explained at the beginning of Chapter 2 in [6], it is advisable to divide the analysis
according to whether ¢ is or not a root of unity. In the current section we assume
that it is not a root of unity and k is an algebraically closed field of characteristic
different from 2.

Every finite-dimensional representation of U, decomposes as a direct sum of sim-
ple Uy;-modules [6, Theorem 2.9 and Proposition 2.3]. Moreover, for every positive
integer A, there exist (up to isomorphism) exactly two simple modules of dimension
A+ 1 as k-vector spaces. They will be denoted by V. x, with e € {—1,1} (warning:
recall that their dimension over k is A + 1).
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First, let us describe Vi y; it has a basis {vg, v1,...,vx} on which the generators
E, F, K act as follows [7, Theorem VI1.3.5]:

o [)\—i—&-l]vi_l, ifi=1,...,A
E“z_{o, ifi=0,
. ) (5.1)
Fo, — [i + 1]vit1, ifi=0,...,A—1,
Yi= o, if i =\,
Kuv; = ¢* %, fori=0,...,\ (5.2)

In particular, F annihilates vg and F' the vector vy, and up to the scalar multi-
plication these are the only vectors with these properties. So, V; y is an irreducible
representation of U,. Furthermore, on V; y, the quantized Casimir element C, acts
as the scalar multiplication by %.

The other simple representation V_; ) of dimension A + 1 is obtained by com-
posing the action of U, on V; » with the automorphism o of U, determined by

o(E)=—-E, oF)=F, oK)=-K
(see [6, §5.2]); note that o maps C, to —Cy. For this reason we will denote the
module V_;  also by V7.
For every e = £1 and ¢ = 0,1, ..., A let V!/\ be the eigenspace of K with
eigenvalue eg* 2" namely {v € V_ : Kv = e¢*%v}. Thus V, \ = @O@g/\ V;/\
Furthermore, given € and A, let ©. \ denote the representation map of U, into
My41(k) (viewed as End(Ve a+1)) with respect to the basis {vg,v1,...,vx}. Then

it is easily seen that the actions of the generators E, F, K and the central element
Cy according to O ) are described by the matrices denoted respectively as

Ee)\ = @67)\(E), FE7,\ = GG)A(F), KE))\ = 667,\(K) and Cq)ey)\ = @67,\(0(1)

where
0 [N 0. 0 ) 8 8
0 0 [A-1]. 0
Ee,)\ =€ . 3 Fe,)\ = 0 [2] 0 (53)
: [1] .
0 O 0... 0 0 0 N o
KE,A = Ediag(q/\v q>‘72, sy inJr?, q7A)7

Pl g o ql—,\)
(g—q 1) (g—a)?

According to the definition at the beginning of page 82 in [3], a pp-formula ¢ (v) of
the language Ly, of modules over Uy is called uniformly bounded if and only if there
is a positive integer n(p), depending only on ¢, such that every finite-dimensional
simple representation V » of Uy has a dimension < n(y) as a vector space over k.
The next proposition shows that for any r € Uy o, the formula p(v) :=7-v =10
defining the annihilator of r is uniformly bounded.

Caer =€ diag(

PROPOSITION 5.1. — Let € = £1, A be a positive integer, r € Uy o — {0}. Then
the dimension of the kernel of O, x(r) in V¢ 5 is bounded independently of .
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Proof. — Fix e. Recall that, when A ranges over positive integers, V \ is the
direct sum of the (one dimensional) eigenspaces V', (0 < i < A) of K. We will
show that:

(*) for every A, the number of 4, 0 < ¢ < A, such that r annihilates Vel 5 has an
upper bound b only depending on r.

Suppose that this is true. Then it is easily seen that b is the bound in the
statement of the proposition.

In order to show (*), we will first show that there are only finitely many A such
that r annihilates the whole V¢ ).

Let us first represent r as K~ - p(Cy, K) for some suitable non zero polynomial
p(x1,22) € k[z1,22] and n € N. Write p(x1,z2) = Z;lzopj(xl)x%, where d is the
degree of p with respect to x,. For every j < d, let d; be the degree of p;.

Observe that, for 0 < ¢ < A,

-1 A A\—1
—n _—n(—2) 4 (€q7) + qleq —2;
rv; = € n q n(A—2i) ( ((q 1 q1()2 ) 7€q>\ 21)

whence rv; = 0 holds (equivalently, r annihilates Vg y) if and only if

q—1<€q/\) + q(eqk)_l

Vi

A—2i
p , €q =0.
N PR :
For a given j we claim that m(%) = 0 holds for at most d; values of

A

In fact p; has at most d; roots in k. So let us compute the number of (e, A) such
that

g M(eg?) +qleg®)™t _ gle @ + )
(a—a1)? (q—q 2 711
equals one of these roots. We claim that, for any given root, this number is at
most 1. We follow here the argument in [6, Lemma 2.8]. Suppose that, for some
A1 # X2 € N— {0},
q e q '

_ € _
(q—q )2 (@ + ™) = ( —1)2 (0 + ¢*q ™).

q—4q
Then ¢* +¢%¢~ ™ = ¢*2 +¢°¢~ 2. Namely, ¢ #22 (g™ —¢*2) = ¢*(¢™ —¢*?). So,
gMtr2=2 = 1. As ¢ is not a root of unity, \; + Ao = 2. Since these are strictly
positive numbers, we obtain Ay = Ay = 1, a contradiction.

This confirms the upper bound d;.

Now we can show our claim (x). In fact, for a given A, r annihilates V¢ 5 (i.e.,

all the V7)) if and only if p; (T ) — 0 for all j < d. But only finitely
many A can satisfy all these conditions — actually their number cannot exceed the
minimum of the d; (j < d). In other words, there are only finitely many A such
that r annihilates the whole V, .

So let us restrict our attention to the remaining A, those such that
(q”(qu) +q(eq*) ! £2) £0

(g—q 12 7

This polynomial (in x5) admits at most d roots in k. Fix one of them. As ¢ is

not a root of unity, given \, there is at most one i < A such that eg* %" can equal
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it. Thus the number of these ¢ is at most d. This shows (*) and concludes our
proof. O

Another uniform way to approach the simple finite-dimensional representations
of U, is via the quantum plane k[z1, z2], [3]. This is defined as the quotient of the
free k-algebra generated by x1 and x5 by the ideal spanned by xox1 —qzi22 [7, IV.1].
So a basis over k is given by the products 33119532 (i, 7 € N) with the commutation
rule xéx’l = q”:c’lxé For every non negative integer \ let k[zq,x2]q,x be the k-
vector subspace of the quantum plane generated by the homogeneous elements of
degree A, then k[z1,22], = @,y k21, 72]g,x over k. The U,-module structure on
the quantum plane is given by the following actions of K, E and F":

Kooy = q'aia}, Baiey = [lay "2y, Fajz) = [jlai™ag "
But U, could act on the quantum plane even through o, that is, in the following
way: first send U, to o(U,) and then let it act on k[zi,z2], as described before.
Let k[z1,z2]4,, denote the quantum plane with this U,-module structure.
Observe that both these U,-module actions preserve the degrees of monomials.
Then for every A, let k[z1,22]q,0,n denote the submodule generated by the mono-

mials of degree X in k[z1, z2]4,0. The simple finite-dimensional U,-modules V, » are
isomorphic to either

o k[zq,x2)q,x (when e = 1), or
o k[z1,x2)q,0.n (When e = —1).

Now consider a non principal ultrafilter YW on N. Fix ¢ = +1. For every A
we have defined a representation map ©.  from U, into My41(k). Let [(©ca)alw
denote the corresponding map from U, to [[,, May1(k). It is an associative ring
morphism.

PRroPOSITION 5.2. — For every non-principal ultrafilter VW on N,
[(@c)alw : Uy = [[ Masa (k)
w

is an injective map.

Proof. — We proceed as in [9], using Lemma 2.2 and the above discussion. Any
element r of U, can be written as Z;ll:fM F~"Mrpy, + Zi\io T E™ where M is a
suitable positive integer and the r,, (M < m < M) are in U, . Assume r # 0,
then 7, # 0 for some m. By Proposition 5.1, there is a bound b such that for all
M <m < M, ifr, #0, then O x(ry,) # 0 for all A > b. On the other hand,
for A > M, it follows from the definition of O ) that, if ¢ x(r,,) # 0 for some m,
then O, \(r) # 0. Therefore [(©¢ x)A]w(r) is not zero in [, Mxy1(k). O

Another way to proceed is to use a Peter-Weyl density theorem. Assume here
that ¢ is a transcendental complex number. Let O(SLs) be the coordinate algebra

of the quantum group SL,(2) [8, Definition 4.2]. Let C(T[) be the linear span of
matrix elements tl(-f), —0 < i,5 < £ [8, 4.2.5]. Then the Hopf algebra O(SL,(2))
is a direct sum of subcoalgebras C(T[), ¢ € +N — {0} (according to [8] and the
Peter-Weyl direct sum decomposition). There is a nondegenerate dual pairing (., .)
between O(SL,(2)) and U, := Uy,(sl2) [8, 4.4.2,11.2.3]. Let f € U;—{0}, then there

exists a € O(SLy(2)) such that (f,a) # 0. So there exists tl(.f) such that tg)(f) #0
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[8, Corollary 11.23]. So we send f to the sequence whose (A4 1)-st element, 2¢ < A,
isa (A+1) x (A+1) block diagonal matrix whose (2¢+ 1) x (2¢+ 1)-diagonal block
is tfj( f), and which equals the identity matrix on the other diagonal blocks and is
0 elsewhere, and the remaining A < 2¢ elements of the sequence are equal to the
identity matrix. Finally we send that sequence to its equivalence class modulo the
ultrafilter W.

6. THE EXPONENTIAL MAPS ON Uq7 g NOT A ROOT OF UNITY.

In this section we set k¥ = C (actually we just need a field endowed with a
norm and complete for the induced topology). For A a non negative integer and
€ = £1, define an exponential map EXP,  from U, into GLy11(C) by composing
the (matrix) exponential map expyt1 on Mxy1(C) with Oy, hence by putting
EXP, y(u) := exprt1(Oc,r(u)) for every u € U,,.

For instance,

(1) EXP.A(E) = expr1(Oca(E)) = expati1(Een),

(2) EXPA(F) = expr1(Oca(F)) = expat1(Fen),

(3) EXP. \(K) = expr41(0c1(K)) = diag (eEqA,eeq%z’ . ,’eeq*HQ,eeq’*)’

g~ (eqM+a(eg™) T

(4) EXP\(Cq) = expr11(Oca(Cy)) =€ (a=a™h? It

where Iy;1 denotes the identity matrix in GLx41(C).
We get a transfer of the properties of the classical matrix exponential to this

new map, as follows (Oy, denotes here the zero element in U,).

PROPOSITION 6.1. — Let u, v € U, and a, b € C. Then for every A € N — {0}:
(i) EXPcx (0y,) = Iny1;
(ii) EXP. x (au)- EXP, » (bu) = EXP. ) ((a +b) u);
(iii) EXPe (u) - EXPe (—u) = Dy
(iv) for w and v commuting, EXP, » (u+ v) = EXP, » (u) - EXP » (v);
(v) for an invertible element v in Uy,
EXPe (v-u-v") =0, \(v)  EXPe 5 (1) O x(v) .
In particular (Uy, C, GLx11(C), EXP, ) is an exponential C-algebra.
As in [9, Proposition 7.2], one also obtains the following result.

PROPOSITION 6.2. — For every non negative integer A\, the map EXP, y is sur-
jective.

Proof. — Since expy41 is surjective from My11(C) to GLx41(C), it suffices to
prove that O, : U, — My41(C) is surjective. The latter is deduced directly by
Jacobson density theorem [5, Section 2.2]. d

Now let W be a non principal ultrafilter on N. Let expy, denote the map
[(expr+1)a]w (where now A is ranging over N). Then

(JTM01(©), T[] GLr+1(C), expw)
w w

is an exponential ring [9, Proposition 5.1]. By Proposition 5.2, we may view U, as
a C-subalgebra of [],, M 41(C). Now we endow it with an exponential function
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as follows. For € = %1, define EX Py from U, to [],,, GLx+1(C) by putting, for
every u € Uy,
EXPV\)(U) = [(EXPQ)\(U)))\]W.

COROLLARY 6.3. — The algebra (U, C,[],), GLx4+1(C), EX Pyy) is an exponen-
tial C-algebra.

Proof. — Apply Proposition 6.1 and .o§’ Theorem [1, Theorem 4.1.9]. O

7. FINITE-DIMENSIONAL REPRESENTATIONS OF U,, FOR ¢ A ROOT OF UNITY.

In this section, we will assume that g is a primitive £** root of unity for £ > 3 and

that k is algebraically closed. Incidentally, notice that, for kK = C and 1 < 7 < ¥/,
the complex conjugate ¢ of ¢* equals ¢*~%, whence [i] = [i] = —[¢ — i].

As observed in [6, page 23] we can restrict our analysis to the case £ odd — in
fact, when ¢ = 2¢' is even one can replace £ by ¢'. Then all but finitely many simple
finite-dimensional representations of U, are of dimension ¢ [7, Propositions VI.5.1
and VI.5.2]. Let us describe two classes of representations of dimension ¢ over k.
As ( is fixed we will omit any explicit reference to it in indexing them.

Case 1. Leta, b, c € k,c # 0, ¢> # 1. Then Va.b,c will denote the representation
of dimension ¢ over k on which F, F and K act in the way we are going to illustrate.
To do that, first let us set for ease of notation:

—1 i—1

o for 1 <i</{, e;=¢ei(abc):=ab+ [i]%,

—i+1

® &y = ef(a’abac7) = a,
Y
e e=J[_,e.
Then the actions of E, F' and K on V,; . (viewed as a k-vector space of dimension
0) are given by the following ¢ x ¢ matrices E, ¢, Fp, K.:

0 €1 0... 0
0 0 €o... 0
Ea,b,c = . . y (71)
. . €r_1
ee 0 O 0
0 0 b
1 0 ... O
F=]01 01, (7.2)
00 1 0

K. = cdiag (1, g 2, g q*%”) .
It follows that the action of the Casimir element Cj is represented by the £x ¢ matrix

Cqape = diag (ab + %) .

Note that the actions of respectively E, F', K and C, either are cyclic permuta-
tions of one-dimensional subspaces, or leave these subspaces invariant.

Let ©gp,c be the map from U, to M,(k) sending E to E, ., F to F, and K to
K..
Case 2. Let d, f be non zero elements of k, with f2 # 1. Then f/dyf is the
{-dimensional representation where E, F' and K act in the following way. For ease
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of notation, let us set f; := [Z]Llifq_l (1 <i < £). Then the actions of E, F

3 a—q- .~
and K on Vg ; are represented by the following ¢ x ¢ matrices Fq, Fy, Ky:
0 0 ... d
10 ... O
E,=1 01 01, (7.3)
00 1 0
0 fi O.. 0
. 0 0 fs. 0
Fy = ) ,
: fe—
0 0 O 0

K'f = fdiag (l,qQ,...,q%*‘l,q%*Q).

Then the Casimir element Cj is represented by the ¢ x £ matrix

_ -1 -1

Note that the action of Ey on an ¢-dimensional space is a cyclic permutation of
one-dimensional subspaces, whereas the action of F' 't is nilpotent.

We will denote by (:)de the map from U, to M,(k) sending E to E4, F to Ff
and K to K -

Fact 7.1. — [7, Theorem VI.5.5] or [8, 3.2] Any simple U,-module of dimension
{ is isomorphic to either

(1) Vap,e withb# 0, or
(2) Vao,e, with ¢ # £1,+q, - - ,j:qZ*Q, or
(3) Vgaq-i for1 <j<{andd#0.

In the following we will refer to kK = C. We will use on one hand the family of
representations O, p . with a, b, ¢ all non-zero and ¢ # 1 and on the other hand the
family ©4 ¢ with d, f all non-zero and f2 # 1.

8. THE EXPONENTIAL MAPS ON U, ¢ A ROOT OF UNITY.

In this section we assume k = C, even though most of what we are going to
say can be carried out just assuming that k is algebraically closed. Let g denote a
primitive ¢*"-root of unity, £ > 3, making the same adjustment as in the previous
section when £ is even (whence we can assume ¢ odd).

Let us put for simplicity from now on N* = N — {0}.

For every triple (a, b, ¢) and pair (d, f) in C (as described in the previous section),
one can define exponential maps EXPF, ;. and EXPd,f from U, to GL,(C) by
composing

e the matrix exponential map exp, from M (C) to GL¢(C) and
® Ogp.c (respectively Og ¢).
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Thus, for every u € Uy,
EXPupo(u) :=expi(Oupe(u) and EXPgs(u) = exp(©4r(u)).
Similarly to Proposition 6.1, we obtain that
(Uy, C,GLy(C),EXPyp.) and (U,,C,GLy(C),EXPyy)

are exponential C-algebras. Moreover, if the parameters (a, b, ¢) (respectively (d, f))
are chosen such that the corresponding module V, ; . (respectively de ) is simple,
then the map EX P, . (respectively EXPd’f) is surjective (the argument is the
same as the one used in Proposition 6.2).

Now, we will vary the maps ©, . along certain non principal ultrafilters WW on
N? in order to embed U, into the corresponding non-principal ultrapower of M;(C).
Notice once again that now ¢ is fixed, so it is the triple (a,b,c) to vary, ranging
over a suitable setting we are going to describe. Basically we want to find sufficient
conditions on a domain of variation for a, b, c in order to get, for every u # 0 in Uy,
that

Oup,c(u) # 0 for sufficiently many a, b, ¢ (%)
(we will make this statement precise later).

The case of pairs (d, f) will be considered in the next section. However, for the
representations ©4 ¢, we will only be able to show a statement similar to (x) for
certain elements of U, ¢ (see Lemma 9.1).

First let us consider the case of some u € Uy o — {0}. Then u= K" p(Cy, K)
for some p(x1,22) € Clz1,22] — {0} and n € N. Let us write

N
plwr,x2) =Y sj(ws) 2]
§=0
with N € N and the s;(z2) in Clzs]. We may assume that sy (z2) # 0. Recall that
the matrix ©,p.(u) is a diagonal matrix whose (i + 1) entry on the diagonal,

. —1 .
with 0 <4 < £, is equal to ¢™"¢?™ - p(ab + %, cq=?Y) where

-1 N -1
cq + (cq) —2 —2 cq+(cq) " \;
plab+ ———5,cq” ") = ) sj(cq”™) (ab+ ———15)".
(1—q 2 2 (a2
This suggests the following change of variables
/ =1
/ Ty + Ty / 2i+1
Ty =X - s Ty =T2q"
1 (q —q 1)23 2
that is,
/ =1
;| Tyt Xy ro2i1
T =21+ “——, T2 = Toq .
Y g—qh)? 2

Thus, when (21, z2) = (ab+ %,cq_m), one has (2, x4) = (ab, cq). Observe
that, after this change of variables, the polynomial p(x1,xs) becomes a rational
function p'(x),x}) of ) and x. However p'(x),x}) can be written as a ratio-
nal function Z;‘V:o tj(zh)(z})? whose degree is still N and the coefficients ¢;(z5)
are rational functions of x5 with the only pole 0. Moreover ty(z5) is a nonzero
polynomial in 2%, and indeed tx(25) = sy (w2q?t1).
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Therefore, whenever ¢ € C satisfies ¢y (cqg=2*~1)) # 0, the polynomial p’(z}, cq)
is non trivial and has at most N roots. So, for cofinitely many values of ¢ this
polynomial p’(z},cq) is nonzero and for each of these values of ¢, for cofinitely
many values of r € C,
cq+c gty
———cq ) #F0.

(g—q1)?

It follows that, if ab = 7, then O, (u) # 0 for cofinitely many values of ¢ and,
given such an element ¢, for cofinitely many values of r.

Let S. = {¢y, : n € N}, S, = {r, : n € N} be countable subsets of pairwise
distinct elements of C. Assume also that, for every n, ¢, # 0, ¢2 # 1 and 7, has
modulus bigger than 1. Next form a new set S, consisting of complex number a,,
(n € N) such that |a,| > |r,| + n for all n. With any tuple 7 = (ny,n2,n3) € N3,
associate the tuple (¢p,,Tn,,an,) € Se X Sp x S, € C? and the representation
O5 = Gangvbﬁﬁcnl with by 1= =2

A

p(r +

3
Now let us define a family of subsets of N3:
SNy~ ={(n1,n2,n3) €N>: ny > N, ny > n(ny), ng >y(na)},

where N e N, n, v : N— N.
It is easily seen that this family of subsets has the finite intersection property.
In fact, given two such sets Sy, », v, 1 <7 < 2, take

N =maz{Ny, N2}, n=maz{n,n2} and ~v=maz{yi,2},

then Sy, € ﬂ?:l SNimi i

Let W be a non-principal ultrafilter on N® containing these subsets Sy, of N3
[1, Proposition 3.3.5].

From the above discussion, we deduce the following.

LEMMA 8.1. — For every u € Uy — {0}, there exists W,, € W such that
On(u) #0 for all n € W,.

Proof. — Let u = K~"-p(Cy, K) with p(z1,22) € Clx1,z2] — {0}, n € N. Given
= (n1,n2,n3), Oa(u) is a diagonal matrix whose (i + 1) entry on the diagonal
(0<i<l)is
—1,-1
—n 2ni Cn @ +Cpiq —2;
Cnlnq mp(rnz + Wa Cn, 4 Z)'
So for cofinitely many values of ¢,, € S,, the rational function
-1 ,-1
c’nl q + Cnl q
play + ——
Yo (g—qh)?

is non trivial. Therefore for cofinitely many values of ny € S;., we get that

o o Cny @+ o) gt Y
Cnln q2nl p(T"2 + W’ Cny q 21) 7é 07

b c7l1 q_2i)

for any 0 <7 < /£. O

Now we examine the general case.
Any element u of Uy can be written as a finite sum of the form

up + Z(Fz-u,z—kEz-uz)

zENT
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with u, € Uy for all z € N (so u, = 0 for almost all z € Z).
Note that for n € Nand 0 < j < ¢, we have F;'"*7 = b"F/ and E'}"7 = e E?

a,b,c?
where ¢ = Hle e;. Recall that Eﬁ’b?c and Fg, for 1 < j < ¢, 1nduce the same
permutation on the weight subspaces.

So we will rewrite the element v as a finite sum of the form

-1
(uo+ Z Fu_yp+ Z By, +Z FJ. ZFM'U%—J*Z Eg_j'z E vy
teNt teNt teN j=1 teN

(8.1)
where u, € Uy for all z € N. We get a Z/{Z-grading on U, as follows:

~
—

U, =P,

@
I
=)

where
Ugo:={weU;: w=wy+ Z F*w_ 0+ Z E* . w
teNT teN+
for some wyg, w_yp € Uy, t € NT},

and for 0 < j < ¢,

Upj ={welUy: w=F- Z F'* w gy j+ B ZE“ CWig o —j
teN teN
for some w_tp—j, wypp—j) € Ugpo, t € N+t

Note that this grading has the property that ©5(U,) := @l 0 ©9:(Uy,.:). Given

o =1~ .
our element u € U,, we write it as u = Zi:o u; with 4; € Uqﬂ; so the various u,

occurring in the decomposition (8.1) place themselves correspondingly to the i,
according to the grading.
Let 0 := (n1,n2,n3) € N3, set

141 —1_i—1
—Cny 4

~Cniq
— and ej 1= H €in - Ong-
q—dq .

€in = Tny + [1]

Also, let us adopt the following notation: for M an £ x £ matrix and 1 < 4,7 < ¥/,
M (%, j) is the coefficient on the i-th row and j-th column of M.

Then recall that Fp (j + 1,5) = 1, for j = ,0—1 and Fy,(1,¢) = bs.
More generally, for 1 < t < £, F} (j +1t,j) = 1 whenever 1<j<f—tand
F} (j,0 —t+j) = by for 1 < j g t. Similarly, E,,_ b, .c,, (4,7 +1) = e;5 for
1<i</{—1and Eq,, b, .c,, ({;1) = an,. Moreover

Eo o pen C—t+7,5) =€ tijn-€tijiin- - €oyjo1m, 1<j<t<,

ang 307 sCng
with the convention that the indices are calculated modulo ¢ (namely if £ —t+5 > £,
then it is equal to j —¢) and for 1 < ¢ < ¢,
E(tln3a 7L7C7l1 ('] ]+t) €j7'ﬁ. e .ej+t_17ﬁ7 1 <-] ge_t

PROPOSITION 8.2. — Let n € N3, ©; and W be defined as above. For any
u € Uy —{0}, there exists W,, € W such that for all n € W,, we have Oy (u) # 0. So,
the map [Oxlw : Uy = [,y M¢(C) is a monomorphism of associative C-algebras.
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Proof. — Decompose u € U, as in (8.1), so u = ngl ii; with @; € U, ;. We are
going to calculate Oz (u). Let zo be the highest positive integer such that either
U—_y, # 0 or uy, # 0, provided that such an index exists. Otherwise put zgp = 0.
Write —zg = —tol — jo with 0 < jg < £ in the former case, and zy = tof + £ — jo
with 1 < jp < /£ in the latter. When 29 =0, put tp = 0. For t € Nand 0 < 5 < ¢,

On (BT = ¢t Y O (FI Ty = FJ ™" = bt F} .

Qng,ba,Cny !

For z € Z, denote by V, 5 the diagonal matrix ©5(u,) (so equal to
K(;Slz pZ(C‘Lan:; b7 sCry Kcnl )

for some s, € Z and a possibly zero polynomial p, (21, x2) € Clzy, z2]).
Then, for 0 < j < £, we have

On (i) = [Oa(F ) -(V_(o—jya + Votemjreyaba + - -+ Vo(e—jrto0),abid )+

, t (8.2)
+Oa(E?) - (Vin+ Viteaen + .+ Virtoenes))]

and for j = 0, we have
On(to) = Von + Vegabn +... + szto,ﬁbgj +Vinen +---+ Veto,ﬁef—{’).

Case 1. Suppose that iig # 0, namely that us # 0 for some t € Z. Let t; € Nt be
maximal such that u; ¢ # 0, if such a positive integer exists, and t; = 0 otherwise.
Similarly let ¢2 € N be maximal such that u_¢,¢ # 0, if there are such. (Note that
either there is a 1 > 0, or t > 0.) So there are cofinitely many c¢,, such that for
all but finitely many 7,,, O (us,¢) # 0 and O5(u_ryr) # 0. So by Lemma 8.1, we
are done if t; = to = 0. Then assume that one of them is non zero.

First assume that ¢; > 0. Fix a pair (¢n,,7n,) such that Oz (us¢) # 0 and
On (u t,¢) 7 0. Since |bp| < 1, we can bound the norm of the matrix V_g zbs +

4+ V_t,02b2. Therefore for each fixed pair (c,,,7n,), the sum

V()’ﬁ + (Vgﬁeﬁ + ...+ thgﬁeﬁl) + (V,g’ﬁbﬁ + ...+ V,t2g7ﬁb%2) (83)

is non zero for all but finitely a,,. Indeed, the modulus of the elements of S, is
unbounded and if the sum (8.3) were equal to zero, then

-1 to—1
v Venl | N

Hvétn”
eqn| < max{l
eal <mea{l, 3 g Tt 2 Taal

If ¢t = 0, then by assumption t; > 0. We proceed in a similar way with the sum
Vou + Vorabn + ...+ Vftgé,ﬁb%

By assumption V5 and V_y,, 5 are non zero matrices and so for all but finitely b5
(equivalently for all but finitely many a,,), this sum is non zero

Case 2. Assume that 4o = 0, that @;, # 0 for some 0 < jo < ¢, and u, =0
either for all z > 0 or for all z < 0. Let zy := ftg + jo in the former case and
2o :=Lltg + £ — jo in the latter, with ¢t € N.

Then O (u) is either of the form:

O (F°) - (V_joi + V_(jore),nba + - - + V_(jortor),nbd) + ...+

) (8.4)
+Ou(F) - (Vor + Voyoba + o+ Vo11400),a05)
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or of the form:

@ﬁ(E) . (Vl,ﬁ + V1+g7ﬁ€ﬁ + ...+ V1+tog’ﬁ€%0) +...+

o t (8.5)
+ Oa(E"7°) - (Vi—jo,n + Vij—oteaen + - + Vicjortenes )

It suffices to show that, with 0 < jg < ¢,

e in the former case, when zg = ltg + jo,

Vojoun + Voliortaba + -+ Voortot) b # 0,
e in the latter case, when zg = ftg + £ — jo,

Viejoii + Vicjoren€n + -« + Viejottor.ne # 0.

Let us deal here with the former case, as the other one is similar. Recall that the
(i +1)" entry on the diagonal (0 < i < ¢) of the matrix V_(j,,¢),n is of the form
Cn, 4+ ¢!

—z 2z

e @7 p(rny + )

)

for some z € Z depending on —(jg + tof) and some rational function p,(x1,z2). So
for cofinitely many values of ¢,,, € S., the rational function
Cn, q+c lqgt i

is non trivial. Therefore for cofinitely many values of no € S,., we get that

L oo ey q+clq! Y
el P p(ry + ’”@_—qf;)?7 Cny ¢ ) #0.

So for such fixed value of (c,,,7y,), the coefficient of b is non zero. Then we can
find cofinitely many b5, which correspond to cofinitely many values of a,,, such
that ZEO:O V—(t@—i—jo),ﬁb% #0.

So on an element of the ultrafilter W, ©5(,,) # 0 and this is enough because
of the direct sum decomposition of ©5(Uy).

Case 3. Assume that iy = 0 and there exists z; € Z such that u,, # 0 and for
all zo € Z with 2129 < 0 such that u,, # 0 we have z; — 2o ¢ ¢Z. Then it suffices
to show that an expression of the above form (8.4) or (8.5) is non zero, which can
be done as in Case 2.

Case 4. Finally suppose that @y = 0, and for all z; with u,, # 0, there exists z3
with 2129 < 0 such that u,, # 0 and z; — 29 € ¢Z. So, in order to show that (8.2) is
non zero, we have to show that an expression of the following form, for some fixed
j with 1 < j < £, is non zero:

to ty
On(F7) > Vs jnbs +On(B7) Y Viere jneh
s=0 s=0
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where ¢; is maximal such that u, ¢4¢—; # 0 and ¢ is maximal such that u_.,¢—; # 0.
The (j + t,t) coefficient of that matrix, with 1 <t < £ — j, is equal to

t2 —1,—1

Cnq+Cpiq —o(t—
Zp—j—sf(rnz'i' = fll 5 s Cn1q 2t 1))b%+
pord (@—aq7t)

t 1
1 Cny + cnllq 1
+ejttnc €jtrtrla - €0pt—1,n " g Do—jyse(Thn, + W, Cn.q

s=0

72(t71))6%

(8.6)
with the convention that the indices are calculated modulo /.
As previously, with the values of ¢,, and r,, fixed, we can bound the norm of

to —-1,,—1
Cniq+Chq _9(t—
gp_j_“(r"2+ g g emd T

When |an,|, with a,, € S, increases, this norm remains bounded. Note that
an, = e; always occurs exactly once as a factor of the product e; ¢ 5 - €j1t41,n -
... ep+t—1,5 and the other factors remain constant, again whenever c,,, and r,, are
fixed. Rewrite that product as ay, - €. Recall that the value of 22 only depends

Ang

on ¢, and 7.
We claim that if a coefficient of the form (8.6) is equal to zero, then the norm of
is bounded, provided that we fix the value of ¢,,, r,, and choose it such that

Qpg

Cn g+ Ctq? gt
pf—j+t1@(rn2 + W7 Cn,q 2t 1)) #0 (*)

(which holds for cofinitely many values of ¢,, and then of 7,,). This will imply
that the expression (8.6) is different from zero on an element of W.
Assume that (*) holds. Then

1,-1

NG CniqtCp 4 —2(t—1
Qng '6% ' (a:;) 'pf—jﬁ‘tl((rnz + (1(] — qfi)z > Cny 4 ( )) =
t1—1 —1,—1 s
/ Cniq+ i g —2(t—1)\  ©n
—€n Pe—jtse(Tny + — 15— Cnid ) -
A S (R SO any
2 —1,-1 s
Cnid+ 6y 4 —2(t—1) "ny
— —jst(Thy + —————~5— € . ,
;p J—Ss ( na (q _ q_1)2 nlq ) a/%13+s
and we can bound in that case the norm of a,, as follows:
ol L (En" cn, 4+ cnla! —2(t—1)y|—1
|ans| < e - (an3) “Pe—jttre(Tny + (g—q 12 Cniq )N
t1—1 -1

e g+ ey lq
: (|e/ﬁ : Z |pf—j+sf(rn2 + nl—:l1127 Cn. 4
s=0 (q —q )

to
+ Z [p—j—se(Tny +
s=0

200y Gy
n13

Cn,q + C;Lllqil

e e )
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We may apply a similar reasoning to the (¢,¢ — j + t) coefficient of that matrix,
for 1 <t < j; it is equal to

Cn g + C’;,llqil

to
br - Zp—j—sf(rnz + y Cnyq q_Q(Z_]-H_l)) : b%'i'
s=0

(=g
t —1,-1
Cniq + Cpiq 02— jt—
tern o Ctpo—j—1a° ZPZ—Hse(Tm ™ W’ Cny g 2T e
s=0
(8.7)
Again we choose a value of ¢,,,, 7, such that
Cn,q + Cﬁllqil

pf*jthlf(rnz + 3 cn1q_2(e_j+t_1)) 7& 0

(¢—qt)?
and we show that if the expression (8.7) is equal to zero, then one can bound the
value of a,, and so it only occurs finitely many times for a fixed value of ¢, 7p,.
Note that in this case the value of e; 7 -. . .-€;4¢—j—1,a Temains constant for 1 < ¢ < j
whenever ¢, and r,, are fixed. O

Given an ultrafilter W on N? as in Definition 8.1, we denote by C* (respectively
R*) the ultrapower of C (respectively R) modulo W.
First, we define a map Expyy from [[,,, My(C) to [],, GL¢(C), simply by

Expw([Az]w) = lexpe(Ar)]w,

for Ay € My(C) and 7 € N*. Note that [],, M,(C) = M;(C*) (respectively
[,y GLi(C) = GL,(C¥)), so Expyy also defines a map from M, (C*) to GLy(C*).
Let us say that an element of M,(C*) is infinitesimal if its norm is bounded by
any positive rational number, where the norm on M;(C) has been extended in a
natural way on M;(C*) taking now its values in R*.
Let us denote from now on, for ease of notation, an element [Ay]yy of [, M,(C)
simply as [Az], omitting the subscript W.

We claim that if the norm ||.|| of (Az)zens is bounded on an element of W, then
Eapw([An]) = leape(An)] = [ 1]
7=0

can be viewed as the limit up to an infinitesimal element of M,(C*) of the sequence

(Ol [Aﬁ]j )men- Indeed, let us check that the sequence in M,(C*) of matrices

([Z;.n:o %DmGN is a Cauchy sequence (and so bounded).

In fact, for every 7 € N3 and m € N,

So

”Z [A.’_f]j I < Z A _ D IAaly o poltasy.

Jj=0
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For any € > 0 in R, there exists a positive integer N such that for any m; > mg > N,

H Z [AJ”_:]J _ Z [A’ﬁ]J ” < ||[Aﬁ]Hm2+ . || Z (m2 + 1)' [-14,—1]]_7”2_ ”

par S (me+ 18 7 2 '
”[ At ' e me I (A7) I
(m2 +1)! =0 J!
_ 'IYL2+1 = N+1
< oty eV < T e < e
mo . .

Finally

N A]—
1D =~ leap(Aall = I Z — — exp(Aa)|l]
0 I

S{(p D= 1Ry G uasp

j:N+1

Let An € M,(C). Following the discussion of [10, Theorem 3.1], we calculate
expe(Ar) (for the reader’s convenience, we reproduce it below). Using the Jordan
form of Az, one writes Az (uniquely) as a sum Bj + Cr, where B; commutes with
Ch, By is diagonalizable and Cj is nilpotent of class < £ — 1. So, we can explicitly
calculate

ce!
(£—1)! )

Since Bj is diagonalizable, there exists an invertible matrix Dy such that

D; ' By - Dy = diag(bai, . . ., bae),

expi(Arn) = expi(Br) - expe(Cr) = expe(Br) - (I +Cr + ... +

where bp; € C, 1 < j </, are the eigenvalues of Bz. So

expe(Br) = Dy - diag(eb™, ... eb) - Dt
Now,
[C’ﬁ]e_l )
(e—1)"
In particular, (M;(C*), Expw, GL¢(C*)) is interpretable in the structure (C*,z —
€®). Moreover, calculating the norm, we get

lexpe(An)] = D] - diag(e®) ... elbad) . [Dp] 7Y - (I 4 [Ca] + ... +

£—1

. _ ~ Ch
lezpe((An) ] < diag(elo] - eloy - (3 AL

i=0
As previously, we define EX Pyy from Uy to [],,, GL¢(C)) ~ GL(C*) by
EX Py (u) = [expe © Og p,c(w)w

and we deduce the following corollary.

i

COROLLARY 8.3. — (U,,C,GLy(C*), EXPyy) is an exponential C-algebra and
as such embeds in (My(C*),C, GL¢(C*), Expyy).
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Proof. — As for Corollary 6.3, we use Los Theorem, Proposition 8.2 and the
properties of the exponential map in M,(C) (see for instance Proposition 3.1 in
[9))- O

On the image of U, in GLy(C*), we can say the following. Note that the trace
of K, is equal to

1— q722
T p=
and so the image of K by expy 0O, . will belong to SLy(C), as well as the images
of E%, FI fori,j € Z —{.Z.

c-(I+q 24+ +¢ ¥ =¢ =0

9. AN ANALYTIC APPROACH

In this section, we still work in C and assume that ¢ is primitive root of unity
of degree ¢ > 2 (making the same adjustment as in the previous sections when ¢ is
even). We will use the theory of meromorphic functions with two complex variables
and get a partial but in some respects stronger result on the fact that the image of
certain non-zero elements of U, ¢ have a non-trivial image by (:)d, ¢ for "most” of the
choices of the complex coefficients (d, f). We thank Andrea Spiro for suggesting
this approach.

We will denote the closure of a subset A of C2 by A°. Also, given a polynomial
f(x1,12) € Clay, x2], we will denote its zeroset on C? by

Z(f(z1,22)) := {(a1,a2) € C*: f(a1,a2) = 0}.
So let u € Uyg — {0}; it is of the form K "p(C,, K) with
p(z1,22) € Clay, 2] — {0},

and n € Z. Let n € Z to be the least n such that
N .
(*) p(x1,22) = > sj(x1)ry, with so(z1) #0.
j=

[}

We will say that u € Uy o —{0} is prime if the polynomial p(x1, z2) is irreducible,
assuming it is in the form (%). In fact, since there is no extra work involved, we
will consider both representations O, . and C:)d7 ¢ simultaneously.

Recall that, if u € Uy, then both matrices 45 .(u) and ©4 f(u) are diagonal
matrices where, for 0 < ¢ < ¢, the (i + 1)-th entry on the diagonal is equal to
respectively

cq + (qul cq~ )

—n_2ni
o ¢ "g""p(ab+ »eq),
( (—q71)?
—n —2ni fao +fq i
i f q 2 p( (qqul)Q ) q2 )'
LEMMA 9.1. — Let u € Uy o — {0} and assume that u is prime. Then for all but

finitely many f € C, there is at most one non negative integer i < { such that the
(i 4 1)-th entry on the diagonal of the matrix ©g f(u) is equal to zero. Similarly,
given any a, b € C, for all but finitely many ¢ € C, there is at most one i < { such
that the (i + 1)-th entry on the diagonal of the matrix © .(u) is equal to zero.
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Note that if u € Uy — {0} is not prime, then 6,4 ;(u) may be equal to 0 for
infinitely many tuples (d, f) (actually for infinitely many f).

Proof. — Let G(z) := % and rewrite ab + % as ab + G(cq?).

Consider the two families of rational functions G1;,Gs; : C — C? given by
G1i(z) = (G(x),2¢*") and Go,(z) = (ab+ G(2¢*),vq*")

for all # # 0 (where ¢ < ¢). Then poGy,; : C - C and poGaz; : C — C are
rational functions with the only pole 0. This implies that each of them either has
only finitely many zeroes or is identically zero, and in the latter case the images of
G1,i, G2; (and so the closure of these images) are included in Z(p(z1, z2)).

We claim that there is at most one ¢ such that p o Gy ; is identically zero, and
similarly for p o G2 ;. This is clearly enough for our purposes.

Assume towards a contradiction that this is false. Put for simplicity C* = C\{0}.
For i,j < ¢, i # j, we have both

G1,:(C*) € Z(p(w1,22)) and G1;(C*) C Z(p(w1,22))

(similarly for G2 ; and G ;).
Observe that since g # 0, the Jacobian matrix

J(G1:) = <dG(;2)i /dx>

is nowhere zero and G; is a regular parametrization of the smooth complex
curve G1;(C*) C C2. Since p(w1,x2) is irreducible, it follows that Gy ,(C*) =
Z(p(x1,x2)). The same argument works for G j, G2,; and G ; and shows that the
restrictions of G ;, G ; and of G2 ;, G2 j, respectively, to suitable open sets can be
considered as pairs of (local) parametrizations of the same smooth complex curve
and there exist holomorphic changes of parameters Hy ;;(z) = Gl_;(GU(x)) and
Ha ji(w) = G (Gai(w)) (with @ # 0).
Therefore G ;(Hi ;,i(x)) = G1,(x) (respectively Ga j(Ha, ji(x)) = Ga,i(x)). In
particular,
o G(Hy,i(x)) = G(z) and Hyj(2)q*” = g™,
o ab+ G(Hs;i(7)q?) = ab+ G(zq?*) (consequently G(Hs ;i(x)q?) = G(zq?))
and Hy,j() ¢~ = zq~™".
In the former case Hy j,(x) = 2¢?*~?% and replacing it in the first equality we
get
2?27 4 a2 gql 42l
(¢—q1)? (g—qH% "~

Similarly, in the latter case, Ha j;(z) = xg~2"*?/ implies

2q~2t2 g 4 g 1g%i g1 B zq+ 2 lg !

(¢—q71)? o (g—q1)?
Comparing the terms of the Laurent series development of the two rational func-
tions arising in these equalities, we get in both cases ¢**~% = 1 and hence a

contradiction, since either ¢ is odd and |(i — j)| < £, or £ > 2 is even but then ¢ is
half the order of q. O
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10. APPROXIMATION

In this section, using ultraproducts and the representations of Uy, we will relate
U and the quantum algebras U, for ¢ a root of unity.

One known way to view U as a limit of the U,’s (see [8, page 58] and [7, V1.2.2])
is to use another presentation of U, involving one more generator, which allows to
set also the case ¢ = 1. If Uq denotes this new isomorphic presentation of Uy, one
gets U as a quotient of Uy /(K — 1).

As recalled at the end of section 5, the Drinfeld-Jimbo algebra Uy, (sl2(C)) [7,
XVIIL.2.3] is the C[[h]]-algebra generated by X,Y, H with

ohH/2 _ o—hH/2
eh/2 _ o—h/2

[7, Proposition XVIIL.4.1]; it is topologically isomorphic to U(sl2(C))[[R]] [7, Theo-
rem XVIIT.4.1].

For k = C, a heuristic way to see U as the limit of U, for ¢ — 1, is to proceed
as follows [8, pages 6, 57]. Recall that U as an associative C-algebra is generated
by X,Y, H and defining relations [H, X] =2X, [H,Y] = -2Y, [X,Y] = H.

Now consider U, with its generators E, F, K and K~! and the corresponding
relations (2.1).

Following the presentation of the Drinfeld-Jimbo algebra, formally write ¢ = e
and make the change of variables K := /2 where H is viewed as a new variable.
Let h go to 0. First, by differentiating with respect to h the relation

[K,E|=K-E—-E - K=(K-E-K'-E) K=(?-1)-E-K=("-1)-E-K

one gets e E-eM1/2 (el —1)-E-H/2-e"H/2, Taking the value at h = 0, one obtains
on one hand E and on the other hand 1/2[H, E] when looking at [K, E], since H/2 is
equal to the derivative of K with respect to h, evaluated at h = 0. This establishes
the relation [H, E] = 2E. A similar calculation gives [H, F] = —2F'. Finally, if one

takes the value at h = 0 of the two members of the relation [E, F] = Ié :f__ll, then
using L’Hépital’s rule one gets [E, F] = H. These are the relations of U (provided
weset X =FandY = F).

As said, here we point out a further relationship between U and the Uy, via
ultraproducts. We will assume that, for every £ > 2, a primitive £** root of unity
qe is chosen such that 1 < —i(q, — q[l) < 2. More precisely, let g, = ¢t *F with
1 <1 < ¢ and | minimal such that the previous condition is fulfilled.

We take a non-principal ultraproduct of Ug,, ¢ € N, over a non principal ultra-
filler W over N*. Denote the generators of U,, by Ey, F; and K,. Consider the
C-algebra homomorphism 7, from U to Uy, sending X to Ey, Y to Fy (and so H to

-1
%). Define the map 7 := [r]yy from U to [],,, Ug,. Note that by composing
the Iflap 7 with the exponential maps that we have defined on U,,, we get new
exponential maps on U.

[H,X]=2X, [HY]=-2Y and [X,Y]=

h/2

PROPOSITION 10.1. — The map 7 : U — [],,,Uq, is a monomorphism of
(associative) C-algebras.

Proof. — The fact that 7 is a morphism of C-algebras is straightforward from the
definition. To prove injectivity, we proceed as follows. Recall that U, as a Z-graded
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algebra, can be written as an infinite sum of m-homogenous components, m € Z,
namely U = ), Up,; furthermore note that, if m is positive, then U,, = X™ Uy
and, if m is negative, then U,, = Y™ - Uy. Furthermore the 0-component U
coincides with the ring of polynomials C[C, H] where C is the (classical) Casimir
element C' = 2XY +2Y X + H? (so the generator of the center of U).

In Section 7, we defined, for each root of unity gy, representation maps Q3 . from
Uq, to M;(C). We will compose the map 7 with the representation maps [Oq p |
from [],, Uq, to [T,y M¢(C). We will get in this way a map from U to [[,,, M¢(C).
We will show that, for every u € U — {0}, one can choose a, b, ¢ € C such that the
image of u under the composition [Ogp ]y o 7 is # 0 (whence 7(u) # 0). In other
words, now ¢ is allowed to vary while (a, b, ¢) is fixed, even if it may depend on the
element u we consider.

First, we will assume that v € Uy. Then u = p(C,H) where p(z1,22) €
Clzy1, z2] —{0}. Write p(z1,z2) = Ztho sp(w1)xh, where s, € Clzy], D is a natural
number and sp(z1) # 0. So the image

D
7(p(C, H)) = p(r(C),7(H)) = Y sn((C)) - 7(H)"

h=0

in the ultraproduct is a polynomial in the image of H and its coeflicients are
polynomials in the image of C'.

As said, we claim that, under the hypothesis u = p(C, H) # 0, for a suitable
choice of a, b and ¢ one has [Og 4. Jw (P([7e(C)lw, [7e(H)]w)) # 0 and consequently

7(p(C, H)) = p([re(C)lw, [re(H)lw) # 0.

To prove that, we evaluate the polynomials sp(x1) at

2
K- K;!
2B Fy + 2F By + (———4-) I
qe — 4,
on one hand and the polynomial
D _12
K, — K
Z sn([2EeFy + 2F By + ——5— w) 2}
h—0 qe — 4y
at [KPKf_1 Jw on the other hand.
ae—aq,

Observe that
[©a,b,elw(T(P(C, H))) = [Oap,c(e(p(C, H)))w

K, — K Y)? K,—K; !
= |:®a,b,c (p <2E5'Fe+2Fe~Ez+( ‘ e i =t - >)]
(@e—a, ) a—q "

= {p(2®a,b,c(E£) “Oap,c(Fr) +204.5,c(Fr) - Oapc(Er)+

(Oane(Ki — K;1))? Ogpo(Ky— Kb )]
(@—-a"? = a—q! w
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Now if we fix ¢, then for every j < ¢ the (j + 1,7 + 1) entry of the diagonal matrix
Oub.e(Te(p(C, H))) is of the form

. N2 . )
—2j —1,27 —2j —1,2j
cq —C °q cq —C °q
p|2(ej +ejp) + | = — : —
qe — gy e — 4qy

D —2j _ 125\ —2j _ 12\ ™
cq —C q cq —C °q
= Z Sh 2(€j + €j+1) + =t - % - £ . S — £ s
h=0 qe— 4, qe — qy
with eg = egb = ab. Furthermore the (¢, ¢) entry of the same matrix is

cq? — ¢ 1q? 2 cq? — ¢ 1q?
p<2(62—1+6éb)+(q£ T ) =l §

a—q' a—q

We have to choose a, b and ¢ ensuring that for cofinitely many values of ¢, some
entries of this matrix are non-zero.

First take ¢ € iR — {0} (and so ¢ = —c¢). Then the first diagonal entry of the
matrix (that corresponding to j = 0) is of the form

-1 —
c—c 5 c—cC

aw—q " Ta—q"

p(2(er + ab) + :

where e; = ab + qcflq_f since [1] = 1. Incidentally observe that
-

12

c—c! c—c! c—c !
(*) 2(e1 +ab) + (——— )2 =4ab—2 — +( — )2.
qe —qy qe —qy qe —4q,
It follows that, if a, b are chosen such that the product ab is in R, then
_ 1 _ -1
076_1 cR and 2(61+ab)+(676_1)2 e R.
qe — 4, qe — 4,

So, whenever the (1, 1) entry of the matrix is 0, we find a common root of p(z1, z2)
and its complex conjugate p(x1,x2). Varying ¢; over a set of primitive roots of

unity with distinct imaginary parts and observing that qC_C;l # <=¢ _ when
£1 9y -

{1 # 05 we get infinitely many distinct common roots.

Case 1: p(z1,x2) and p(z1, z2) have no common irreducible factors. Our choice
of a, b and c takes care of that case. In fact, Bezout’s theorem, when applied to
the pair p(z1,22) and p(x1,22), ensures that the (1,1) entry of the matrix has to
be non zero cofinitely many times.

Case 2: p(z1,x2) and its complex conjugate have an irreducible factor in com-
mon. So, they have a common factor with real coefficients. Let us write

P(l"l,?ﬁz) = po(Il, !172) 'p1(171, 1’2)

with p1(21,22) € Rz, 23] of degree > 0 and po(z1,2z2) € Clry,x2] — {0}. We
claim that for an appropriate choice of a, b and ¢, strengthening the previous one,
one gets that the value of py(z1,z2) in the first entry of the matrix is non zero for
cofinitely many ¢, (which ultimately leads to Case 1 for po(x1,x2)).

These further constraints on a, b and ¢ are fixed as follows.
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For simplicity rename p1(z1,22) as p(x1, z2) and write it as a polynomial in x4
with as coefficients polynomials in xo:

p(z1, z2) E tn(x2)

where the various ¢, (x2) are polynomials with real coefficients and ¢p/(z2) # 0.
The previous parenthetical remark (x) suggests the following change of variables

! / /\2 !
x1 = 4ay — 2x5 + (25)°, o = x5,

In this way p(x1,z2) becomes a polynomial p’(x), z}) that can be written as

.
> falah) 4™ (zh)"

for the same D’ as before (indeed p/(z4) = tp:(2)).
Recall the way the g, have been chosen, as e’ *F* with 1 < I < ¢ and [ minimal
such that 1 < —i(qe — q, 1y < 2. We sometimes set for simplicity z, :=

=
ae—4q,
Note that, just due to our assumptions on qp, 271 < |z| < 1.
Now choose ¢ such that for all £,

Dt c—c!
/\ [t ( )| <ry and |ip(——)] >r >0.
qe — 4,
Let us explain why and how these values r1, ry can be found.
Consider any polynomial gy(z) := ZZ:O ap 2t - ", where o, € R for every n

and oy, # 0. First observe that, if we take |c — ¢™!| < r3 for some real r3 > 0, then
1

n

we can bound |ZZ:0 an 2 (¢ — )" by Z’;:o |an| 7%, Second, choose ¢ — ¢~
such that |[c—c™t| > 2M, where M := max{1, Zi;é llz:; 2k 1. Let us distinguish
now two cases, according to whether ay, is positive or not.

(i) ag > 0. For x a positive real, evaluate

o 2 o — |3 o 2] = 2 " o x—|z O sk an i),

n= 0
If x > 2M, then

{Ek_l |25|kak (1, _ | Z % . Z;’sz 'xn_k+1|) > oy 2—1 Mk

and consequently |g¢(c — c71)| > oy, 271 M*.
(#4) ag < 0. Then

k—1 k—1
|z* 2F +Zangc" 2 = |2k 2 (—an) + ) (—ay) 2™ 20,
n=0 3=0

and we are back to the previous case.
This explains 1 and rs.
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At this point it suffices to choose r = ab € R such that

D'—1 |£n c—c’l1 )|

|r| > maz{1,D" - 7n—Q} > max{l, Z % .
™1 n—0 |tD/(qe—7qu)‘

Suppose now that u ¢ Uy. So there exists m # 0 such that w,, # 0. Let m be
maximal in absolute value such that u,, # 0. If m > 0, write u,, = X™ - p,,(C, H)
and if m < 0, write u,, = Y™ - p, (C, H), with p,,(x1,22) a non zero polynomial
with coefficients in C and p,,,(C, H) € Uy — {0}. Set

ea,b,c(Fﬁ) = Fb and ea,b,c(Eﬁ) = Ea7b,c-

Then for £ > 2m, we have that Fy" and E7, . have no entries in common.

If w4 has a non-zero component u,, with m > 0 (respectively m < 0), then
we consider the product of the two matrices EJ", . and P (©g.b,c(C), Oap.c(H))
(respectively Fy™ and py,(©q.,c(C), Oap.c(H))). The nonzero entries of the corre-
sponding permutation matrix are of the form

—2j

—1,2j —2j —1.27

cq —C q cq —Cc q
ejej+mp(2(e]+1+ej)+( £ 1 £ 27 : —1 i )

qe — 4y qe— 4,
and 2 2 2j 2
—2j —1 25 -2y —-1,4J
cq —C q cq —C °q

bep(2ej +e5) + (F—— ) ——— ),

qe — 4, e — 4qy

respectively, with p(z1,22) € Clx1,z2] and 1 < j < ¢ (with the convention that
j+m is calculated modulo ¢). So, it suffices to evaluate the coefficient corresponding
to the case when j = £ and we can apply the previous discussion. O
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